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Abstract Rhodotorula glutinis is capable of synthesizing nu-
merous valuable compounds with a wide industrial usage.
Biomass of this yeast constitutes sources of microbiological
oils, and the whole pool of fatty acids is dominated by oleic,
linoleic, and palmitic acid. Due to its composition, the lipids
may be useful as a source for the production of the so-called
third-generation biodiesel. These yeasts are also capable of
synthesizing carotenoids such as β-carotene, torulene, and
torularhodin. Due to their health-promoting characteristics,
carotenoids are commonly used in the cosmetic, pharmaceu-
tical, and food industries. They are also used as additives in
fodders for livestock, fish, and crustaceans. A significant char-
acteristic of R. glutinis is its capability to produce numerous
enzymes, in particular, phenylalanine ammonia lyase (PAL).
This enzyme is used in the food industry in the production
of L-phenylalanine that constitutes the substrate for the
synthesis of aspartame—a sweetener commonly used in
the food industry.

Keywords Oleaginous yeast .β-Carotene . Torulene .

Torularhodin . Phenylalanine ammonia-lyase

Introduction

Until recently, the yeasts of the genus Rhodotorula were pri-
marily considered to be saprophytes that spoil food. In recent

times, a large number of studies have been published on the
biotechnological uses of these yeasts, which suggest that they
may constitute important group of microorganisms that might
be of importance in industries in the future. Rhodotorula
glutinis is considered to be the typical species of this genus.
These yeasts are capable of synthesizing numerous metabo-
lites useful in industries, such as lipids, carotenoids, and en-
zymes. Their clear advantage is their capacity to grow and
synthesize metabolites on substrates containing different in-
dustrial waste raw materials, which considerably elevates the
economic profitability of biotechnological processes. This
study presents a literature review on the possibility to obtain
microbiological lipids, carotenoids, and enzymes from
R. glutinis biomass and their potential use in industries.
Moreover, the pathways of lipids and carotenoid biosynthesis
and the influence of selected environmental factors on the
efficiency of these processes are described.

History, taxonomy, morphology, and physiology of
R. glutinis

Over the years, the asexually reproducing, colored yeasts have
been assigned to numerous genera, such as Torula,Mycotorula,
Torulopsis, Cryptococcus, and even Saccharomyces. Francis
Charles Harrison, a Canadian microbiologist, who worked on
yeasts found in regional cheeses in the 1930s, was the first one
to use the name Rhodotorula (Barnett 2004). The genus name
originates from the word rhodos (red in Greek) and torula
(feminine diminutive form of the Neo-Latin torus—bulge)
(Krzyściak et al. 2007).

Rhodotorula glutinis is considered to be a typical species of
this genus, and it was described by Georg Fresenius in 1850.
The yeasts were isolated from the cream of sour milk and
named Cryptococcus glutinis at that time (Barnett 2004).
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R. glutinis is included in the order Sporidiobolales, class
Microbotryomycetes, and phylum Basidiomycota in the
Fungi kingdom. Integrated Taxonomic Information System
provides three synonyms of the Latin name of Rhodotorula
glutinis: R. rufula, R. glutinis var. rubescens, and R. gracilis
(ITIS Standard 2016). The following varieties are distin-
guished within the species: Rhodotorula glutinis (Fresenius)
var. glutinis, Rhodotorula glutinis var. dairenensis (yeast iso-
lated in 1922 by Saito from air) (Fell and Statzell-Tallman
1998), and Rhodotorula glutinis var. salinaria (yeast isolated
in 1969 from salt) (Hirosawa and Takada 1969).

The majority of the yeasts included in the species are
mesophilic, although some of them thrive under lower tem-
peratures, and aerobic organisms. The cells are spherical, el-
lipsoidal, or elongated in shape. R. glutinis reproduce asexu-
ally by multilateral or polar budding; certain strains form re-
sidual pseudomycelium (Fell and Statzell-Tallman 1998).

These yeasts are capable of using many compounds as
sources of carbon. They include glucose, galactose, sucrose,
maltose, trehalose, ethanol, glycerol, and hexadecane. A char-
acteristic feature of this genus is its lack of capacity to perform
sugar fermentation. The cells produce urease and Q-10 coen-
zyme. They can grow in the presence of 10 % NaCl, but they
do not tolerate glucose concentration above 50 % (Fell and
Statzell-Tallman 1998).

R. glutinis colonies that grow on permanent malt medium
exhibit characteristic coloration that depends on the type of
strain and growth conditions. They can be of creamy, yellow,
salmon, pink, orange, coral, and blood red in color. In liquid
media, they grow in the form of orange ring or sediment (Fell
and Statzell-Tallman 1998; Hernández-Almanza et al. 2014).
The colored pigmentation of the cells is due to the production
of large amounts of carotenoids, which are responsible for
protecting the cells against the effect of singlet oxygen and
excessive radiation of visible and UV light spectrum
(Hernández-Almanza et al. 2014).

Rhodotorula yeasts occur in common in the environment.
They are isolated from air, soil, grass, lakes, oceans, food (i.e.,
milk, fruit juices), human skin, and feces (Wirth and Goldani
2012). The majority of the representatives of the genus do not
exhibit pathogenic properties, although opportunistic patho-
gens are found among them, which cause dermatophytoses,
and are referred to as rhodotorulosis. The most common etio-
logical factors of these infections are the strains of the species
Rhodotorula mucilaginosa (Biswas et al. 2001).

Lipid biosynthesis by Rhodotorula glutinis

In recent years, there has been an increased interest in develop-
ing new methods to obtain lipids from these yeasts. One such
method includes the production of microbiological lipids, re-
ferred to as SCO in the literature (single cell oil) (Beopoulos

and Nicaud 2012). In comparison to the production of vegeta-
ble and animal fats, this method is independent of climate,
season, and geographical position of a country. Production cy-
cle is short, thanks to the rapid growth rate exhibited by the
microorganisms (Santos et al. 2013). Microbiological lipids
can be used as food additives, diet supplements, and substitu-
tions for precious fats. Microbiological oils can also be used as
substrates in the so-called third-generation biodiesel production
(Li et al. 2008; Papanikolaou andAggelis 2011b; Papanikolaou
et al. 2001, 2003; Ratledge and Cohen 2008).

The yeast Rhodotorula glutinis belongs to the group of
oleaginous microorganisms (Table 1), which are defined as
those that are capable of producing and accumulating over
20 % of lipids in dry cellular substance (Ratledge and Cohen
2008). Fat is stored in the lipid bodies (Ham and Rhee 1998),
whose structure is similar in all oleaginous yeasts. The core
consists of backup hydrophobic compounds (such as triacyl-
glycerols, free fatty acids, and sterols), and it is surrounded by
a layer of phospholipids bound to proteins (Fickers et al.
2005). In these yeasts, the lipid bodies consist of neutral lipids
in the form of triglycerides, and the composition of phospho-
lipids differs from this composition in other cellular organ-
elles. This stems from the fact that they primarily consist of
phosphatidylcholine (38.6 %) and phosphatidylserine (43 %)
(Ham and Rhee 1998).

Mechanism of lipid biosynthesis

In yeast cells, lipids may be accumulate via two pathways: de
novo (from acetyl-CoA and malonyl-CoA molecules) and ex
novo (Beopoulos and Nicaud 2012). In the de novo method,
saccharides or glycerol constitutes the substrates for lipids
production (Papanikolaou and Aggelis 2011a), whereas in
the ex novo biosynthesis, hydrophobic compounds serve as
the substrates (Beopoulos et al. 2009). Culture media primar-
ily containing glucose, sucrose, glycerol, and sugar waste raw
materials such as molasses and different hydrolysates are used
as sources of carbon for the production of lipids by the yeast
Rhodotorula glutinis (Table 1).

In the de novo synthesis, the overproduction of intracellular
lipids occurs after the depletion of nitrogen compounds from
the culture environment, which is related to the activation of
AMP deaminase. This enzyme catalyzes the decomposition of
AMP to IMP and NH4

+ ions, which constitute the additional
source of nitrogen. A decrease in the adenosine
monophosphate level disturbs the course of the Krebs cycle
because this compound activates isocitrate dehydrogenase that
catalyzes the transformation of isocitrate to α-ketoglutarate.
Under such conditions, mitochondrion accumulates isocitrate
that remains in balance with citrate, thanks to the activity of
aconitase. After attaining a critical concentration, citric acid is
transported from mitochondrion to the cytoplasm, where it is
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split by ATP-citrate lyase to acetyl-CoA and oxaloacetate. The
first stage of fatty acid synthesis is carboxylation of acetyl-
CoA, as a result of which malonyl CoA is produced. Then, a
sequence of enzymatic reactions occurs, catalyzed by the
complex of fatty acid synthase (FAS). The fatty acids pro-
duced can then be included in the pathway of triacylglycerol
synthesis (Papanikolaou and Aggelis 2011a).

Factors affecting on the biosynthesis of intracellular
lipids

The biosynthesis of intracellular lipids by Rhodotorula
glutinis is influenced by many factors. A significant role has
the appropriate high C/N molar ratio in the culture medium.
Saenge et al. (2011b) used glycerol as a carbon source for the
production of lipids by R. glutinis TISTR 5159, and the C/N
ratio in the medium remained in the range 35–85. The results
obtained by the authors suggested that the optimal addition of
glycerol for the production of the yeast biomass amounts to
8.5 % (C/N 60). When the glycerol content was increased to
9.5 % (C/N 85), highest lipid content was observed (approx.
42 %). Then, yeast was cultivated on the medium with an
initial C/N ratio of 85 in a biofermenter tank. The highest lipid
content (60.7 %) was obtained after 72 h, and it contained
mainly oleic acid (45.75 %) and linoleic acid (17.92 %). The
lipid yield after this time was 6.10 g/L.

The process of lipid biosynthesis byR. glutinis also depends
on the type of carbon source found in the culture medium.
Easterling et al. (2009) cultivated R. glutinis ATCC 204091
on media containing glucose, xylose, glycerol, glucose+xy-
lose, glucose+glycerol, and xylose +glycerol. These com-
pounds were added to the medium in such amounts that the
initial C/N molar ratio amounted to 10. The intracellular lipids
content varied, depending on the carbon source, and amounted
from 10 (glucose and xylose) to 34 % (glucose+glycerol).

The acidity of the culturemedium also has considerable effect
on the lipids biosynthesis. Johnson et al. (1992) determined its
influence during the cultivation of oleaginous strain ofR. glutinis
IIP-30 on medium containing 3 % of glucose as the source of
carbon, 0.2% of ammonium sulfate and 0.1% of yeast extract as
nitrogen sources. The highest lipid content (66 %) was obtained
on the medium at pH 4.0, whereas at pH 3.0, 5.0, and 6.0, its
content amounted to 12, 48, and 44 %, respectively.

The presence of dissolved oxygen in the culture medium
constitutes another factor that determines the biosynthesis
of intracellular lipids by yeasts. Yen and Zhang (2011a)
observed that increasing the content of dissolved oxygen
in the medium decreased the total amount of lipids pro-
duced in R. glutinis BCRC 22,360. When the oxygen level
was established at 25 ± 10 %, the lipid content in the bio-
mass was 62 %, whereas when the level was increased to
60 ± 10 %, it decreased to 52 %.

Lipid biosynthesis from waste substrates

Studies showed that it is a possible to obtain microbial oils in
media containing different waste products. Processes conduct-
ed on such substrates greatly increase the economic cost-
effectiveness of SCO production and enable partial biodegra-
dation of problematic industrial waste (Almazan et al. 1981;
Alvarez et al. 1992; Cheirsilp et al. 2011, 2012; Gonzalez-
Garcia et al. 2013; Lian et al. 2013; Liu et al. 2015;
Louhasakul and Cheirsilp 2013; Saenge et al. 2011b;
Schneider et al. 2013; Xue et al. 2008, 2010; Yu et al. 2011;
Yen et al. 2012; Yen and Chang 2014).

Xue et al. (2008) used wastewater obtained from the pro-
duction of monosodium glutamate as the nitrogen source. The
medium was supplemented with glucose and R. glutinis was
cultivated for 120 h. The obtained cellular biomass yield and
lipid content amounted to 25 gd.w./L and 20 %, respectively.
As a result of the process, a 45 % reduction of the chemical-
oxygen demand indicator was obtained. Other authors
(Gonzalez-Garcia et al. 2013) cultivated R. glutinis ATCC
204091 on medium prepared from distillery wastewater ob-
tained from the production of tequila. After 144 h of the pro-
cess, the lipid content amounted to 27 % and the COD index
decreased by 84.44 %. Xue et al. (2010) used wastewater from
starch production as culture medium. After 60 h of cultivation
in 5-L biofermenter tank, the amount of cellular biomass ob-
tained exceeded 60 gd.w./L and the lipids content amounted to
30%. At the stage of the experiment, the culture was conduct-
ed in a 300-L biofermenter tank, using the same waste type as
the culture medium, without prior sterilization and regulation
of active acidity. The cellular biomass yield amounted to 40 g/
L, and the participation of lipid remained at the level of 35 %,
already after 30–40 h of the culture. After this time, an 80 %
reduction in the chemical-oxygen demand indicator of the
culture medium was noted. Yen et al. (2012) cultivated R.
glutinis BCRC 22360 on medium containing crude glycerol
obtained during biodiesel production and thin stillage collect-
ed from the brewing company. The process was carried out in
a 5-L biofermenter tank, and the biomass yield and lipid con-
tent in the cellular biomass amounted to 14.8 gd.w./L and
36.5 %, respectively. Moreover, a study was conducted by
Yen and Chang (2014) with the use of the same yeast strain
on medium containing waste formed after the production of
cellulose and hemicellulose (lignocellulosic biomass
hydrolyzate (LCB)). Lipid content amounted to 34.3 % after
cultivation on medium containing 6 % of reducing sugars.

Cheirsilp et al. (2011) cultivated a mixed culture of
R. glutinis TISTR 5159 yeast and Chlorella vulgaris TISTR
8261 microalgae on media containing waste obtained from
seafood processing plant and molasses obtained from sugar
cane plant. It was determined that pureR. glutinisTISTR 5159
yeast culture exhibited a more rapid growth rate than the
Chlorella vulgaris monoculture. However, in the case of a
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mixed culture, increased biomass yield and fat biosynthesis
efficiency were observed compared to the separate culture of
these microorganisms. This regularity could be the result of
the syngergistic effect of these strains, consisting in the fact
that the microalgae produced oxygen absorbed by yeasts,
which biosynthesized lipids at the same time. The highest
biomass yield (4.63 gd.w./L) and efficiency of microbiological
oils (2.88 g/L) were obtained after 5 days of culture on medi-
um with 1 % addition of molasses, under 5.0 klux light
intensity.

Fatty acid profile of lipids synthesized by R. glutinis
and its uses

Lipids synthesized by R. glutinis contain primarily palmitic
(C16:0), oleic (C18:1), linoleic (C18:2), and linolenic acids
(C18:3). The main fatty acid included in the lipids synthesized
by R. glutinis is oleic acid, and its percentage in the total pool
of fatty acids may exceed above 60 %. The linoleic acid per-
centage ranges from above 5 to 25 %, and palmitic acid con-
stitutes on average of above 10–30 %. Low percentage of the
fat synthesized by these yeasts is characteristic of stearic acid
(to 10%); however, in certain strains, its content may reach up
to 25 % (Table 2).

Profile of fatty acids synthesized by the R. glutinis primar-
ily depends on the yeast strain and composition of the culture
medium (Zhang et al. 2011) (Table 2). However, the compo-
sition of the lipids can also be adjusted bymodifying the molar
ratio C/N in the culture medium (Braunwald et al. 2013),
temperature of cultivation (Suutari et al. 1990), and by genetic
modification of yeast (Shichang et al. 2013). A significant
impact on the profile of fatty acids synthesized by the R.
glutinis yeast has also time of cultivation (Mast et al. 2014;
Zhang et al. 2011). Zhang et al. (2011) noted that increasing
the time of cultivation R. glutinis ATCC 15,125 yeast in-
creased content of unsaturated fatty acids, from 46 (0 h) to
63.1 % (233 h). At this time, oleic and linoleic acids content
increased from 26.9 and 8.5 to 43.8 and 12.7 %, respectively.

Significant impact on the profile of fatty acids has also the
molar ratio of carbon to nitrogen (C/N) in the culture medium.
Braunwald et al. (2013) observed that the content of saturated
fatty acids C16:0 and C18:0 in the biomass of R. glutinis
ATCC 15125 was the lowest after cultivation in the medium
with the initial C/N 20. Also, in this case, authors observed the
highest concentration of oleic C18:1 (39.9–44.4 %) and
linoleic acids C18:2 (31.2–42.3 %). In contrast, the highest
content of linolenic acid (6.54–7.35 %) was determined in
yeast cells cultivated in media with a high C/N ratio equal
70 and 120, while in the medium with the initial C/N 20 was
significantly lower (3.67–3.97 %).

Composition of fatty acids synthesized byR. glutinis is also
dependent on temperature of cultivation. Changes in the

proportions of fatty acids are one of the factors of yeast adap-
tation to life in environments with different temperatures. At a
lower temperature, yeasts synthesize more unsaturated fatty
acids, which is associated with changes of the cell membranes
(Zlatanov et al. 2010). Suuta et al. (1990) found that the
Rhodosporidium toruloides VTT-C-132 82 (teleomorph
stages of R. glutinis) synthesized the largest amount of linoleic
acid (approx. 22 %) at 10 °C. The content of this acid after
cultivation at 40 °C was only approx. 10 %. Lipids synthe-
sized by R. glutinis can be also enriched in linoleic acid
through genetic modification. Shichang et al. (2013) used
for this purpose implantation of nitrogen ions. The obtained
mutant D30 synthesized almost 3-fold more linoleic acid
(27 %) compared to the parental strain R. glutinis 31,596
(9.93 %), while significantly reduced oleic acid (from 61.8
to 49.3 %) and palmitic acid (from 5.66 to 11.0 %).

Due to the participation of individual fatty acids in the
lipids synthesized by R. glutinis, researchers have indicated
the possibility of using these yeasts as a source of substrates
for biodiesel production (Dai et al. 2007; Liu et al. 2015; Mast
et al. 2014; Saenge et al. 2011a; Schneider et al. 2013; Xue
et al. 2010; Yen and Zhang 2011b; Zhang et al. 2011).
Biodiesel is defined as a fuel consisting of fatty acid
monoalkyl long-chain esters, most commonly methyl esters.
The ecological aspect of the fuel explains the considerable
growth in the interest its usage. Biodiesel is fully renewable
and biodegradable. Its usage favorably influences the state of
the environment, primarily because of its decreased emission
of greenhouse gasses to the atmosphere (Adamczak et al.
2009). Depending on the type of raw material used for its
production, biofuel is classified as three types and are as fol-
lows: first-generation biodiesel produced from plant oils such
as rapeseed and soybean oil, second-generation biodiesel pro-
duced from oily nonfood raw materials (e.g., Jatropha), and
third-generation biodiesel produced from the lipids of micro-
biological origin (Schneider et al. 2013). Currently, third-
generation biodiesel is not produced at industrial level because
their microbiological synthesis is expensive (Zhang et al.
2014). Therefore, further study should concentrate on lower-
ing its production costs. This aim can be achieved by geneti-
cally modifying yeasts in order to increase their biosynthetic
efficiency or by using waste products as components of the
culture media (Kot et al. 2015).

Carotenoid biosynthesis by Rhodotorula glutinis

Carotenoids belong to the group of natural pigments found in
fruits, vegetables, fish, eggs, and oil (Rao and Rao 2007).
Additionally, they are synthesized by certain microbes, includ-
ing R. glutinis yeast (Table 3) (Perrier et al. 1995). They are
characterized by yellow, orange, or red coloration. Until now,
approximately 750 compounds of this type have been
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identified (Maoka 2011), out of which 50 compounds exhibit
provitamin A activity (Fraser and Bramley 2004). Humans are
unable to biosynthesize carotenoids, and therefore, they must
be supplied with diet (Woodside et al. 2015). These com-
pounds are highly soluble in fats but they do not dissolve in
water. Carotenoids exhibit health promoting activity toward
human body. Thanks to their antioxidant properties, they pro-
tect the skin against the UV light. They possess antioxidative
effect against free radicals as well as reactive oxygen species.
They strengthen the immune system and accelerate wound
healing. Some carotenoids may be protective in eye disease
because they constitute vitamin A precursors (Krinsky and
Johnson 2005; Rao and Rao 2007).

Carotenoids are used in various industrial sectors as com-
ponents of cosmetics (Anunciato and da Rocha Filho 2012)
and additives to fodders for livestock (Chatzifotis et al. 2005)
and fish (Gouveia et al. 2003). They are also commonly used
in food industry as food pigments (Carocho et al. 2015).
According to the data published in the report BThe Global
Market for Carotenoids^ in 2014, the world’s carotenoid mar-
ket has achieved a value of 1.5 bn USD, and it is forecast that
in 2018, it will increase to 1.8 bn USD (BCC Research 2016).
The increasing consumer awareness on the negative effect of
synthetic pigments on human health and on the healthy diet
trend causes increasing interest in natural pigments (Panesar
2014). The use of microorganisms as bioreactors for the pro-
duction of carotenoids can constitute an alternative for chem-
ical synthesis (Del Campo et al. 2007). Microbiological syn-
thesis is a more effective method in comparison to extraction
from vegetables or chemical synthesis. The most important
advantages of the process include the possibility to decrease
its costs by the use of improved strains and inexpensive (often
waste) carbon and nitrogen sources in culture media (Buzzini
2000).

Mechanism of carotenoid biosynthesis

Rhodotorula glutinis are capable of synthesizing β-carotene,
torulene, and torularhodin, the percentage of which depends
on the cultivation conditions (Latha et al. 2005). The first
stage of carotenoid biosynthesis includes the conversion of
acetyl-CoA to 3-hydroxy-3-methylglutaryl-CoAwith the par-
ticipation of hydroxymethylglutaryl-CoA synthase.
Subsequently, HMG-CoA is transformed to mevalonic acid
(MVA) by specific reductase. As a result of subsequent chang-
es, the compound is subjected to phosphorylation in a reaction
catalyzed by specific kinases and decarboxylation to
isopentenyl diphosphate (IPP). The IPP isomerization reaction
leads to the formation of dimethylallyl pyrophosphate
(DMAPP) and then to the DMAPP as a result of the addition
reaction of three IPP molecules. These reactions lead to the
formation of geranylgeranyl pyrophosphate (GGPP) contain-
ing 20 carbon atoms. Condensation of two GGPPmolecules is
catalyzed by phytoene synthase, leading to the formation of
phytoene (first 40-carbon product of the pathway). This com-
pound is then converted to neurosporenewith the participation
of phytoene desaturase. Neurosporene molecule may be trans-
formed to lycopene or β-zeacarotene (Goodwin 1980;
Hayman et al. 1974; Simpson et al. 1964). A second reaction
probably takes place due to the presence of inhibitors, such as
diphenylamine or in the case of environmental stress (Johnson
and Lewis 1979). Then γ-carotene is formed as a result of
lycopene cyclization. This compound can be produced in
yeast cells also as a result of β-zeacarotene dehydrogenation
reaction (Hayman et al. 1974). The γ-carotene cyclization
reaction, catalyzed by β-lycopene cyclase, leads to the forma-
tion of a β-carotene molecule. Moreover, the γ-carotene mol-
ecule constitutes a precursor of torulene synthesis.
Torularhodin is produced as a result of further transformations

Table 3 Efficiency of carotenoid biosynthesis by different strains of Rhodotorula glutinis

Strain Cultivation method Carbon source Nitrogen source Carotenoid biosynthesis
efficiency (mg/L)

References

NCIM 3353 Batch Molasses Malt extract 24.1 Bhosale and Gadre (2001a)
Yeast extract 42.6

Ammonium sulfate 14.4

DBVPG 3853 Batch Concentrated rectified
grape must

5.95 Buzzini and Martini (1999)

DBVPG 3853 Batch Concentrated rectified
grape must

Yeast extract 6.97a Buzzini (2000)

C2.5t1 Batch Glycerol Yeast extract 14.92 Cutzu et al. (2013)

CCY 20-2-26 Fed-batch Glucose Ammonium sulfate 23.34 Marova et al. (2010)

MT-5 Batch Detoxified loquat
kernel extract

Peptone 72.36 Taskin and Erdal (2010)

MT-5 Batch Glucose Waste chicken feathers,
yeast extract

92 Taskin et al. (2011)

TISTR Batch Sweet potato extract Dried mung bean flour 3.48 Tinoi et al. (2005)

a Only β-carotene content provided
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of torulene, consisting in hydroxylation and oxygenation re-
actions (Goodwin 1980) (Fig. 1).

Influence of selected factors on the efficiency
of biosynthesis and total carotenoids profile

The efficiency of carotenoid biosynthesis by R. glutinis de-
pends on numerous factors. The types of carbon and nitrogen
sources have significant influence, and their preferred form
and concentration may differ depending on the yeast strains
(Buzzini and Martini 1999; El-Banna et al. 2012; Latha et al.
2005; Panesar et al. 2013). Due to this, selection of the correct
carbon and nitrogen source constitutes one of the most impor-
tant tasks for the determination of the culture medium
composition.

One of the factors that stimulate the biosynthesis of carot-
enoid pigments is light. An increase in the content of these
compounds under illumination conditions probably stems
from the higher activity of enzymes involved in the biosyn-
thetic pathway (Frengova and Beshkova 2009). An example
here is the study of Zhang et al. (2014), in which R. glutinis
cultures were subjected to illumination with LED lamps (800–
2400 mol/m2 s). The carotenoid productivity was observed to
be maximum (2.6 mg/L) when the culture was illuminated
with three LED lamps, which constituted over 2-fold increase
compared to the control culture (1.2 mg/L). In this case, in-
hibitory influence of illumination on the yeast’s growth was
not observed. Cellular biomass yields after 60 h for the control
culture and the culture illuminated with two and three LED
lamps amounted to 15.9, 17.4, and 17.7 g/L, respectively.
Bhosale and Gadre (2002) carried out R. glutinis NCIM
3353 no. 32 yeast cultures at a constant illumination with an
intensity of 1000 lx. This amount of illumination used consid-
erably slowed down the growth of the studied yeast strain. The
carotenoid concentration decreased from 125 to 83mg/L, after
72 h of cultivation in 30 °C. Cultures were also conducted
beginning illumination at the late logarithmic growth phase.
This measure increased the carotenoid productivity to 198mg/
L. Sakaki et al. (2001) conducted a study on the influence of
white light (3500 lx) on the carotenoid biosynthesis using a
wild strain of R. glutinis no. 21. It was determined that the
culture illumination intensified the production of all caroten-
oid fractions, in particular torularhodin. The β-carotene,
torulene, and torularhodin production increased from 3.6,
29.2, and 7.9 to 4.2, 32.2, and 14.2 mg/100 gd.w., respectively.

Temperature is an important parameter that regulates the
biosynthesis of carotenoids, and the activity of the enzymes
that participate in their production process depends upon it
(Frengova et al. 1995). β-Carotene synthesis by R. glutinis
is increased at lower temperature. This situation is reversed
in the case of torulene and torularhodin; their production is
increased at higher temperatures (Nakayama et al. 1954).

Perhaps, at lower temperature, the enzymes engaged in the
torulene biosynthesis are less active (Bhosale 2004). The
study of Simpson et al. (1964) demonstrated that after 21 days
of culture at a temperature of 5 °C, the β-carotene content in
the biomass of R. glutinis amounted to 64 % and torulene and
torularhodin to 4.4 and 4.8 %, respectively. After 12 days of
culture of the same strain at 25 °C, these values amounted to
25.2, 27.8, and 24.3 %, respectively. Similar results were ob-
tained by Frengova et al. (1995).When a coculture of the yeast
R. glutinis 22P and the bacteria Lactobacillus helveticus 124
was cultivated at 20 °C,β-carotene, torulene, and torularhodin
content amounted to 19.0, 22.8, and 56.0 %, respectively. At
35 °C, considerable increase in the production of torularhodin
was observed (78.3 %), whereas that of β-carotene and
torulene was low and amounted to 9.6 and 9.0 %. Moreover,
an elevation of the culture temperature from 20 to 35 °C led to
a significant increase in the productivity of carotenoid biosyn-
thesis—its content increased from 145.4 to 280.0 μg/gd.w.

R. glutinis is an aerobic microorganism, and thus ensuring
correct aeration is the necessary condition for carotenoid bio-
synthesis (Saenge et al. 2011b). Frengova and Beshkova
(2009) have stated that in the case of yeasts of the genus
Rhodotorula, the rate at which the culture is mixed should
be in the range from 180 to 190 rpm, and the air flow should
range from 0.5 to 1.9 L/min. Aksu and Eren (2007) have
reported that increase in the aeration rate from 0 to 2.4 vvm
significantly increased carotenoid biosynthesis by R. glutinis.
The total biosynthetic efficiency increased from 63.4 to
105.8 mg/L after 10 days of cultivation.

Supplementing the culture medium with certain metal ions
can increase carotenoid biosynthesis by R. glutinis (Bhosale
and Gadre 2001b; El-Banna et al. 2012). El-Banna et al.
(2012) studied the influence of magnesium, zinc, iron (II),
copper, manganese, and calcium salts on the efficiency of
the process. The highest content of these compounds
(638 μg/gd.w.) in the biomass was reported when the culture
medium was supplemented with 0.1 % of zinc sulfate (VI). In
comparison to the control medium (292 μg/gd.w.), almost 2-
fold increase in carotenoid content was reported in the yeast
biomass. Also, enriching the culture medium with iron (II)
sulfate (VI) and copper sulfate (VI) increased its content to
460 and 674 μg/gd.w., respectively.

The presence of different solvents and chemical
compounds in the culture medium can also intensify the
carotenoid production by R. glutinis. Saenge et al. (2011b)
studied the influence of the addition of three surfactants, such
as Tween 20, Tween 80, and gum arabic, on the carotenoid
biosynthesis by the yeast R. glutinis TISTR 5159. It was de-
termined that the presence of Tween 20 in the culture medium
had the most efficient influence in increasing carotenoid pro-
ductivity (108.94 mg/L) compared to the control culture
(65.86 mg/L). The presence of chemical compounds has also
impact on proportion of the synthesized carotenoids. It was
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reported that the addition of ethanol to the culture medium
stimulates production of β-carotene and torulene but inhibits
the synthesis of torularhodin (Bhosale 2004). Kim et al.
(2004) reported that the addition of phenol at a concentration
of 500 ppm to the medium increased the production of β-
carotene by 35 %. This measure limited the torularhodin syn-
thesis, whereas the torulene content remained at a stable level.

The efficiency of biosynthesis and composition of the frac-
tions of carotenoids synthesized by the R. glutinis yeast main-
ly depends on the strain and the culture conditions. Nowadays,
great potential in this area provides also the techniques of
genetic modification. Bhosale and Gadre (2001a) used UV
radiation (250–280 nm) to modify wild strain of R. glutinis
NCIM 3353. Selected for further study, yellow-colored mu-
tant no. 32 produced 120-fold moreβ-carotene than the parent
strain. β-Carotene was 82 % (w/w) of the total carotenoid

content, whereas parent strain produced only 14 % of this
compound. Sakaki et al. (2000) conducted a mutagenizing
of R. glutinis strain no. 21 isolated from soil by UV radiation
(254 nm). As a result of this procedure, authors obtained the
mutant TL/21. This yeast synthesized 3-fold more
torularhodin (4.3 mg/100 gd.w.) than the parent strain
(1.5 mg/100 gd.w.).

Industrial use of carotenoids produced by R. glutinis

β-Carotene is the most desired carotenoid type, commonly
used as pigment in foods and diet supplements (Carocho
et al. 2015; Schierle et al. 2004). Currently, torulene and
torularhodin are not commercially used. It is generally known
that torulene (C40H54) exhibits properties of provitamin A and
antioxidative effect (Maldonade et al. 2008). It was deter-
mined in an in vitro study that torularhodin (C40H52O2), car-
boxylated torulene derivative, has greater capacity to neutral-
ize free radicals compared to β-carotene (Sakaki et al. 2001).
Scarce scientific publications have indicated the possibility to
use torulene and torularhodin as components of cosmetics and
food (Zoz et al. 2015), and as ingredients of drugs (Ungureanu
and Ferdes 2012). Toxicity studies conducted on rats demon-
strated that β-carotene, torulene, and torularhodin produced
by R. glutinis DFR-PDY yeasts can be used as safe food
additives (Latha and Jeevaratanm 2012). The capacity of R.
glutinis to synthesize carotenoids can be also used for medical
purposes, for example, dried and powdered R. glutinis NCIM
3353 yeasts biomass added to the fodder for rats. It was deter-
mined that it exhibited protective effects against the precan-
cerous lesions of the liver induced byN-nitrosodimethylamine
(Bhosale et al. 2002). Moreover, torulene and torularhodin
inhibit the growth of prostate cancer (Du et al. 2016).
Torularhodin can be also used as a neuroprotective agent
against H2O2-induced oxidative stress, due to its strong anti-
oxidant activity (Wu et al. 2015).

Biosynthesis of phenylalanine ammonia lyase by R.
glutinis

R. glutinis, depending on the culture conditions, has the ca-
pacity to synthesize different types of enzymes that can be
used in various industrial sectors. It was determined that the
biomass of these yeasts can be source of lipases
(Hatzinikolaou et al. 1999; Khayati and Alizadeh 2013;
Papaparaskevas et al. 1992), α-L-arabinofuranosidase (EC
3.2.1.55) (Martínez et al. 2006), invertase (EC 3.2.1.26)
(Canli et al. 2011; Rubio et al. 2002), pectinases, and tannin
acyl hydrolase (EC 3.1.1.20) (Taskin 2013). However, re-
searches have focused primarily on the possibility to obtain
phenylalanine ammonia lyase (E.C.4.3.1.5). As a result of the

Acetoacetyl-CoA + Acetyl-CoA

      hydroxymethylglutaryl-CoA synthase

3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) 

hydroxymethylglutaryl-CoA reductase

Mevalonic acid (MVA) 

     mevalonate kinase 

Mevalonate phosphate (MVP) 

     phosphomevalonate kinase 

Mevalonate pyrophosphate (MVPP)

diphosphomevalonate decarboxylase 

Isopenthyl pyrophosphate (IPP)

isomerization 

Dimethylallyl pyrophosphate (DMAPP) 

          IPP             prenyl transferase

Geranyl pyrophosphate (GPP) 

          IPP            prenyl transferase 

Farnesyl pyrophosphate (FPP) 

                             IPP           prenyl transferase

Geranylgeranyl pyrophosphate (GPP) 

                    GGPP           phytoene synthase

         Phytoene 
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phytoene desaturase β-lycopene cyclase 
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 hydroxylation 

Torularhodin alcohol 

                      oxidation 

Torularhodinaldehyde

         oxidation 
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Fig. 1 Carotenoid biosynthetic pathway in Rhodotorula species
(elaborated on the basis of Frengova and Beshkova 2009; Goodwin
1980; Hayman et al. 1974; Johnson and Lewis 1979; Simpson et al.
1964; Squina and Mercadante 2005)
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effect of this enzyme, it is possible to obtain L-phenylalanine,
which constitutes the substrate for aspartame production
(D’Cunha et al. 1996a, 1996b; Zhu et al. 2014).

Phenylalanine ammonia lyase (PAL) catalyzes the
nonoxidative process of phenylalanine transformation to
trans-cinnamic acid and ammonia (D’Cunha et al. 1996a,
1996b). Under controlled conditions, this reaction may also
take place in a reverse direction (Takac et al. 1995). In the food
industry, this enzyme is used in the production of L-phenylal-
anine and para-hydroxycinnamic acid (Cui et al. 2015), and in
medicine in phenylketonuria therapy (Longo et al. 2014;
Sarkissian and Gámez 2005) and neoplastic cancers in mice
(D’Cunha 2005). Furthermore, the activity of PAL is used to
determine the concentration of L-phenylalanine in blood plas-
ma (Watanabe et al. 1992).

The enzyme phenylalanine ammonia lyase occurs in com-
mon in microorganism cells. It was isolated from the cells of
Streptomyces verticillatus (Bezanson et al. 1970), Rhizoctonia
solani (Kalghatgi and Subba Rao 1975), and Neurospora
crassa (Sikora and Marzluf 1982). However, the largest pro-
ducers of PAL are yeasts of the genus Rhodotorula. In the yeast
cells, this enzyme participates in the absorption of phenylala-
nine as the source of carbon and nitrogen (Gientka et al. 2006).

Numerous research teams (D’Cunha et al. 1996b; Takac
et al. 1995; Yamada et al. 1981) conducted studies on the
obtainment of L-phenylalanine in the presence of PAL origi-
nating from the cells of R. glutinis. To grow yeast cells, media
containing easily assimilated nutrient sources are used.
Glucose is used as the source of carbon and yeast extract as
that of nitrogen. Culture media are also supplemented with
zinc, magnesium, iron, cobalt, and calcium salts. The grown
yeast cells are then transferred to a medium, in which phenyl-
alanine ammonia lyase induction occurs. The following com-
pounds act as inducers: L-phenylalanine, D,L-phenylalanine,
L-tyrosine, D,L-tyrosine, and L-isoleucin. Typical L-phenylala-
nine dose, which induces PAL production, is 0.4–0.5 %;
higher concentrations do not have a significant effect on ac-
tivity of the enzyme. Yeast cultures on inductive medium is
conducted to the moment, when the phenylalanine ammonia
lyase activity achieves the level of at least 0.2–2.0 U/ml
(Gientka et al. 2006).

Bioconversion of trans-cinnamic acid to L-phenylalanine
is carried out with isolated enzyme or directly with yeast
cells rich in PAL (Gientka et al. 2006). One of the factors
that determine the course of the process is the acidity of the
environment. Yamada et al. (1981) and Evans et al. (1987)
have stated that the optimal pH for the bioconversion pro-
cess of cells of R. glutinis is 10.0, whereas El-Batal et al.
(2000) concluded that for R. glutinis mutants, this value is
equal to 11.0. The pH value of the reaction environment
should not be less than 9.0 because the deamination of L-
phenylalanine to trans-cinnamic acid takes place under this
value (Gientka et al. 2006).

In order to obtain the maximum efficiency of the biocon-
version process, it is important to determine the optimal con-
centration of trans-cinnamic acid in the reaction environment.
The reaction occurred under the conditions of its excess; how-
ever, it was determined that very high concentration of trans-
cinnamic acid inhibits the activity of phenylalanine ammonia
lyase. The terminal concentration of the acid in the reaction
environment should not exceed 50 mM (Takac et al. 1995).

The factor determining to a large extent the activity of
phenylalanine ammonia lyase is the temperature. Takac et al.
(1995) determined that the bioconversion process of trans-
cinnamic acid to L-phenylalanine takes place most efficiently
at a temperature of 30 °C. On the other hand, increasing the
temperature to 40 °C decreased the concentration of the amino
acid by approximately 50 %. The bioconversion process is
further influenced by the presence of different types of chem-
ical compounds in the reaction medium. The same research
team noticed that the addition of sodium glutamate and peni-
cillin increased the activity and stability of phenylalanine am-
monia lyase during the bioconversion process. On the other
hand, the presence of Cl− ions in the culture environment has
inhibitory effect on the process.

The elaboration of an efficient method that warrants the
maintenance of PAL stability and activity, so that the enzyme
could be used in a constant process, constitutes an important
issue. D’Cunha et al. (1996b) observed that immobilization of
R. glutinis NCYC 61 cells did not prevent the degradation of
phenylalanine ammonia lyase, which made it impossible to
use the yeast cells again. However, it was noticed that the
addition of Mg2+ ions and glycerol to the reaction environ-
ment stabilized PAL. The addition of 4 mM of MgSO4 and
10 % glycerol enabled to obtain L-phenylalanine in nine pro-
duction cycles, whereas the immobilized enzyme lost its ac-
tivity in the fourth production cycle. D’Cunha (2005) devoted
the next study to obtain increased level of phenylalanine am-
monia lyase from the culture of R. glutinis. The process
consisting in the use of entire yeast cells had low efficiency
due to the low permeability of the cellular membrane for L-
phenylalanine, the effect of ultrasonication, detergents, and
enzymes on the increase of PAL activity were tested.
Ultrasonication turned out to be the most efficient method,
with which the enzyme activity could be increased 10 times
compared to the control.

Conclusions and future prospects

Recently, the use of products synthesized microbiologically
has been increased in various industrial sectors. Due to its
capacity to produce metabolites, Rhodotorula glutinis may
become an important link of development in modern biotech-
nology. This yeast belongs to the group of oleaginous micro-
organisms and is capable to producing and accumulating even
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60 % of lipids in dry cellular substance (Dai et al. 2007). Due
to the participation of individual fatty acids, these lipids can be
used as substrates for third-generation biodiesel production.
Dynamically increasing production of unconventional fuels
such as biodiesel is the result of decrease of nonrenewable
sources such as petroleum and environmental care. The use
of R. glutinis yeast as bioreactors for the production of micro-
bial oils is currently limited by expensive production. It may
be assumed that further study will focus on increasing the
biosynthetic efficiency by optimization cultivation conditions
and by genetically modifying the organisms. Moreover, an-
other direction of research should concentrate on the use of
extracted biomass, which after removal of solvents could be
added to animal feed. This use of waste yeast biomass, which
contains mainly proteins and polysaccharides, additionally in-
creases profitability of the microbial production of SCO.

In recent years, there has been an increased consumer
knowledge of negative impact of synthetic colorants on
health. Therefore, researchers are looking for new producers
of natural dyes (Torres et al. 2016). R. glutinis are capable of
synthesizing β-carotene, and two other carotenoids—
torularhodin and torulene. These compounds have not been
detected in foods, and probably of this, their effects on the
human health have not been investigated and described yet.
However, taking into account their chemical structure and
properties, it seems clear that these two substances can be used
as food additives (Zoz et al. 2015). Furthermore, torulene and
torularhodin have the potential to be used in medicine and
pharmacy. The first direction of their use may be the preven-
tion of prostate cancer (Du et al. 2016). Torularhodin has
strong antimicrobial properties, and it may become a new
natural antibiotic (Keceli et al. 2013; Ungureanu and Ferdes
2012). Antimicrobial properties of torularhodin can be also
used in the production of films for coating of medical implants
(Ungureanu et al. 2014, 2016). These examples describe the
prospects for the use of carotenoids synthesized by the R.
glutinis; however, it is necessary to perform additional nutri-
tional and toxicological tests that will allow for the introduc-
tion of torulene and torularhodin on the commercial market.

R. glutinis yeast can be source of various types of enzymes
that can be used in various industrial sectors, especially phe-
nylalanine ammonia lyase. This enzyme is accumulated intra-
cellularly, and thus, the most promising appears to be the use
of whole cells in the biotransformation of trans-cinnamic acid
to L-phenylalanine. This would reduce the costs associated
with the disintegration and enzyme secretion, after biotrans-
formation of yeast biomass can be used as an animal feed
additive.

This bibliographical review has shown that R. glutinis
yeasts have great potential for industrial applications.
Cultivation of these yeasts is independent of the climate and
season, and the production cycle is short. In addition, the R.
glutinis yeasts are capable to metabolize different substances

as sources of carbon and nitrogen, so the use of many waste
materials as components of culture media is possible. As a
result, the biodegradable industrial waste with simultaneous
production of yeast biomass containing valuable nutrients is
possible (Kieliszek et al. 2015). However, still it is necessary
to conduct studies on reducing the cost of obtaining lipids,
carotenoids, and enzymes from R. glutinis yeast biomass for
the industrialization these processes.
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