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Abstract Synthetic nicotinamide cofactors are analogues of
the natural cofactors used by oxidoreductases as redox inter-
mediates. Their ability to be fine-tuned makes these biomimet-
ics an attractive alternative to the natural cofactors in terms of
stability, reactivity, and cost. The following mini-review fo-
cuses on the current state of the art of those biomimetics in
enzymatic processes.
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Introduction

Synthetic nicotinamide cofactors are biomimetics of natural
cofactors required by oxidoreductases as redox equivalents.
Although not new per se (Karrer and Stare 1937), these
biomimetics have recently attracted increased attention in
biocatalysis. The scope of this mini-review is to revisit the
current state of the art of synthetic nicotinamide cofactors
employed with oxidoreductases in various enzymatic
processes. We will distinguish it from our previous review
(Paul et al. 2014a) in which we described a historical view
of the cofactors and applications in organic chemistry and
medicine, and from our recent short succinct survey of our
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work (Hollmann and Paul 2015), by focusing on their
application in enzymatic processes in the last two decades.

The key feature of the natural nicotinamide cofactor is its
nicotinamide moiety that can act as an electron acceptor or
donor through a hydride transfer (Scheme 1, dashed circle).
The remaining structure of the molecule is the adenosine
dinucleotide (AD) in its phosphorylated (NADP) or
de-phosphorylated (NAD) form, which is important in two
ways: first, the AD plays a major role for the cofactor recog-
nition in the enzyme active site and correct positioning of the
cofactor for optimal hydride transfer (Plapp 2010), second,
oxidoreductases can be very selective toward the presence or
absence of the phosphate group, thus playing a role in the
regulation of the cellular metabolic pathways.

The study of nicotinamide cofactor analogues has been
crucial for the elucidation of the mechanism of NAD(P)-de-
pendent oxidoreductases (Anderson 1982; Mauzerall and
Westheimer 1955) and has more recently progressed toward
the actual use of analogues to improve enzymatic processes,
which we will describe here in this mini-review. Synthetic
nicotinamide cofactors are obtained purely from pyridine
derivatives by chemical treatment. These analogues can be
entirely redesigned to change their electrochemical properties
through different pyridine substituents—X and R (Fig. 1).
Over the past two decades, several analogues have been used
in enzymatic processes, which will be described below.

Biomimetics and dehydrogenases

Various studies on dehydrogenases with substituent changes
on the natural cofactors were performed before synthetic bio-
mimetics were investigated. Ansell et al. developed analogues
based on triazines and tested their activity with horse liver
alcohol dehydrogenase (HLADH) (Ansell and Lowe 1999;
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Scheme 1 Structure of natural nicotinamide cofactors (reduced, /ef?, and
oxidized, right) giving or receiving two electrons in the form of a hydride
at carbon C-4 of the pyridine ring

Ansell et al. 1999a; Ansell et al. 1999b). The turnover
numbers obtained remained very low with the synthetic CL4
analogue (Fig. 2).

A short while later, another report claimed ADHs accepting
synthetic cofactors, which showed similar activity for 1-ben-
zyl-1,4-dihydronicotinamide (BNAH) and nicotinamide
mononucleotide (NMN) as with NADH (Lo and Fish 2002).
However, upon closer inspection, these reports failed to
clearly demonstrate the purity of the enzyme used in the
enzymatic processes, as any trace amounts of natural cofactor
can be recycled by the biomimetic, a process that was
established and described by the group of Bryan Jones in
1976 (Taylor and Jones 1976). Furthermore, preliminary
results from our own work using highly purified
(nicotinamide cofactor-free) preparations of ADHs indicate
that the majority of NAD(P)H-dependent ADHs does not
accept the synthetic cofactors. Hence, the most likely
explanation for the apparent enzyme activity is that in fact
the in situ regeneration system proposed by Taylor and
Jones occurs in these studies (Scheme 2).

Biomimetics for flavin-dependent oxidoreductases

Next to the aforementioned dehydrogenases, which directly
depend on the nicotinamide cofactors as redox partner for
their reaction, flavin-dependent oxidoreductases often depend
on NAD(P)H in a less direct way. Rather than directly partic-
ipating in the reaction mechanism, the nicotinamide cofactor
first reduces the (enzyme-bound) flavin prosthetic group
(reductive half reaction). Then, in the oxidative half reaction,

X
Y
N
I‘? R = alkyl, phenyl, benzyl

Fig. 1 Structures of synthetic cofactor analogues

X = CONH,,
COOH, CN, COCHs
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Fig. 2 CL4 analogue used with HLADH

the reduced flavin either activates molecular oxygen
(e.g. monooxygenases) or directly reduces the enzyme-
bound substrate (e.g. old yellow enzymes and its analogues).
Hence, the role of the nicotinamide cofactor is limited to
reducing the flavin prosthetic group and, in principle, can be
substituted by other reductants.

Friedlos et al. were the first to demonstrate that a simple
short synthetic cofactor, methyl-1,4-dihydronicotinamide
(MNAH), can perform as efficiently as NAD(P)H for the
flavoprotein DT diaphorase (EC 1.6.99.2, 1.6.5.2), an
NAD(P)H dehydrogenase (quinone), with a k., of approxi-
mately 6 x 1074 min"' and Ky of 200 uM for MNAH
compared to 6.5 x 10™* min~" and 71 and 78 uM for NADH
and NADPH, respectively (Friedlos et al. 1992). Thus, men-
adione could be reduced with MNAH as a cofactor
(Scheme 3). The name DT diaphorase comes from the previ-
ous nomenclature of NADH and NADPH as DPNH and
TPNH, respectively, because this enzyme does not differenti-
ate between the two cofactors. The same efficiency was ob-
served with a nitroreductase enzyme (Knox et al. 1995). The
authors speculated that the fact these enzymes do not distin-
guish between either NAD(P)H was the reason they could
accept synthetic analogues.

Clark and coworkers have more recently tested the activity
of cytochrome P450 BM3 and a mutant W1064S/R966D
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Scheme 2 In situ regeneration of reduced and oxidized natural
nicotinamide cofactors (in catalytic amounts) using the synthetic
nicotinamide mimic BNAH (in stoichiometric amounts) to promote
HLADH-catalyzed (stereospecific) reduction and oxidation reactions
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Scheme 3 Reduction of menadione with MNAH using a NAD(P)H
dehydrogenase

against BNAH and its para-methoxy derivative (Ryan et al.
2008). While the wild-type P450 showed no activity with the
mimics for a hydroxylation reaction, the mutant gave rates of
23.3 and 14.7 nmol s ' mg ™' of BM3 for BNAH and p-MeO-
BNAH, respectively, compared to 30.4 and 34.5 nmol s ' mg ™"
of BM3 for NADPH and NADH.

The enzyme 2-hydroxybiphenyl 3-monooxygenase HbpA
was also shown to use BNAH to form catechol derivatives
(Scheme 4) (Lutz et al. 2004). Compared to the natural
cofactor (NADH), the hydroxylation rate was reduced
significantly whereas the oxidative uncoupling rate (i.e., the
futile oxidation of the cofactor yielding H,O, without phenol
hydroxylation) was increased approximately tenfold.

In a first study on ene reductases (ERs), three old yellow
enzymes (OYEs) were screened against a panel of synthetic
nicotinamide analogues varying the substituent X and
group R from the structure in Fig. 1, shown in Scheme 5
(Paul et al. 2013).

Time course experiments showed different rates of
reactions between each analogue and both natural cofactors.
A more extensive screening of ERs with the same series of
analogues was performed with detailed presteady state kinetic
data to establish these differences (Knaus et al. 2016). The
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Scheme 4 Hydroxylation catalyzed by HbpA using BNAH
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Scheme 5 OYE-catalyzed asymmetric hydrogenation with synthetic
biomimetics mNADHs

results showed that each ER gave a different rate of reaction
depending on the cofactor analogue, and that in several cases,
the biomimetics afforded higher £, values when compared to
NADPH or NADH. While the k., values were higher for
certain mimics with respect to the natural cofactors, the Ky
values were also elevated, showing a lower affinity. Crystal
structures obtained of XenA with the three analogues BNAH,
mAc, mCOOH and natural cofactor NADPH showed the
presence of a tryptophan residue that adopts an alternative
conformation with the three analogues, thus reducing the
volume in the active site (Knaus et al. 2016). This observation
could partially explain the different rates. Another two studies
on ERs with the BNAH analogue and derivatives showed
similar results: certain biomimetics gave higher k., values
with certain ERs and substrates with respect to NAD(P)H
(Low et al. 2016; Riedel et al. 2015).

The lack of ADH activity toward biomimetics previously
mentioned can be turned into an advantage, for example when
using crude cell extracts of OYE, where the presence of ADHs
can lead to undesired side product with the over-reduction of
the carbonyl group (Scheme 6) (Paul et al. 2013).

Synthetic nicotinamide analogues can also be used as a
source of electrons to directly reduce the flavin cofactor in

o) OH
mNAD* R%“ --[ADH J--> RS y
' 0 OH
R R
mNADH \ * \ ,"'

Scheme 6 Ene-reductase-catalyzed asymmetric hydrogenation that
could lead to an additional two side products due to the presence of
ADHs, which are not active when using a biomimetic as the cofactor
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Scheme 7 Simplified
regeneration of SMOs (bottom)
replacing the natural nicotinamide
cofactor together with a
corresponding enzymatic
regeneration system (fop) with
BNAH

Coproduct

Cosubstrate

free solution. This usage was shown with a styrene
monooxygenase (SMO) StyA, which usually requires a
reductase, StyB, to reduce FAD from NADH in order to obtain
reduced FADH, (Paul et al. 2015). Using the biomimetic
BNAH, a higher efficiency of the SMO-catalyzed process
was demonstrated (Scheme 7) with electron transfer yields
of up to 80 % for the asymmetric sulfoxidation of thioanisole
derivatives.

In a study with peroxygenases, BNAH was used to directly
reduce FMN, which reoxidizes with molecular oxygen,
producing hydrogen peroxide in the process to selectively
hydroxylate the fatty acid myristic acid (Scheme 8)
(Paul et al. 2014b).

Recycling of biomimetics

The inactivity of dehydrogenases with synthetic nicotin-
amides has largely excluded their application in catalytic
amounts. One alternative was explored early on by Fish and
coworkers (Lo et al. 1999; Lo et al. 2001) using the

Scheme 8 Production of
hydrogen peroxide from the
mimic-reduced FMN and
reoxidation with molecular
oxygen, allowing the P450-
catalyzed hydroxylation of
myristic acid

BNAH

BNA*
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organometallic catalyst [Cp*Rh(bpy)(H,0)]*" for the
formate-driven in situ regeneration of BNAH (and other
mimics) from the corresponding oxidized forms. Although
this catalyst system is efficient and highly selective, issues
regarding the mutual inactivation of Cp*Rh-complexes and
enzymes (Poizat et al. 2010) (Hildebrand and Lutz 2009)
may severely limit the general applicability of this system.
One promising solution could be the confinement of the tran-
sition metal complex, e.g., into a streptavidin, protecting both
the complex and the biocatalysts from mutual inactivation
(Kohler et al. 2013).

The group of Sieber has developed a regeneration system
for BNA" and MNA" with the water-forming NADH oxidase
from Lactobacillus pentosus (LpNox) (Nowak et al. 2015).
This process represents the first enzymatic recycling system
for oxidized synthetic analogues. The k., for MNAH and
BNAH were reported to be 0.14 and 0.17 s~', respectively
compared to 43.4 s' for NADH, whereas the Ky are each
1.6 and 1.3 mM, compared to 17.9 uM for NADH. The
recycling of reduced synthetic cofactors has until now only
been performed with transition metals in situ such as the

FMN H,05
9
FMNH,
HO B 9
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rhodium complex discussed above (Knaus et al. 2016), further
enzymatic regeneration systems still remain unavailable as the
classical glucose and formate dehydrogenases screened have
not shown activity towards biomimetics.

Conclusions

Synthetic nicotinamide cofactor analogues have been known
for over 80 years; nevertheless, their journey into enzymatic
processes is only beginning. Up to date, diaphorases, P450s,
ERs, SMOs, and NADH oxidases have been demonstrated to
accept these biomimetics. On the other hand, purified
BVMOs, ADHs, GDHs, and FDHs have displayed no activity
so far and other enzyme families remain to be investigated.
Therefore, there is still a need for improved synthetic mimics
as well as modified enzymes, such as dehydrogenases, that
could be used in a regeneration system. The use of designed
mimics used for certain targeted enzymes in a biorthogonal
fashion can also be an advantage for selective syntheses using
crude enzyme preparations.
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