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Abstract Specific primers were developed to detect the caus-
al agent of stone fruit bacterial canker using conventional and
real-time polymerase chain reaction (PCR) methods. PCR
melting profile (PCR MP) used for analysis of diversity of
Pseudomonas syringae strains, allowed to pinpoint the ampli-
fied fragments specific for P. syringae pv.morsprunorum race
1 (Psm1) and race 2 (Psm2), which were sequenced. Using
obtained data, specific sequence characterised amplified re-
gion (SCAR) primers were designed. Conventional and real-
time PCRs, using genomic DNA isolated from different bac-
terial strains belonging to the Pseudomonas genus, confirmed
the specificity of selected primers. Additionally, the specificity
of the selected DNA regions for Psm1 and Psm2 was con-
firmed by dot blot hybridisation. Conventional and real-time
PCR assays enabled accurate detection of Psm1 and Psm2 in
pure cultures and in plant material. For conventional PCR, the
detection limits were the order of magnitude ~100 cfu/reaction
for Psm1 and 101 cfu/reaction for Psm2 in pure cultures, while
in plant material were 100–101 cfu/reaction using primers for
Psm1 and 3×102 cfu/reaction using primers for Psm2. Real-
time PCR assays with SYBRGreen I showed a higher limit of
detection (LOD)−100 cfu/reaction in both pure culture and in

plant material for each primer pairs designed, which corre-
sponds to 30–100 and 10–50 fg of DNA of Psm1 and Psm2,
respectively. To our knowledge, this is the first PCR-based
method for detection of the causal agents of bacterial canker
of stone fruit trees.
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Introduction

Bacterial canker of fruit trees occurs in stone fruit growing
areas all over the world (Agrios 2005). In Poland, the disease
incidence on stone fruit trees orchards is observed every year
with different intensity and is becoming more economically
significant. Moreover, in the last vegetative seasons, bacterial
canker was dangerous not only to stone fruit trees, but also to
apple and pear trees. The causal agents of the disease belong
to the polyphagous Pseudomonas syringae species, able to
infect more than 180 plant species, both annual and perennial,
including fruit trees, ornamental plants and vegetables.
P. syringae affects all organs of the aboveground parts of trees
(i.e. the branches and main trunk as well as buds, blossoms,
leaves and fruits), which causes reduction of yield and some-
times leads to death of the trees.

P. syringae is composed of plant pathogens divided into 60
pathovars (Young 2010) belonging to nine genomospecies, as
determined by DNA:DNA hybridisation (Gardan et al. 1999).
On King’s B medium, the majority of these bacteria produce a
fluorescent pigment visible under UV light (King et al. 1954).
Bacteria that cause bacterial canker on stone fruit trees belong
to three genomospecies (gs): gs 1—P. syringae pv. syringae
(Pss); gs 2—P. syringae pv. morsprunorum race 1 (Psm1);
and gs 3—P. syringae pv. morsprunorum race 2 (Psm2),
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P. syringae pv. avii (Psa) and P. syringae pv. persicae (Psp)
(reviewed in Bultreys and Kałużna 2010). In Poland, three
taxa were already described as present: Pss, Psm1 and
Psm2. Recently, the new atypical taxon including bacteria that
infect only cherries (mainly sour cherry) was also found
(Kałużna data not published).

The diagnostics of bacterial canker are commonly based on
isolation and phenotypic characterisation of the causal agent,
including pathogenicity (Bultreys and Gheysen 1999; Vicente
et al. 2004). The phenotypic tests LOPAT (Lelliott et al. 1966),
GATTa and L-lactate utilisation (Lattore and Jones 1979) en-
able the determination of morphological, physiological and
biochemical features of the bacteria. These features are used
for identification of species and their discrimination into
pathovars and races. However, this methodology requires
the implementation of a high number of often laborious and
time-consuming tests. Moreover, the obtained results can
sometimes be ambiguous or difficult to interpret, and they
are often not sufficient for proper strain classification
(Vicente et al. 2004).

Concerning serological methods, the slide agglutination
test, immunofluorescence and indirect-enzyme-linked immu-
nosorbent assay (ELISA), with the antisera produced from
live whole-cell antigens, were widely adopted for routine bac-
terial identification. However, nowadays these methods are
less frequently used for the identification of bacteria that cause
bacterial canker because of frequent cross-reactions with non-
pathogenic bacteria. Furthermore, serological tests do not al-
ways provide a response in distinguishing isolates of
P. syringae (Vicente et al. 2004).

Molecular methods are currently the most widely adapted
and are considered very useful for the identification of bacte-
rial canker causal agents and for studying their genetic diver-
sity. For many years, the identification of the pathogen has
been based on detection of genes encoding the toxins
coronatine, syringomycin and the siderophore yersiniabactin
(Bereswill et al. 1994; Sorensen et al. 1998; Bultreys and
Gheysen 1999). However, it should be noted that the determi-
nation of presence of genes encoding for toxin production is
not reliable for identification in itself and thus cannot be the
only criterion for the classification of strains. In fact,
strains of Psm1 and Pss, which do not have the ability
to produce coronatine or syringomycin, respectively, are
quite common (Ullrich et al. 1993; Renick et al. 2008;
Kałużna et al. 2010a). On the other hand, although pro-
duction of the siderophore yersiniabactin is now consid-
ered a stable feature of all Psm2 strains and could be a
criterion for their identification, is should be mentioned
that it is not an exclusive feature of strains of Psm2,
since positive amplification with primers for the irp1
gene (encoding this siderophore) was also confirmed in
other pathovars of P. syringae, including the following:
antirrhini, apii, berberidis, delphinii, lachrymans,

passiflorae, persicae, tomato, viburni, helianthi, tagetis
and theae (Bultreys et al. 2006).

In recent years, fingerprinting methods have been widely
applied for the identification and genotyping of P. syringae
through the analysis of repetitive regions (i.e. Enterobacterial
Repetitive Intergenic Consensus (ERIC), BOX, Repetitive
Extragenic Palindromic Elements (REP) and Insertion
Sequence (IS50) sequences) (Ullrich et al. 1993; Weingart
and Völksch 1997) and through PCR MP (Kałużna et al.
2010b). However, it should be taken into account that all fin-
gerprinting methods require inclusion of the reference strains
for comparison of obtained amplification patterns (Vicente
and Roberts 2007; Gilbert et al. 2009), and, in the case of
heterogeneous strains of Pss (Vicente et al. 2004; Renick
et al. 2008; Kałużna et al. 2010a, b), it is difficult to determine
affiliation of analysed strains to this taxon.

Despite the availability of different approaches for charac-
terisation and genotyping of P. syringae, they require time-
consuming and labour-intensive classical microbiological
methods or complex analyses including comparison of ampli-
fication patterns and housekeeping gene sequencing.
Therefore, there is still the need to develop a rapid and specific
method of diagnosis that would allow the detection and iden-
tification of the causal agent of stone fruit bacterial canker
(López et al. 2010). This specific, fast diagnostic system
would be invaluable in the study on etiology of cankers on
trunks and branches, which are similar to those caused by
fungi of the genus Leucostoma (Valsa) and Monilinia, and
also necrotic spots on leaves, which may be mistaken with
those caused by Prunus necrotic ring spot virus or
Clasterosporium carpophilum, especially late in the growing
season. Moreover, the occurrence of gummosis on woody
tissue often associated with bacterial infection may be related
to the physiological response of the trees to damage caused by
abiotic factors, such as frost, sunburn, periodic water flooding
or mechanical damage, and is not due to biotic factors only
(Saniewski et al. 2006).

Ideally, a novel diagnostic system would apply spe-
cific primers and the PCR technique, both conventional
and real-time, making them more useful for a wide
group of researchers according to available lab equip-
ment, which allows for the detection and identification
of the pathogen within a short amount of time.
Additionally, such a system would undoubtedly be very
useful in enforcing appropriate programmes to prevent
and control disease occurrence in nurseries and orchards
of stone fruit trees, especially sweet and sour cherry,
where the damage is the most severe.

The aim of this study was to design and validate novel
specific primers and to develop conventional and real-time
PCR-based methodologies for rapid and specific detection of
Psm1 and Psm2, with the aim of enhancing bacterial canker
diagnostic procedures.
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Materials and methods

Bacterial strains

Species and pathovar identification of previously
uncharacterised Pseudomonas strains from our collection, ob-
tained from stone fruit trees in Poland, was determined on the
basis of phenotypic tests (i.e. Gram reaction with 3 % KOH
(Suslow et al. 1982), LOPAT (Lelliott et al. 1966), GATTa and
L-lactate utilisation (Lattore and Jones 1979). A total of
168 isolates were analysed. The reference strains
P. syringae pv. syringae—LMG 1247, P. syringae pv.
morsprunorum race 1—LMG 2222 and P. syringae pv.
morsprunorum race 2—CFBP 3800 were included in all
tests (Table 1). Additionally, type and not-type strains of
other P. syringae pathovars (79) and related species
(three) were included in the analysis (Table 2). The
strains were kept at −75 °C in a mixture of glycerol
(200 μl/ml) and phosphate-buffered saline (PBS) and
streaked on King’s B medium (3.8 % Pseudomonas
Agar F Difco, 1 % glycerol) (King et al. 1954) for
routine culturing.

DNA isolation

Bacterial DNA was isolated using the method described by
Aljanabi and Martinez (1997), with slight modifications de-
scribed by Kałużna et al. (2012). DNAwas diluted to a final
concentration of 10 ng/μl and kept at −20 °C for further
analysis.

PCR melting profile

A slightly modified method of PCR MP described by Masny
and Płucienniczak (2003) was used. An amount of 100 ng of
DNA from 23 Pseudomonas strains (Figs. 1 and 2) was
digested with PstI endonuclease (10 U/μl; Promega
Corporation, Madison, WI, USA) or TaqI (10 U/μl; Thermo
Scientific, Vilnius, Lithuania) according to the manufacturer’s
instructions. Digested DNAwas ligated with two oligonucle-
otides forming an adaptor: DNA digested by PstI endonucle-
ase with a PstI adaptor—5′-TGTACGCAGTCTAC-3′/5′-
CTCGTAGACTGCGTACATGCA-3′ (Waugh et al. 1997)
and DNA digested by TaqI endonuclease with a TaqI adap-
t o r — 5 ′ - G A C G AT G A G T C C T G A C - 3 ′ / 5 ′ -
CGGTCAGGACTCAT-3′ (Ajmone-Marsan et al. 1997). PCR
amplification was performed separately for PstI- or TaqI-
digested DNA in a 25-μl reaction mixture containing the fol-
lowing: 1 μl of ligation mixture; 0.4 U of GoTaq DNA poly-
merase (Promega, Madison, WI, USA) for PstI and 0.4 U of
Dream Taq Green DNA Polymerase (Thermo Scientific,
Vilnius, Lithuania) for TaqI; and 1× of appropriate Taq poly-
merase buffer, 0.2 mM of dNTPs and 1 μM of each primer

(PstI-0—5 ′-GACTGCGTACATGCAG-3 ′ for PstI-
digested DNA (Waugh et al. 1997) or TaqI-0—5′-
GACGATGAGTCCTGACCGA-3′ for TaqI-digested
DNA (Ajmone-Marsan et al. 1997)). The amplification
reactions were conducted in a Biometra T3000
thermocycler (Biometra, Göttingen, Germany) with the
following conditions: initial step of 72 °C for 5 min; 30
cycles at 86.5 °C for PstI and 83 °C for TaqI for 40 s,
55 °C for 40 s and extension at 72 °C for 90 s; and
final extension at 72 °C for 10 min. PCR products from
each reaction and the O’GeneRuler 100-bp DNA Ladder
Plus (Thermo Scientific, Vilnius, Lithuania) were sepa-
rated on a 1.5 % agarose gel in 0.5× TBE buffer
(0.045 M tris-boric acid, 0.001 M EDTA, pH 8.0) and
electrophoresis was ran at 5–7 V/cm of gel. After stain-
ing with an ethidium bromide solution (0.5 μg/ml), the
obtained amplification profiles were visualised under
UV light. The same conditions were used in all subse-
quent electrophoresis.

Selection of specific fragments

Based on the results of genetic analyses using PCR MP,
DNA fragments characteristic of Psm1 and Psm2 strains
were selected. The fragments were excised from the gel,
purified with the DNA AxyPrep Gel Extraction Kit
(Axygen Scientific, Inc. Union City, CA, USA) and
cloned into the pGEM T-Easy vector (Promega,
Madison, WI, USA) according to the manufacturer’s
instructions. The resulting ligation mixture was used to
transform Escherichia coli JM109 competent cells
(Promega, Madison, WI, USA). The cloned fragments
were sequenced with universal primers M13Rev 5′-
CAGGAAACAGCTATGAC-3 ′ and M13 (−40) 5 ′-
GTTTTCCCAGTCACGAC-3 ′ at Genomed S.A.
(Warsaw, Poland). The sequences obtained were assem-
bled using the SeqMan software package LASERGENE
(DNASTAR, Madison, USA).

Design of SCAR primers

The sequences of specific fragments for Psm1 and Psm2
were used to design the SCAR primers, for both con-
ventional and real-time PCR, with the PrimerSelect pro-
gramme of the LASERGENE package (DNASTAR).
Different primer pairs were designed for conventional
PCR (five for Psm1 and 7 for Psm2) and real time
PCR (four for each taxa). All primer sequences and
their potential amplification reaction products were
checked for homology (June 2015) to other sequences
deposited in the GenBank database using the ‘blastn’
algorithm (Altschul et al. 1997). Selected primers were
synthesised at Genomed S.A.
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Table 1 Strains of P. syringae used in this study

Lp. Strain number Place (voivodeship/country)
and year of isolation

Host-plant Taxon based on
LOPAT, GATTa/L

1. 58 Łódzkie, PL 2007 Sour cherry Atypical taxon

2. 59 Łódzkie, PL 2007 Sour cherry Atypical taxon

3. 61 Łódzkie, PL 2007 Sour cherry Atypical taxon

4. 64 Łódzkie, PL 2007 Sour cherry Atypical taxon

5. 65 Łódzkie, PL 2007 Sour cherry Atypical taxon

6. 66 Łódzkie, PL 2007 Sour cherry Atypical taxon

7. 69 Łódzkie, PL 2007 Sour cherry Atypical taxon

8. 71 Łódzkie, PL 2007 Sour cherry Atypical taxon

9. 72 Łódzkie, PL 2007 Sour cherry Atypical taxon

10. 73 Łódzkie, PL 2007 Sour cherry Atypical taxon

11. 74 Łódzkie, PL 2007 Sour cherry Atypical taxon

12. 75 Łódzkie, PL 2007 Sour cherry Atypical taxon

13. 76 Łódzkie, PL 2007 Sour cherry Atypical taxon

14. 78 Łódzkie, PL 2007 Sour cherry Atypical taxon

15. 80 Łódzkie, PL 2007 Sour cherry Atypical taxon

16. 81 Łódzkie, PL 2007 Sour cherry Atypical taxon

17. 82 Łódzkie, PL 2007 Sour cherry Atypical taxon

18. 83 Łódzkie, PL 2007 Sour cherry Atypical taxon

19. 86 Łódzkie, PL 2007 Sour cherry Atypical taxon

20. 87 Łódzkie, PL 2007 Sour cherry Atypical taxon

21. 88 Łódzkie, PL 2007 Sour cherry Atypical taxon

22. 89 Łódzkie, PL 2007 Sour cherry Atypical taxon

23. 90 Łódzkie, PL 2007 Sour cherry Atypical taxon

24. 91 Łódzkie, PL 2007 Sour cherry Atypical taxon

25. 93 Łódzkie, PL 2007 Sour cherry Atypical taxon

26. 94 Łódzkie, PL 2007 Sour cherry Atypical taxon

27. 95 Łódzkie, PL 2007 Sour cherry Atypical taxon

28. 96 Łódzkie, PL 2007 Sour cherry Atypical taxon

29. 118 Mazowieckie, PL 2007 Sour cherry Atypical taxon

30. 119 Mazowieckie, PL 2007 Sour cherry Atypical taxon

31. 120 Łódzkie, PL 2007 Sour cherry Atypical taxon

32. 122 Łódzkie, PL 2007 Sour cherry Atypical taxon

33. 211 Łódzkie, PL 2007 Sour cherry Atypical taxon

34. 271 Silesian, PL 2007 Sour cherry Atypical taxon

35. 374 Łódzkie, PL 2008 Sour cherry Atypical taxon

36. 439 Łódzkie, PL 2008 Sour cherry Atypical taxon

37. 909 Łódzkie, PL 2009 Sour cherry Atypical taxon

38. 910 Łódzkie, PL 2009 Sour cherry Atypical taxon

39. 949 Łódzkie, PL 2009 Sour cherry Atypical taxon

40. 963 Lubelskie, PL 2009 Sweet cherry Atypical taxon

41. 966 Lubelskie, PL 2009 Sour cherry Atypical taxon

42. 967 Lubelskie, PL 2009 Sour cherry Atypical taxon

43. 968 Lubelskie, PL 2009 Sour cherry Atypical taxon

44. 969a Lubelskie, PL 2009 Sour cherry Atypical taxon

45. 969b Lubelskie, PL 2009 Sour cherry Atypical taxon

46. 970a Lubelskie, PL 2009 Sour cherry Atypical taxon

47. 970b Lubelskie, PL 2009 Sour cherry Atypical taxon

48. 971a Lubelskie, PL 2009 Sour cherry Atypical taxon
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Table 1 (continued)

Lp. Strain number Place (voivodeship/country)
and year of isolation

Host-plant Taxon based on
LOPAT, GATTa/L

49. 971b Lubelskie, PL 2009 Sour cherry Atypical taxon

50. 972 Lubelskie, PL 2009 Sour cherry Atypical taxon

51. 973 Lubelskie, PL 2009 Sour cherry Atypical taxon

52. 981 Lubelskie, PL 2009 Sour cherry Atypical taxon

53. 982 Lubelskie, PL 2009 Sour cherry Atypical taxon

54. 1017 Łódzkie, PL 2009 Sour cherry Atypical taxon

55. 1021 Łódzkie, PL 2009 Sour cherry Atypical taxon

56. 791 No data 2001 Sour cherry Atypical taxon

57. 441 Łódzkie, PL 2008 Plum Psm1

58. LMG 2222 No data, UK 1958 Prunus avium Psm1

59. 25b Łódzkie, PL 2007 Sweet cherry Psm1

60. 28a Łódzkie, PL 2007 Sweet cherry Psm1

61. 29a Łódzkie, PL 2007 Sweet cherry Psm1

62. 38a Łódzkie, PL 2007 Plum Psm1

63. 98 Łódzkie, PL 2007 Sweet cherry Psm1

64. 100 Łódzkie, PL 2007 Plum Psm1

65. 107 Łódzkie, PL 2007 Plum Psm1

66. 158 West Pomerania, PL 2007 Sweet cherry Psm1

67. 174 West Pomerania, PL 2007 Sweet cherry Psm1

68. 175 West Pomerania, PL 2007 Sweet cherry Psm1

69. 177 West Pomerania, PL 2007 Peach Psm1

70. 199 West Pomerania, PL 2007 Plum Psm1

71. 201 West Pomerania, PL 2007 Plum Psm1

72. 202 West Pomerania, PL 2007 Plum Psm1

73. 203 West Pomerania, PL 2007 Plum Psm1

74. 204 West Pomerania, PL 2007 Plum Psm1

75. 205 West Pomerania, PL 2007 Plum Psm1

76. 206 West Pomerania, PL 2007 plum Psm1

77. 209 West Pomerania, PL 2007 Plum Psm1

78. 213 Świętokrzyskie, PL 2007 Plum Psm1

79. 214 Kuyavian-Pomeranian, PL 2007 Sweet cherry Psm1

80. 215 Kuyavian-Pomeranian, PL 2007 Sweet cherry Psm1

81. 216 Kuyavian-Pomeranian, PL 2007 Sweet cherry Psm1

82. 217 Kuyavian-Pomeranian, PL 2007 Sweet cherry Psm1

83. 218 Kuyavian-Pomeranian, PL 2007 Sweet cherry Psm1

84. 219 Kuyavian-Pomeranian, PL 2007 Sweet cherry Psm1

85. 220 Kuyavian-Pomeranian, PL 2007 Plum Psm1

86. 221 Kuyavian-Pomeranian, PL 2007 Plum Psm1

87. 250 Kuyavian-Pomeranian, PL 2007 Plum Psm1

88. 274 Silesian, PL 2007 Plum Psm1

89. 276 Silesian, PL 2007 Plum Psm1

90. 280 Silesian, PL 2007 Plum Psm1

91. 283 Silesian, PL 2007 Sweet cherry Psm1

92. 291 Łódzkie, PL 2007 Sweet cherry Psm1

93. 527 Mazowieckie, PL 2008 Sweet cherry Psm1

94. 528 Mazowieckie, PL 2008 Sweet cherry Psm1

95. 671 Lubelskie, PL 2008 Sweet cherry Psm1

96. 1061 Łódzkie, PL 2009 Plum Psm1
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Table 1 (continued)

Lp. Strain number Place (voivodeship/country)
and year of isolation

Host-plant Taxon based on
LOPAT, GATTa/L

97. 701A No data, PL 2005 Sweet cherry Psm1

98. 702 No data, PL 1994 Plum Psm1

99. 704 No data, PL 1994 Sweet cherry Psm1

100. 710 Lower Silesian, PL 1996 Sweet cherry Psm1

101. 755 No data, PL 1999 Plum Psm1

102. 771 Łódzkie, PL 1999 Plum Psm1

103. 782 No data, PL 2001 Sweet cherry Psm1

104. 787 Mazowieckie, PL 2001 Plum Psm1

105. 788 Łódzkie, PL 2001 Plum Psm1

106. 793 Łódzkie, PL 2001 Plum Psm1

107. CFBP 3800 No data, UK ND Prunus cerasus Psm2

108. 77 Łódzkie, PL 2007 Sour cherry Psm2

109. 117 Mazowieckie, PL 2007 Sour cherry Psm2

110. 266 Silesian, PL 2007 Sour cherry Psm2

111. 417 Mazowieckie, PL 2008 Sour cherry Psm2

112. 701 No data, PL 1994 Sour cherry Psm2

113. 719 Łódzkie, PL 1997 Sour cherry Psm2

114. 732 Łódzkie, PL 1997 Sour cherry Psm2

115. 733 Łódzkie, PL 1997 Sour cherry Psm2

116. 745 Łódzkie, PL 1999 Sour cherry Psm2

117. 764 Mazowieckie, PL 1999 Sour cherry Psm2

118. LMG 1247 No data, UK ND Syringa vulgaris Pss

119. 2905 No data/PL 1978 Sour cherry Pss

120. 68 Łódzkie, PL 2007 Sour cherry Pss

121. 103 Łódzkie, PL 2007 Sour cherry Pss

122. 106 Łódzkie, PL 2007 Plum Pss

123. 109 Łódzkie, PL 2007 Plum Pss

124. 110 Łódzkie, PL 2007 Plum Pss

125. 112 Łódzkie, PL 2007 Plum Pss

126. 115 Łódzkie, PL 2007 Plum Pss

127. 141 West Pomerania, PL 2007 Peach Pss

128. 147 West Pomerania, PL 2007 Peach Pss

129. 165 West Pomerania, PL 2007 Sweet cherry Pss

130. 184 West Pomerania, PL 2007 Peach Pss

131. 192 West Pomerania, PL 2007 Plum Pss

132. 210 Łódzkie, PL 2007 Sour cherry Pss

133. 222 Kuyavian-Pomeranian, PL 2007 Plum Pss

134. 226 Kuyavian-Pomeranian, PL 2007 Plum Pss

135. 227 Kuyavian-Pomeranian, PL 2007 Plum Pss

136. 229 Kuyavian-Pomeranian, PL 2007 Plum Pss

137. 233 Kuyavian-Pomeranian, PL 2007 Plum Pss

138. 234 Kuyavian-Pomeranian, PL 2007 Plum Pss

139. 235 Kuyavian-Pomeranian, PL 2007 Plum Pss

140. 236 Kuyavian-Pomeranian, PL 2007 Plum Pss

141. 237 Kuyavian-Pomeranian, PL 2007 Plum Pss

142. 239 Kuyavian-Pomeranian, PL 2007 Plum Pss

143. 240 Kuyavian-Pomeranian, PL 2007 Plum Pss

144. 242 Kuyavian-Pomeranian, PL 2007 Plum Pss
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Dot blot hybridisation

High-throughput specificity assays were carried out using a
dot blot platform, essentially as previously described
(Albuquerque et al. 2011). PCR amplicons obtained using
primers Psm1-6F/6R, with template DNA from strain Psm
28a (race 1), and primers Psm2-8F/8R, with Psm 77 (race
2), were purified using the GFX PCR and Gel Band
Purification Kit (GE Healthcare, Buckinghamshire, UK) and
labelled with digoxigenin, using the DIG-High Prime DNA
labelling kit (Roche, Basel, Switzerland) in order to obtain the
two tested hybridisation probes Psm1 and Psm2, respectively.

Amounts of 100 ng of heat-denatured DNA from each
bacterial strain were transferred to a nylon membrane using
a Bio-Dot apparatus (Bio-Rad, Hercules, USA). Hybridisation
was carried out overnight at 68 °C with a final probe concen-
tration of 100 ng/mL, and the washing and detection steps

were carried out according to the DIG application manual
(Roche). The chemiluminescent signal indicative of probe–
target hybrids was detected using a Molecular Imager
ChemiDoc XRS+ System (Bio-Rad), with all pixels below
saturation point.

Conventional and real-time PCR amplifications

Amplification reactions with the two selected primer
pairs, one specific for the strains of Psm1 and the sec-
ond specific for Psm2, were performed in a Biometra
T3000 thermocycler (Biometra, Göttingen, Germany).
The reaction mixture in 15 μl of total reaction volume
contained 10 ng of DNA, 0.4 U of Dream DNA Polymerase
(Promega, Madison,WI, USA), 1× reaction Dream TaqGreen
buffer (Thermo Scientific, Vilnius, Lithuania), 0.15 mM
dNTPs and 0.7 mM of each primer. The following

Table 1 (continued)

Lp. Strain number Place (voivodeship/country)
and year of isolation

Host-plant Taxon based on
LOPAT, GATTa/L

145. 244 Kuyavian-Pomeranian, PL 2007 Plum Pss

146. 245 Kuyavian-Pomeranian, PL 2007 Plum Pss

147. 247 Kuyavian-Pomeranian, PL 2007 Plum Pss

148. 248 Kuyavian-Pomeranian, PL 2007 Plum Pss

149. 256 Kuyavian-Pomeranian, PL 2007 Plum Pss

150. 257 Kuyavian-Pomeranian, PL 2007 Sour cherry Pss

151. 258 Kuyavian-Pomeranian, PL 2007 Sour cherry Pss

152. 259 Łódzkie, PL 2007 Sweet cherry Pss

153. 264 Łódzkie, PL 2007 Peach Pss

154. 286 Silesian, PL 2007 Sweet cherry Pss

155. 373 Łódzkie, PL 2008 Sour cherry Pss

156. 376 Łódzkie, PL 2008 Sour cherry Pss

157. 415 Świętokrzyskie, PL 2008 Plum Pss

158. 420a Mazowieckie, PL 2008 Sour cherry Pss

159. 435 Mazowieckie, PL 2008 Sour cherry Pss

160. 437 Łódzkie, PL 2008 Sour cherry Pss

161. 442 Łódzkie, PL 2008 Plum Pss

162. 460 Podkarpackie, PL 2008 Sour cherry Pss

163. 663 Lubelskie, PL 2008 Sour cherry Pss

164. 914 Kuyavian-Pomeranian, PL 2009 Sour cherry Pss

165. 959 Lubelskie, PL 2009 Sour cherry Pss

166. 702A Łódzkie, PL 2005 Plum Pss

167. 753 Łódzkie, PL 1999 Apricot Pss

168. 757 Mazowieckie, PL 1999 Plum Pss

169. 760 Mazowieckie, PL 1999 Sour cherry Pss

170. 762 No data, PL 1999 Apricot Pss

171. 763 No data, PL 1999 Sour cherry Pss

LOPAT—levan production from sucrose (L), presence of oxidase (O), ability to cause rot on potato tubers (P, pectolytic activity), presence of arginine
dihydrolase (A), hypersensitive reaction (HR) on tobacco plants;GATTA—gelatine hydrolysis (G), aesculin hydrolysis (A, activity of theβ-glucosidase),
tyrosinase activity (T), utilisation of tartrate (Ta); test of L-lactate utilisation (L); PL Poland, UK United Kingdom
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Table 2 Results of specificity of designed primers in reactions with DNA of different pathovars of Pseudomonas syringe and other Pseudomonas
species tested

Pathovar of

P. syringae
Strain

number*

Host Origin-

place/year of

isolation

PCR result

with primers
Reference/

source
Psm1-6F/6R 

and Psm1-

1F/R-RT

and Psm2-

8F/8R and 

and Psm2-

1F/1R-RT

aceris     CFBP 2339
PT Acer sp. 1961 –** CFBP***

actinidiae CFBP 4909
PT

MAFF 302135

MAFF 302145

MAFF 613005

Actinidia deliciosa
Actinidia argute
Actinidia deliciosa
Actinidia deliciosa

Japan/1984

Japan/1987

Japan/1988

Japan/1986

–
–
–
–

CFBP

MAFF

MAFF

MAFF

aesculi CFBP 2894
PT

6617

2250

H3

H4

2190

Aesculus indica
Aesculus hippocastanum
Aesculus hippocastanum

Aesculus hippocastanum
Aesculus hippocastanum
Aesculus hippocastanum

India/1980

UK/2006

UK/2008

Germany/2007

Germany/2007

UK

–
–
–

–
–
–

CFBP

R. W.

Jackson 

(UK)

Schmidt

et al., 

2008

antirrhini CFBP 1620
PT Antirrhinum majus UK/1956 – CFBP

apii CFBP 2103
PT

BS 426

BS 463

Apium graveolens
Petroselinum crispum
Flat-leaf parsley

USA/1942

USA/2003

USA/2002

–
–
–

CFBP

Bull et al.

2011

aptata CFBP 1617
PT Beta vulgaris USA/1959 – CFBP

atrofaciens CFBP 2213
PT Triticum aestivum New 

Zealand/1968

– CFBP

atropurpurea CFBP 2340
PT

1304

Lolium multiflorum ND/1967 –
–

CFBP

K.Geider

(Germany) 

avii CFBP 3846
PT Prunus avium France/1991 – CFBP

berberidis CFBP 1727
PT Berberis sp. New

Zealand/1972

– CFBP

broussonetiae CFBP 5140
PT

MAFF 810038

MAFF 810044

Broussonetia kazinoki
Sieb.X Broussonetia
papyrifa Vent.
Broussonetia kazinoki
Sieb.
Broussonetia kazinoki
Sieb.

Japan/1980

Japan/ 1996

Japan/ 1996

–

–
–

CFBP

MAFF

MAFF

castaneae CFBP 4217
PT Castanea crenata Japan/1977 – CFBP

cerasicola CFBP 6109
PT Prunus X yedoensis Japan/1995 – CFBP

ciccaronei CFBP 2342
PT Ceratonia siligua Italy/1942 – CFBP

coriandricola CFBP 5010
PT

BS 456

BS 462

Coriandrum sativum
Curled-leaf parsley
Flat-leaf parsley

Germany/1990

USA/2003

USA/2002

–
–
–

CFBP

Carolee

T. Bull

(USA)
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Table 2 (continued)

coronafaciens CFBP 2216
PT Avena sativa UK/1958 – CFBP

cunninghamiae CFBP 4218
PT Cunninghamia

lanceolata
China/1995 – CFBP

daphniphylli CFBP 4219
PT Daphniphyllum 

teigsmanni
Japan/1981 – CFBP

delphinii CFBP 2215
PT Delphinium sp. New 

Zealand/1957
– CFBP

dendropanacis CFBP 3226
PT Dendropanax trifidus Japan/1979 – CFBP

dysoxyli CFBP 2356
PT Dysoxylum spectabile New 

Zealand/1949
– CFBP

eriobotryae CFBP 2343
PT Eriobotrya japonica USA/1970 – CFBP

garcae CFBP 1634
PT Coffea arabica Brasil/1958 – CFBP

helianthi CFBP 2067
PT Helianthus annuus Mexico/ND – CFBP

hibisci CFBP 2895
PT Hibiscus rosa-sinensis USA/1984 – CFBP

japonica MAFF 301159

MAFF 301166

Triticum aestivum (L.)
Thell.
Hordeum vulgare L.

Japan/ND

Japan/ND

–
–

MAFF

MAFF

lachrymans CFBP 6463
PT

B 01557

Cucumis sativus
Cucumis L.

Hungary/1958

ND

–
–

CFBP

M. Hevesi
(Hungary)

lapsa CFBP 1731
PT Zea sp. ND/1968 – CFBP

maculicola LMG 5071
PT

LMG 2208

Brassica oleracea

Brassica oleracea

New 
Zealand/1965
UK/1965

–

–

LMG

LMG

mellea CFBP 2344
PT Nicotiana tabacum Japan/1968 – CFBP

mori CFBP 1642
PT

MAFF 302756

MAFF 810010

Morus alba
Morus bombycis Koidz.

Hungary/1958

Japan/ND

–
–
–

CFBP

MAFF

MAFF

morsprunorum CFBP 2351
PT

B 01835

PD5329

LMG 2222

CFBP 3800

Prunus domestica

Prunus sp.

ND

Prunus avium

Prunus cerasus

USA/1931

Hungary/1995

ND

ND/1958

UK/ND

– (Psm1)

+ (Psm2)

+ (Psm1)

– (Psm2)

+ (Psm1)

– (Psm2)

+ (Psm1)

– (Psm2)

– (Psm1)

+ (Psm2)

CFBP

M. Hevesi

(Hungary)

J.D.Janse 

(Netherlan

d)

LMG

CFBP

myricae CFBP 2897
PT

MAFF 302457

MAFF 302944

Myrica rubra
Myrica rubra Sieb. et
Zucc.
Myrica rubra Sieb. et
Zucc.

Japan/1978

Japan/ND

Japan/ND

–
–

–

CFBP

MAFF

MAFF

oryzae CFBP 3228
PT Oryza sativa Japan/1983 – CFBP

papulans CFBP 1754
PT Malus sylvestris Canada/1973 – CFBP

passiflorae CFBP 2346
PT Passiflora edulis New 

Zealand/1962
– CFBP

persicae LMG 5184
PT Prunus persica France/1974 – LMG

philadelphi CFBP 2898
PT Philadelphus coronarius UK/1985 – CFBP

photiniae CFBP 2899
PT Photinia glabra Japan/1976 – CFBP

pisi CFBP 2105
PT Pisum sativum New 

Zealand/1969
– CFBP

M. Hevesi
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experimentally determined amplification conditions were
used: initial denaturation at 94 °C for 4 min; 30 cycles at
94 °C for 45 s, 55–62 °C for 45 s for primers Psm1-6F and
Psm1-6R (for detection of Psm1 strains) and 50–58 °C for 45 s
for primers Psm2-8F and Psm2-8R (for detection of Psm2
strains) and 72 °C for 1 min; and final extension at 72 °C for

10 min. The resulting PCR products were separated by elec-
trophoresis on 1.5 % agarose gels as described above.

Real-time PCR with SYBR Green I was conducted in
the Bio-Rad CFX96 with SsoAdvanced SYBR Green
Supermix (Bio-Rad, Hercules, USA). The reaction mixture
in 20 μl of total volume contained 1× reaction SYBR

Table 2 (continued)

B 01685 Pisum L. USA/1957 – (Hungary)

porri CFBP 1908
PT Allium porrum France/1978 – CFBP

primulae CFBP 1660
PT Primula sp. USA/ND – CFBP

rhaphiolepidis CFBP 4220
PT Rhaphiolepis umbellata Japan/1980 – CFBP

ribicola CFBP 2348
PT Ribes aureum ND/1946 – CFBP

sesami CFBP 1671
PT ND Yugoslavia/1961 – CFBP

spinaceae CFBP 5524
PT ND Japan/ND – CFBP

striafaciens CFBP 1674
PT Avena sativa ND – CFBP

syringae LMG 1247
PT

B 01461

B 01558

B 1893

Syringa vulgaris
ND
Prunus sp.

Prunus armeniaca L.

UK/1950

ND

Hungary/1978

Hungary/1999

–
–
–
–

LMG

M. 

Hevesi 

(Hungary)

tabaci CFBP 2106
PT

B 01606

Nicotiana tabacum
Nicotiana tabacum

Hungary/1959

Hungary/1995

–
–

CFBP

M.Hevesi 

(Hungary)

tagetis CFBP 1694
PT Tagetes erecta Zimbabwe/1972 – CFBP

theae CFBP 2353
PT

MAFF 302853

Thea sinensis
ND

Japan/1970

Japan/1975

–
–

CFBP

MAFF 

tomato CFBP 2212
PT

KFB 145

Lycopersicon esculentum
ND

UK/1960

ND

–
–

CFBP

A. Prokić, 
A 

Obradovic 

(Serbia)

ulmi CFBP 1407
PT Ulmus sp. Yugoslavia/1958 – CFBP

viburni CFBP 1702
PT Viburnum sp. USA/ND – CFBP

zizaniae CFBP 4117
PT Zizania aquatica USA/1983 – CFBP

Pseudomonas 
savastanoi pv. 

savastanoi.

CFBP 1670
T Olea europaea Yugoslavia/ND – CFBP

Pseudomonas 
cannabina pv.

alisalensis

CFBP 6866
T

CFBP 6869

Brassica rapa subsp. 
Rapa
Eruca vesicaria subsp. 
sativa

USA/1995

USA/1995

–
–

CFBP

CFBP    

Bull et al. 

2010

Pseudomonas 
corrugata

B 01638 Lycopersicon esculentum Hungary/1996 – M. Hevesi 

(Hungary)
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*ND no data, PT pathotype strain, T type strain; ** − negative result of amplification with tested primer pairs; + positive result of amplification with
tested primer pairs; ***CFBP Collection Francaise des Bacteries Phytopathogenes, Institut National de la Recherche Agronomique, Beaucouzé Cedex,
France; MAFF Ministry of Agriculture, Forestry and Fisheries, Tsukuba, Ibaraki, Japan, LMG Laboratorium voor Microbiologie, Universiteit Gent,
Gent, Belgium



Green Supermix and 0.5 mM of each of the following
primers: Psm1-1F-RT/Psm1-1R-RT for Psm1 and Psm2-
1F-RT/Psm2-1R-RT for Psm2. Bacterial DNA was used
as a template (10 ng per PCR reaction). No-template reac-
tions were used as negative controls. The PCR programme
was started from one cycle of denaturation at 98 °C for
130 s, followed by 35 cycles at 95 °C for 10 s and then
60 °C for 15 s, finished by a melting curve analysis for
verification of the specificity of amplification in real-time
PCR products. Progressive denaturation of products was
carried out at a rising temperature, starting from 65 °C
and continuing to 95 °C, with 0.5 °C of increment for
5 s each.

Specificity of designed primers and their usefulness
in detection in plant material

In the first stage of this part of the study, the specificity of the
two designed primer pairs was determined with PCR using
DNA from all strains of Psm1, Psm2 and Pss as well as strains
of atypical taxa (Table 1). In the second stage, the primers
were tested with DNA from other P. syringae pathovars and
related species (Table 2).

In order to assess the suitability of the designed primers for
the detection of Psm1 and Psm2 strains in plant material,
several leaves, shoots and fruits of sweet cherry, sour cherry
and plum were collected. Amounts of 100 mg of crushed/cut
plant tissue of each organ were placed in 1.9 ml of PBS buffer.
For each type of tissue (organ) and host plant, two tubes were
prepared (18 tubes in total). One hundred microlitres of bac-
terial suspension (105 cfu/ml) of the Psm1 reference strain
(LMG 2222) or the Psm2 reference strain (CFBP 3800) were
added to nine of the samples (one of each organ and of each
plant). One hundred microlitres of sterile water were added to
the remaining nine samples, which were tested to verify the
purity of the plant material. After 1 h of shaking incubation at
26 °C, 1 ml of washing liquid separate from each of all 18
samples was centrifuged; the resulting pellet was suspended in
100 μl of TE buffer, and the DNA was isolated using a
Genomic Mini DNA Extraction Kit (A&A Biotechnology,
Gdynia, Poland) according to the manufacturer’s instructions.

PCR limit of detection

The limit of detection of PCR using the SCAR primers
was evaluated using DNA extracted from pure bacterial
cultures, DNA extracted from plant material that was
mixed with suspensions of bacteria and bacterial geno-
mic DNA (gDNA). A PCR assay was carried out with
decimal dilutions of bacterial suspensions of strain LMG
2222 or CFBP 3800 (from ~108 to 100 cfu/ml). DNA
was isolated from 1 mL of each dilution using a
Genomic Mini DNA Extraction Kit (A&A Biotechnology)

according to the protocol supplied by the manufacturer. To
determine the limit of detection of bacteria in the plant mate-
rial, 100-mg portions of stems and leaves of sweet cherry (for
Psm1 primers) or sour cherry (forPsm2 primers) and 100μl of
the previously prepared 10-fold serial dilutions of bacterial
suspensions (from ~108 to 100 cfu/ml) or 100 μl of sterile
water, used as a control of material purity, were added to
1.9 mL of PBS buffer and shaken for 30 min at 26 °C. After
incubation, the washings were centrifuged (8,000 rpm, 5 min);
the resulting pellet was suspended in 100 μl of TE buffer, and
DNAwas isolated using the Genomic Mini DNA Extraction
Kit (A&A Biotechnology) according to the manufacturer’s
instructions. The sensitivity of gDNA detection was checked
using 2-fold serial dilutions of gDNA isolated (11 ng to ~11 fg
per PCR reaction for Psm1 and 14 ng to ~14 fg per PCR
reaction for Psm2) using the method described by Aljanabi
and Martinez (1997), with slight modifications described by
Kałużna et al. (2012). The PCR efficiency was calculated
from the slope of the standard curve generated for each run
in the following equation E=10(−1/slope) where E=2 and cor-
responds to 100 % efficiency (Ramakers et al. 2003).

Results

Phenotypic characterisation

All 168 isolates have been classified into species
P. syringae LOPAT group Ia. GATTa and L-lactate
utilisation tests allowed further discrimination of
pathovars and races: 49 isolates were identified as
P. syringae pv. morsprunorum race 1 (Psm1), 10 as race
2 of this pathovar, 53 as pathovar syringae (Pss) and 56
as belonging to atypical taxa, having most of the fea-
tures of Pss without, however, the ability of esculine
hydrolysis (lack of β-glucosidase activity) (Table 1).

PCR MP

To select specific fragments of the taxon, the PCRMPmethod
was applied using DNA from different strains of P. syringae
(Figs. 1 and 2; Table 1). The obtained PCR MP patterns
corresponded to phenotypically determined pathovars and
races. Similar electrophoretic patterns were obtained for races
within pathovar morsprunorum, confirming their homogene-
ity; however, different patterns were observed for strains be-
longing to pathovar syringae. For Psm1 and Psm2, the prod-
ucts that were specific and were shared between all strains of
each taxa were selected, cloned and sequenced. Two products
specific for Psm1 (after digestion by PstI) had sizes of 1,208
and 1,128 bp, while the unique amplification product (after
digestion by TaqI) for strains of Psm2 was 781 bp long. No
specific and unique band was found for strains of Pss.
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Fig. 1 Electrophoretic patterns
obtained after polymerase chain
reaction melting profile (PCR
MP) of fluorescent
Pseudomonads with primer Pst1:
Lane 1—M—marker 100-bp
ladder (Genoplast, Rokocin,
Poland); pathovar morsprunorum
race 1 isolates: 2—LMG 2222,
3—702, 4—710, 5—755, 6—
787, 7—782, 8—793, 9—701A;
pv.morsprunorum race 2 isolates:
10—CFBP 3800, 11—719, 12—
733, 13—732, 14—745, 15—
764, 16—701; pv. syringae
isolates: 17—LMG 1247, 18—
2905, 19—760; 20—762, 21—
702A, 22—757, 23—753, 24—
763, 25—M—marker 100-bp
PCR Molecular Ruler (Bio-Rad,
Hercules, USA)

Fig. 2 Electrophoretic patterns
obtained after polymerase chain
reaction melting profile (PCR
MP) of fluorescent
Pseudomonads with primer Taq1:
Lane 1—M—marker 100-bp
ladder (Genoplast, Rokocin,
Poland); pathovar morsprunorum
race 1 isolates: 2—LMG 2222,
3—25b, 4—28a , 5—107, 6—
201, 7—701A, 8—755, 9—771;
pv.morsprunorum race 2 isolates:
10—CFBP 3800, 11—77, 12—
701, 13—732, 14—733, 15—
745, 16—764; pv. syringae
isolates: 17—LMG 1247, 18—
2905, 19—68; 20—110, 21—
141, 22—286, 23—415, 24—
763, 25—M—marker 100-bp
PCR Molecular Ruler (Bio-Rad,
Hercules, USA)
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Design of SCAR primers

The nucleotide sequences obtained for the Psm1 and Psm2
fragments were used to design different SCAR primers.
After validation, the most specific primers for conventional
and real-time PCRwere selected (Table 3). A BLASTanalysis
of selected primer sequences showed no similarity to any bac-
terial sequences in GenBank.

Dot blot hybridisation

The dot blot results confirmed the high specificity of the se-
lected markers towards the target pathogens. Using probe
Psm1, positive hybridisation results (dark dots) were observed
with all tested Psm1 strains, and no unspecific hybridisation
was observed with DNA from any non-Psm1 pseudomonads.
Similarly, probe Psm2 was exclusively specific for the tested
Psm2 strains. Additionally, the hybridisation results showed
that the selected DNA regions were present in all their respec-
tive target strains, confirming their stability (Fig. 3).

Specificity of designed primers and usefulness in detection
in plant material

The PCR assays using DNA from all tested P. syringae strains
including reference strains (Table 1), as well as DNA from
strains of other species within the Pseudomonas genus
(Table 2), showed that all the designed primers were specific
for their respective taxa. PCR assays using primers Psm1-6F/
6R and Psm1-1F-RT/1R-RT, specific for Psm1, successfully
amplified the expected PCR products 793 bp (Fig. 4) and
101 bp (Fig. 5), respectively, using DNA from all strains of
Psm1. No amplification was observed when DNA from
strains identified as Psm2 or Pss and strains of atypical taxa
were used. Amplification using primers Psm2-8F/8R and
Psm2-1F-RT/1R-RT, designed for detection of Psm2, was

achieved with DNA from all strains of Psm2, resulting in
PCR products of expected lengths of 410 bp (Fig. 6) and
104 bp, respectively. No increase in fluorescence was ob-
served with DNA from Psm1 or Pss and strains of atypical
taxa. The melting curves of the reaction products obtained
from real-time PCR revealed a single peak with a melting
temperature of 80 °C or 77 °C for Psm1 and Psm2, respec-
tively. Also, neither unexpected nor additional peaks in the
product melting curves were observed, which clearly exclud-
ed possibilities or tendency of the primers to form dimers.
Moreover, none of the four tested primer pairs amplified the
DNA of 79 strains of other pathovars of P. syringae and other
species (Table 2).

The usefulness of the designed primers for detection
of Psm1 and Psm2 strains in plant material was
assessed with PCR assays using DNA extracted from a
mixture of plant tissues and a suspension of target bac-
teria. The results confirmed the specificity of selected
primer-pairs since positive amplification was achieved
in mingled samples, while no nonspecific amplification
was observed in samples without bacteria addition.
Additionally, these assays showed that the proposed
PCR detection methodology was not affected by poten-
tial inhibitors present in plant samples.

Limit of detection of P. syringae pv. morsprunorum
for conventional and real-time PCR

Both tested primer pairs designed for conventional PCR
allowed for the detection of 100 cfu/reaction of Psm1
and 101 Psm2 in pure culture. Regarding the presence
of bacteria in different organs of sweet and sour
cherries, it was possible to detect 100 and 101 cfu/reac-
tion for sweet cherry leaves and shoots, respectively,
using the Psm1-specific primers and 102 cfu/reaction
for sour cherry leaves and shoots using the Psm2-
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Table 3 Primers specific for strains of Psm1 and Psm2

Primer
name

Primer
sequence

Tm Product
length

Conventional PCR Psm1-6F 5′-TGTTCCCGGCCATCCAATA-3′ 51.1 °C 793 bp
Psm1-6R 5′-ATCCGCATCAGTCAAAATAGTCAT-

3′
52.3 °C

Psm2-8F 5′-CTTTTTAGATGGTGAGGTTTTGTA-
3′

50.6 °C 410 bp

Psm2-8R 5′-ACTTTCGGATCATCGTTTTCTA-3′ 49.2 °C

Real-time PCR Psm1-1F-RT 5′-TCCCGGCCATCCAATACTTTACG-3′ 57.1 °C 101 bp
Psm1-1R-

RT
5′-ACGCTTCATGGTGTCTTGTTTA-3′ 51.1 °C

Psm2-1F-RT 5′-GGTTTGCCTTTTCCTCAG-3′ 48 °C 104 bp
Psm2-1R-

RT
5′-ATTGCATTACTTCTTTGTTGC-3′ 46.5 °C

F forward primer, R reverse primer, RT real-time, Tm melting temperature



specific primers. The sensitivity (LOD, limit of detec-
tion) of the detection in the conventional PCR assay
was ~4 pg for Psm1 strain 199 and ~5 pg for Psm2
strain 745 when aliquots of serial 2-fold dilutions of
purified DNA were used which corresponds to the order
of magnitude ~101–102 cfu/reaction.

Both tested primer pairs designed for Psm1 and Psm2
strains using real-time PCR allowed the detection of
100 cfu/reaction of Psm1 or Psm2 in pure culture and
in plant material. Only the expected products and a
single peak with melting temperature were obtained.
Standard curves using template DNA from bacterial sus-
pensions, DNA from plant material with additions of
bacterial suspensions and bacterial gDNA showed high

amplification efficiency and linearity of the data (Table
4). An exception occurred for the products obtained
from shoots of sweet cherry with additions of bacterial
suspensions of Psm1. Although linearity was quite
good, the noted efficiency of 83 % was not in the range
considered acceptable (90–110 %). Moreover, the effi-
ciency obtained for the mixture of shoots of sour cherry
and Psm2 suspension when testing with primers for
Psm2 was also lower compared to DNA template from
sour cherry leaves and bacterial suspension alone. The
sensitivity (LOD) of the detection in the real-time PCR
assay when using gDNA ranged from ~30 to 100 fg for
Psm1 strain 199 and ~10 to 50 fg for Psm2 strain 745
when 1.0-μl aliquots of serial 2-fold dilutions of

Fig. 3 Dot blot validation of probes Psm1 and Psm2. The probes were
evaluated with total DNA from 167 strains; including P. syringae strains
isolated from stone fruit trees, reference strains and others pathovars of
P. syringae from the CFBP culture collection. The table grid above

represents the coordinates of each strain tested in the dot blot, which are
identified by their abbreviations further detailed in Tables 1 and 2.
Positive hybridization signals are visualised as dark dots
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purified DNA were used which corresponds to the order
of magnitude ~100 cfu/reaction (Table 4).

Discussion

In this study, the methods and tools enabling the rapid and
highly specific identification and detection of bacterial canker
causal agent P. syringae pv.morsprunorum races 1 and 2 were
developed. The methods based on the use of specific primers

designed for conventional and real-time PCR allow in routine
testing for omitting the application of often time-consuming
methods of classical microbiology, fingerprinting methods or
housekeeping gene sequence analysis used until now by other
authors (Vicente and Roberts 2007; Gilbert et al. 2009). Of
course in critical cases (i.e. first reports, claims, etc.) these
other methods are still indispensable. Our newly developed

Fig. 6 Evaluation of primers Psm2-8F and Psm2-8R for identification of
P. syringae pv. morsprunorum race 2: M—O’GeneRuler 100–3000 bp
(Thermo Scientific, Vilnius, Lithuania), strains Psm1: 2—25b, 3—250,
4—788; strains Pss: 5—68, 6—110; strains of atypical taxon: 7—61, 8—
970a; strains Psm2: 9—77, 10—CFBP3800, 11—77, 12—745, 13—764

Fig. 4 Evaluation of primers Psm1-6F and Psm1-6R for identification of
P. syringae pv. morsprunorum race 1: M—O’GeneRuler 100–3000 bp
(Thermo Scientific, Vilnius, Lithuania), strains Psm1: strains Psm1: 2—
LMG 2222, 3—28a, 4—29a, 5—38a, 6—175, 7—199, 8—201, 9—203,
10—205, 11—274, 12—755, strains Psm2:13—CFBP 3800, 14—732,
strains Pss: 15—LMG 1247, 16—760, strains of atypical taxon: 17—58,
18—970a, 19—K-
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Fig 5 Real-time PCR with SYBR Green I (Bio-Rad, Hercules, USA) for specific detection of DNA from suspension of Psm1 strain LMG2222
(example). Fluorescence signal is related to the amount of template. Samples from 106, 105, 104, 103, 102, 101 and 100 cfu/reaction



methods and tools are very useful and invaluable in both ep-
idemiological studies and in development of protection
programmes for stone fruits against bacterial canker.

Using the genetic fingerprinting PCRMPmethod, we dem-
onstrated the diversity of P. syringae strains, which was very
important in the selection of specific DNA fragments for two
races of P. syringae pv.morsprunorum. Based on the obtained
nucleotide sequences of these fragments, Psm1- and Psm2-
specific SCAR primers were designed. The specificity of the
designed primers for Psm and amplified regions was con-
firmed by BLAST, since the fragments did not show (at pres-
ent) any significant similarity hits within the NCBI database.
Due to the high electrophoretic profile heterogeneity obtained
for Pss strains arising from their high genetic diversity con-
firmed already by other authors (Vicente and Roberts 2007;
Gilbert et al. 2009; Kałużna et al. 2010a, b), it was not possible
to find a common DNA fragment for all strains belonging to
this taxon.

Commonly used methods for designing SCAR primers
include rep-PCR (repetitive PCR) (Sangdee et al. 2013),
randomly amplified polymorphic DNA (RAPD) (Liu et al.
2012; Cheng et al. 2015), amplified fragment length poly-
morphism (AFLP) (Zhang et al. 2012), PCR with univer-
sal rice primers (URP-PCR) (Lim et al. 2009) and inter-
simple sequence repeat (ISSR) (Giaj Merlera et al. 2015).
Although the PCR MP method was described so far as
helpful in the study of genetic diversity of bacteria and
yeast (Leibner-Ciszak et al. 2010; Kałużna et al. 2010b,
2014; Zasada et al. 2014), it has not been previously re-
ported to be used for the selection of SCAR markers. In
this work, the PCR MP is for the first time used for the
design of SCAR primers specific for detection of plant
pathogenic bacteria.

The results obtained in this study showed that the designed
SCAR primers can be applied for specific, direct detection of
strains belonging to Psm1 or Psm2, both in pure culture and
infected plant material. Their specificity was confirmed by
PCR, using DNA from several Pseudomonas spp. strains,
which showed that positive amplification occurred only with
DNA of the targeted taxa strains. This is especially significant
in the case of strains of atypical taxa and pathovars of P.
syringae (i.e. pv. syringae and pv. avii, which also infect cher-
ry (Ménard et al. 2003; Renick et al. 2008)) to exclude that
symptoms are connected to another taxa/pathogen or to abiot-
ic factors. Importantly, when testing the developed primers in
conventional PCR, using DNA isolated from a mixture of
plant material and bacteria of Psm1 or Psm2, the suppression
of amplification by potential plant inhibitors like polyphenols
and pesticide residues, as reported by Puławska et al. (1997),
was not found. Additionally, for DNA from the asymptomatic
plant material without addition of bacterial DNA, no positive
amplification was observed. This means that the designed
primers did not react with DNA of potential bacteria naturally
inhabiting the plant material, which is essential to prevent
false-positive diagnostic results. However, in the case of
real-time PCR, which is the more sensitive method, some
effects of plant material were noted. Although standard curves
using different template DNA showed the high amplification
efficiency and linearity of the data for the majority of DNA
tested, for shoots of sweet cherry with additions of bacterial
suspensions the efficiency was below the range considered
acceptable, indicating higher dilution of those templates than
expected. Also, a decrease of efficiency (Table 4) in the case
of sour cherry shoots was observed. The results therefore may
indicate the influence of shoots for more sensitive real-time
PCR reactions.

Table 4 Important parameters of real-time polymerase chain reaction (PCR) runs evaluated through the analysis of standard curves generated with
different DNA templates of P. syringae pv. morsprunorum races 1 and 2

Template E (%)a R2 b Slope c Y= int d

Psm1 (DNA from bacterial suspension) 103 0.998 −3.252 35.445

Psm1+sweet cherry leaves 99.7 0.965 −3.328 36.551

Psm1+sweet cherry shoots 83.0 0.989 −3.810 43.932

Psm1 gDNA 99.2 0.997 −3.342 18.425

Psm2 (DNA from bacterial suspension) 99.8 0.995 −3.326 33.093

Psm2+sour cherry leaves 99.3 0.999 −3.338 32.451

Psm2+sour cherry shoots 91.4 0.994 −3.548 35.130

Psm2 g DNA 99.2 0.991 −3.342 17.805

aE= PCR efficiency; ideally the efficiency should be 100 %, meaning that for each cycle the amount of product doubles; high/acceptable amplification
efficiency (90–110 %). Efficiency = 10(−1/slope) − 1
b R2 is a measure of data linearity amongst technical replicates of serial dilutions; indicates how good one value is in predicting another; R2 = 1 is perfect
c The slope of the log-linear phase of the amplification reaction is a measure of reaction efficiency. To obtain accurate and reproducible results, reactions
should have an efficiency as close to 100 % as possible, equivalent to a slope of −3.32
d Y= int represents the value of Ct where the curve crosses the y-axis
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The designing of primers for both systems, conventional
and real-time PCR, makes the developed diagnosis system
more accessible to a wider group of researchers, as many
laboratories do not have access to special equipment or
specialised personnel to perform the real-time PCR or have
less funds. However, as described, the real-time PCR proce-
dure is much faster (whole reaction with melting curve anal-
ysis is about 1 h from the beginning with SsoAdvanced SYBR
Green Supermix); it allows the use of DNA quickly extracted
from pure culture by the boiling method, without loss of de-
tection resolution, and also excludes additional time-
consuming post-PCR processes (i.e. agarose gel electrophore-
sis). Therefore, using this technique, it is possible to obtain a
very fast response about the causal agent of the disease.
However, it should be noted that this system is highly sensi-
tive and that false-positive results can occur. The risk of false-
positive results due to cross-contamination during preparation
of the PCR can be minimised by using negative controls and
high discipline during work (e.g., application of tips with fil-
ters during the DNA isolation step). Additionally, positive
results obtained during those of the final PCR cycles should
be treated as suspect only, for which additional, more detailed
investigations should be conducted. Moreover, during all the
assays the melting curve analysis is recommended to exclude
nonspecific amplicons (as a consequence of which are visible
in each run as the rest of the analysed specific ones). Dot blot
hybridisation confirmed that the two selected DNA regions
were highly specific for their target genomospecies and stable
amongst all tested isolates of either Psm1 or Psm2, which is
essential for preventing false-positive and false-negative re-
sults, respectively as much as possible.

In summary, when compared with so-far available methods
for identification and differentiation of causal agents of stone
fruit bacterial canker based on phenotypic characters, finger-
printing methods or MLST, the use of pathovar-specific
primers allowed for greatly shortening the time required for
diagnosis, while highly increasing assay accuracy and lowering
detection limit. Moreover, this PCR-based method is relatively
simple and inexpensive, and it does not require the time-
consuming step of pre-incubation on microbiological media
(Schaad et al. 1995). Even in the presence of potential inhibi-
tors present in plant material, which can affect the limit of
detection, we could detect 1 and 3×102 cfu/reaction using
primers specific for Psm1 and Psm2 in conventional PCR. A
similar detection sensitivity in conventional PCR was obtained
by other authors in their identification systems for other phyto-
pathogens (Catara et al. 2000; Kerkoud et al. 2002; Biondi et al.
2013). The sensitivity of real-time PCR was higher than in the
case of conventional ones, as 1 cfu/reaction was detected when
different templates were used. This is especially important in
the case of naturally infected material in the presence of a small
amount of pathogen DNA, which be detected in a very short
time. The limit of detection when using gDNAwas in the range

from ~4–5 pg in conventional and ~10–100 fg in real-time PCR
for both taxa, which are similar to results obtained for P.
syringae pv. actinidiae (Gallelli et al. 2014) and Clavibacter
michiganensis subsp. sepedonicus (Cho et al. 2015). The high
sensitivity of the developed assay (obtained in our hands) will
be invaluable for detecting the target bacteria in the early latent
period of the disease, allowing growers to undertake appropri-
ate prevention or protection programmes.
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