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Abstract Transgenic plant-derived vaccines comprise a new
type of bioreactor that combines plant genetic engineering
technology with an organism's immunological response.
This combination can be considered as a bioreactor that is
produced by introducing foreign genes into plants that elicit
special immunogenicity when introduced into animals or hu-
man beings. In comparison with traditional vaccines, plant
vaccines have some significant advantages, such as low cost,
greater safety, and greater effectiveness. In a number of recent
studies, antigen-specific proteins have been successfully
expressed in various plant tissues and have even been tested
in animals and human beings. Therefore, edible vaccines of
transgenic plants have a bright future. This review begins with
a discussion of the immune mechanism and expression sys-
tems for transgenic plant vaccines. Then, current advances in
different transgenic plant vaccines will be analyzed, including
vaccines against pathogenic viruses, bacteria, and eukaryotic
parasites. In view of the low expression levels for antigens in

plants, high-level expression strategies of foreign protein in
transgenic plants are recommended. Finally, the existing safe-
ty problems in transgenic plant vaccines were put forward will
be discussed along with a number of appropriate solutions that
will hopefully lead to future clinical application of edible plant
vaccines.
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Introduction

Infectious diseases have become grave threats to human and
animal health. However, the use of existing vaccines is an
effective way of preventing the occurrence of these diseases.
With the development of biotechnology, the type of vac-
cines has developed from the bacterial vaccine to subunit
vaccine or DNA vaccine, but these products are difficult to
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market because of high production costs. Transgenic plant-
based vaccines have some advantages over traditional
injected vaccines, such as a wide-range possible expressed
epitopes, large biomass of cultivation, low cost, and ease of
transportation and preservation. Above all, vaccination can
be directly carried out orally, rather than parenterally, and
often without extraction and purification. The existence of
the plant cell wall obviously has a sustained-release effect
for the delivery of the antigen. Therefore, in recent years, the
research and application of genetically modified (GM) plant
vaccines has been a hot topic in vaccine research. This paper
reviews current advances in different transgenic plant vac-
cines, such as vaccines against pathogenic viruses, bacteria,
and eukaryotic parasites, as well as the existing safety prob-
lems in products obtained from transgenic plant vaccines.

Immune response to transgenic plant vaccines

Research on genetically modified plant vaccines has pro-
gressed for over 20 years. Curtiss and Cardineau 1990 first
successfully expressed Streptococcus surface protein A
(SPaA) gene in tobacco seeds, and the SPaA expressed in
transgenic tobacco plants was shown to produce an immune
reaction. Afterwards, Mason et al. (1992) produced Hepatitis
B vaccine in transgenic tobacco, which demonstrated that
proteins expressed in transgenic plants cannot only maintain
their natural conformation, but they also retain their antigenic
determinants by stimulating the immune response of B and T
cells. Thus, the concept of an edible vaccine was presented for
the first time. The idea of edible vaccine obtained from plants
has received a great deal of attention from both academia and
private enterprise. Kapusta et al. (1999) expressed HBsAg in
transgenic lettuce and observed a preliminary immune effect
via oral administration given to volunteers, which showed that
edible vaccines from transgenic plants could induce potent
specific immune responses in human beings. It has been
demonstrated on the one hand that transgenic plant vaccine
administered by an oral route could induce the body to pro-
duce both humoral immune and cellular immune responses,
which ultimately can give rise to immunity (Rigano et al.
2006; Li and Xi 2004). On the other hand, both the stomach
and intestinal tract have an independent mucosal immune
system, which we consider in the following in a description
of the mechanisms of activation of the immune system when
plant virus vaccines are administered orally.

After human or animals eat transgenic plants (such as
potatos or tomatoes) expressing the oral vaccine, the re-
leased antigens are identified and swallowed by ruffled cells
(M cells) in intestinal mucosa associated with lymphoid
tissue (such as Peyer's patch), and then are transferred to lower
follicular tissue. After that, its antigen-presenting cells (APC
cells) produce the antigen on the surface of APC cell and
subsequently activate B lymphocytes with the help of Th cells.

The activated B lymphocytes, which participate in mucosal
immunity, are transferred to the mesentery lymph node and
finally develop into plasma cells. The secreted IgA in plasma
cells reaches membrane cavities through the epithelium and
combines with membrane secretion to form secretory IgA
(SIgA). Once they have been transferred to the membrane
cavity, the SIgA will combine with specific pathogens (such
as pathogenic microorganism toxin), and thereby produce
certain immune protection. Subsequently, B lymphocytes ac-
tivated in the mucosa, secrete serum type-specific antibodies
into the blood, and generate certain immune protection. The
cytokines in Th cells of the mucosal immune system also can
activate cytotoxic T lymphocyte (CTL) and elicit a strong
cellular immune response. Thus, transgenic plant vaccines
can induce mucosal immunity and also cause humoral and
cellular immunity. Studies have shown that mucosal immunity
can produce immune protection against both gastrointestinal
tract and non-gastrointestinal tract infections (Pearay et al.
2001; Zhu and Zhang 2006).

Plant expression system in plant-based vaccines

Exogenous target genes can be stably expressed and cor-
rectly assembled in plant cells via plant expression systems,
which is key to successful transgenic plant vaccine produc-
tion. Different methods of obtaining transgenic plant vac-
cines are presented in Fig 1. The current plant expression
system has the following three principal aspects, including
genome expression, chloroplast expression, and plant viral
expression system.

Plant cell genome expression system

The basic characteristic of the plant expression system is that it
is easy to operate. Recombinant protein products expressed in
plant seeds or tubers are easy to preserve and are especially
well-suited for the production of polyvalent vaccines and
poly-recombinant antibodies. Guerrero-Andrade et al. (2006)
transformed the Newcastle disease virus fusion (F) protein

Fig. 1 Different methods of acquiring transgenic plants vaccine
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gene into the maize, driven by the maize ubiquitin promoter.
Fed with kernels containing the F protein, antibody produc-
tion was induced in chickens. An exogenous target gene was
integrated into the plant genome and transgenic seeds could be
bred by traditional breeding technology, which means that
they are easily stored, and ready for replanting. Plants are
sufficiently versatile that multiple foreign genes may be stored
in the same plant through the hybridization of different trans-
genic plants.

Chloroplast expression system

By gene gun bombardment, foreign genes are introduced to
the plant chloroplasts and are likely to be integrated into
chloroplast chromosomes. Although the chloroplast trans-
formation system has only been applied to certain plants, the
ability to introduce multiple copies of a gene would improve
foreign protein expression in plants (Daniell et al. 2002).
Moreover, the rigorous maternal inheritance pattern (namely
a hereditary phenomenon controlled by the chromosomes
outside the nucleus) of chloroplast genes may avoid genetic
contamination during plant pollination and eliminate gene
silencing in the process of transformation.

Plant viral expression system

This expression system is based on infection of a plant by a
plant virus, which is competent to independently replicate,
transcribe, and translate so as to produce many copies of a
recombinant protein introduced into the plant viral genome.
The advantages of this expression system lie in rapid re-
search methods, higher yields, and smaller demands on the
planting area. By improving plant virus expression systems,
exogenous genes cannot only be expressed as soluble pro-
tein and distributed in the cytoplasm of the host plant cell,
but they also can fuse with plant virus capsid protein genes
and constantly be expressed when virus particles replicate and
translate viral proteins in the infected state. The native

cottontail rabbit papillomavirus (CRPV) L1 capsid protein
gene was expressed transgenically via Agrobacterium tume-
faciens transformation and transiently via a tobacco mosaic
virus (TMV) vector in Nicotiana spp. L1 protein was detected
in concentrated plant extracts at concentrations up to 0.4 mg/
kg in TMV-infected plants (Kohl et al. 2006). A recombinant
plant virus (CPMV-PARVO1) was inactivated by UV treat-
ment to remove the possibility of the recombinant plant virus
replication in a plant host after the manufacture of the VP2
capsid protein vaccine of canine parvovirus. The result
showed that the inactivated canine parvovirus (CPV) was able
to protect dogs from a lethal challenge with CPV, and all of the
immunized dogs elicited high titers of peptide-specific anti-
body, which neutralized CPV in vitro (Langeveld et al. 2001).
Yang et al. (2007) successfully expressed foot-and-mouth
disease VP1 protein by Bamboo Mosaic virus carrier. In
addition, other plant viruses are used for expression vectors,
such as Tomato bushy stunt virus (TBSV) and Alfalfa mosaic
virus (ALMV) (Yang et al. 2007).

Recent advances in transgenic plant vaccines

Over the past 10 years, since heavy-chain and light-chain
immunoglobulins were successfully expressed in tobacco,
and both of them were then assembled into a functioning
antibody, plants have gradually become viable expression
systems for the production of various types of antibodies.
The number of articles published every year on transgenic
plant vaccines in various databases (such as ScienceDirect,
Springerlink, Wiley InterScience and Web of science) is
shown in Fig 2. There were 835 articles in Elsevier, 841 in
Springerlink, 808 in Wiley, and 313 in Web Of Science in
2011. Figure 2 shows that from 2000 to 2011, an increasing
number of vaccines have been successfully expressed in
various transgenic plants. At present, there are dozens of
plants used for animal and human vaccines. The main im-
munogenic genes include: HBsAg gene, Escherichia coli
heat-sensitive bowel toxin B subunit (LT-B) gene, rabies

Fig. 2 Number of published
articles on transgenic plant
vaccines in recent decades
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virus glycoprotein (G protein) gene, foot-and-mouth disease
VP1 gene, rotavirus gene, and so on.

Recent research has concentrated on the application of
transgenic plant vaccines in humans and animals. Reported
transgenic plant vaccines can be divided into the following
four types: against bacteria, against viruses, against para-
sites, and immunocontraceptive vaccines.

Bacterial vaccine

The bacterial subunit vaccine products with great potential
are the heat labile toxin (LT) of enterotoxigenic E. coli B
subunit vaccine (LT-B) and the cholera toxin (CT) of Vibrio
cholerae B subunit vaccine (CT-B). Recent applications of
the two kinds of vaccines are shown in Table 1.

Enterotoxigenic strains of E. coli may produce a heat-
labile holotoxin (LT), which will cause diarrhea. Karaman et
al. (2006) engineered corn seeds to produce LT-B, the non-
toxic subunit of LT, to serve as a plant-derived vaccine to
traveler's diarrhea and as an adjuvant for co-administered
proteins. Specific IgA and IgG antibodies were detectable in
mice fed with transgenic corn. Tae-Jin Kang et al. (2003)
reported a feasibility study for producing the nontoxic LT-B
via chloroplast transformation of tobacco. The amount of
LT-B protein detected in transplastomic tobacco leaf was
approximately 2.5 % of the total soluble plant protein,
approximately 250-fold higher than in plants generated via
nuclear transformation.

Cholera is a highly epidemic diarrheal disease that con-
tinues to devastate many developing countries with poor
socio-economic conditions, where the sanitation and public
hygiene systems are rudimentary (Kaper et al. 1995).
Cholera is caused by V. cholerae and disease severity is
mediated by the potent action of the cholera toxin (CT),
which stimulates the secretion of water and electrolytes into
the intestine (Field et al. 1989). The CT has been reported as
representative of adjuvants that can induce mucosal immu-
nity efficiently (Elson 1989; McGhee et al. 1992). The
generation of non-toxic CT derivatives that retain adjuvant
activity could provide a safe alternative for the evaluation of
these toxins as mucosal adjuvants in humans and animals.
CT is composed of distinct A and B subunits. The pentame-
ric B subunit (CT-B) contains five identical polypeptides,
shows good immunogenicity, targets the glycosphingolipid
receptors on eukaryotic cell surfaces, so consequently CT-B
subunit is a well-characterized antigen against cholera. Jiang
et al. (2007) developed transgenic tomato-expressing CT-B
protein, especially in the ripening tomato fruit under the
control of the tomato fruit-specific E8 promoter. Gavage of
ripe transgenic tomato fruits induced both serum and mucosal
CT-B-specific antibodies in mice. Kim et al. (2009) fused CT-
B to an endoplasmic reticulum (ER) retention signal
(SEKDEL) and expressed the protein in carrot roots. The

produced sCT-B in transgenic carrot roots demonstrated
strong affinity for GM1-ganglioside, suggesting that the
sCT-B conserved the antigenic sites for binding and proper
folding of the pentameric sCT-B structure. The expression
level of sCT-B comprised approximately 0.48 % of total
soluble protein (TSP) in root of transgenic carrot. A synthetic
CTB was fused with a synthetic neutralizing epitope gene of
the porcine epidemic diarrhea virus (sCTB–sCOE), and the
sCTB–sCOE fusion gene was introduced into a plant expres-
sion vector under the control of the ubiquitin promoter. This
plant expression vector was transformed into lettuce (Lactuca
sativa L.) by the Agrobacterium-mediated transformation.
The expression level of CTB–COE fusion proteins reached
0.0065 % of the total soluble protein in transgenic lettuce leaf
tissues (Huy et al. 2011).

Viral vaccine

The most common applications of viral antigens in trans-
genic plants and current advances of research on the various
viral vaccines are summarized in Table 2.

Foot-and-mouth disease virus vaccine Foot-and-mouth dis-
ease (FMD) affects all domesticated cloven-hoofed animals
(such as cows, pigs, and sheep) as well as wild ruminants.
The causative foot-and-mouth disease virus (FMDV), an
aphthovirus of the Picornaviridae family, is highly conta-
gious. Thus, FMD is the most significant constraint to
international trade in live animals and animal products today
(Grubman and Baxt 2004). The FMDV structural protein
VP1 plays a key role in the immunogenicity of the virion,
which can elicit the production of specific antibodies against
a major immunogenic site located between amino acids 140
and 160 (Meleon et al. 1979; Brown 1992).

The VP1 protein has been overexpressed in Arabidopsis
thaliana, alfalfa, potato, and so on. Wigdorovitz et al.
(1999) reported the development of transgenic plants of
alfalfa expressing the structural protein VP1 of FMDV.
Mice parenterally immunized by using leaf extracts from
the transgenic plants developed a virus-specific immune
response. Subsequently, Dus Santos et al. (2002) produced
transgenic plants of alfalfa expressing the immunogenic site
between amino acid residues 135–160 of structural protein
VP1 (VP135–160) and the fused βGUS protein. After the
FMDVepitope expressed in plants was highly immunogenic
in mice, a strong anti-FMDV antibody response against a
synthetic peptide representing the region VP135–160 was
detectable. In 2005, Dus Santos et al. obtained the produc-
tion of transgenic alfalfa plants containing the genes encod-
ing the polyprotein P1 and the protease 3C of FMDV.
Parenterally immunized mice developed a strong antibody
response and were completely protected when challenged
with the virulent virus. The transgenic tomato plants were
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also used to express the structural polyprotein P1-2A and
protease 3C from FMDV. Guinea pigs immunized intramus-
cularly with foliar extracts from P1-2A3C-transgenic tomato
plants were found to develop a virus-specific antibody re-
sponse against FMDV (Pan et al. 2008). A single-chain
variable antibody fragment (scFv) recognizing FMDV coat
protein VP1 was expressed in transgenic tobacco plants.
This scFv–ELP fusion accumulated up to 0.8 % of total
soluble leaf protein in transgenic tobacco (Joensuu et al.
2009).

Hepatitis B virus vaccine Hepatitis B virus (HBV) infection
may lead to liver cirrhosis or hepatocellular carcinoma
(Michel 2002). As a retrovirus, HBV is one of the smallest
known eukaryotic DNA viruses. HBV negative strand has
four ORFs, known as the C, P, S, and X gene, which
respectively encode the four major viral proteins—core
antigen (HBeAg/ HBcAg), HBV DNA polymerase (HBV
DNA P), surface antigen (HBsAg), and X antigen (HBxAg).
HBsAg, which is an outer membrane protein encoded by S
zone of the HBV genome, is mainly related to the HBV
vaccine.

Richter et al. (2000) developed transgenic potatoes
expressing 1.1 μgg−1 HBsAg fresh tubers. By being fed three
weekly doses of transgenic potato tubers plus 10 mg cholera
toxin (CT), mice produced a primary serum antibody response
that peaked at 73 mIUml−1 3 weeks after the last dose. In
addition, transgenic potato plants have been obtained by
expressing HBsAg gene under the control of the double
promoters of both 35S RNA of cauliflower mosaic virus
(CaMV 35S) and the promoter of the patatin gene of potato
tubers (Shulga et al. 2004). Huang et al. (2005) also con-
structed pMHB and transformed tobacco plants (Nicotiana
benthamiana). The transgenic tobacco leaf extracts (with
1 μg of HBsAg) were administered to mice by intraperitoneal
injection at weeks 0, 1, and 2. The serum anti-HBsAg anti-
body titers gradually increased and at the 12th week the
immunized animals had an average titer of 1,165 mIU/ml.

Research has been reported on tomato transformation and
regeneration containing HBsAg gene (Ma et al. 2002; Carolina
and Francisco 2004; Wang and Li 2008). Our research group
successfully trans-ferred HBsAg gene into cherry tomato
(Lycopersivon esculentum Mill.) and peanut (a higher-
expressing level of 2.41 μg/g FW) by Agrobacterium- mediat-
ed transformation (Zhu et al. 2006; Zhang et al. 2005; Guan et
al. 2010).

Besides the plants noted above, an increasing number of
transgenic plant systems are in the process of development,
such as banana (Musa acuminate) (Sunil-Kumar et al. 2005;
Elkholy et al. 2009), kelp (Thallus laminariae) (Jiang et al.
2002), cherry tomatillo (Physalis ixocarpa Brot) (Gao et al.
2003), carrot (Deineko et al. 2009), and soybean (Smith et
al. 2002). Kapusta et al. (1999) took the lead in expressingT
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HBsAg in lupin (Lupinus luteus) and lettuce (L. sativa)
callus. These investigators found that the specific antibodies
were produced in mice fed with the transformed callus. The
HBV large-surface antigen gene PRS-S1S2S has also been
expressed in transgenic apples (Lou et al. 2005).

Porcine viral diarrhea disease vaccine Porcine viral diar-
rhea is a general term for some acute infectious diseases,
which produce a water-like diarrhea and are caused by porcine
transmissible gastroenteritis virus (TGEV), porcine epidemic
diarrhea virus (PEDV), or porcine rotavirus (RTV).

Porcine transmissible gastroenteritis virus (TGEV) is the
causative agent of acute diarrhea of newborn piglets, which
provokes high mortality rates in affected farms. Protective
immunity against this disease has to be developed in pregnant
sows in order to confer passive protection to the piglets
through colostrum and milk. Neutralizing antibodies against
the virus are directed mainly to glycoprotein S, and relevant
epitopes in neutralization have been mapped into the N-
terminal domain of this protein (Garwes et al. 1978; Jiménez
et al. 1986; Correa et al. 1988). Four major antigenic sites have
been described in the globular part of glycoprotein S (gS), of
which site A is considered to be immunodominant (De Diego
et al. 1992, 1994; Sánchez et al. 1990). Transgenic potato
plants were created to express the N-terminal domain of the
glycoprotein S (N-gS) from TGEV. Extracts from transgenic
potato tubers were inoculated intraperitoneally into mice, and
the vaccinated mice developed serum IgG specific for TGEV
(Gómez et al. 2000). In addition, Tuboly et al. (2000) gener-
ated three transgenic tobacco plant lines expressing the spike
(S) protein of TGEV. The results showed that antigens from all
these lines induced TGEV-specific immune responses in pigs,
and the resultant antibody titers for all three constructs were
similar.

Porcine epidemic diarrhea virus (PEDV) is an infectious,
highly contagious virus of swine, which belongs to the
Coronaviridae family (Pensaert and de Bouck 1978). PEDV
destroys villus enterocytes and causes villus atrophy within the
jejunum and ileum. It leads to enteritis in swine of all ages, and
thus is often fatal in neonatal piglets (de Bouck and Pensaert
1980). Bae et al. (2003) developed transgenic tobacco plants
that expressed the antigen protein corresponding to the neu-
tralizing epitope of PEDV spike protein. Feeding the transgen-
ic plants to mice induced both systemic and mucosal immune
responses against the antigen. By using a tobacco mosaic virus
(TMV)-based vector, the coding sequence of a core neutraliz-
ing epitope of PEDV (COE) gene was optimized based on the
modification of codon usage in tobacco plant genes. The
recombinant COE protein was up to 5.0 % of the total soluble
protein in the leaves of tobacco plants infected with the TMV-
based vector containing synthetic COE gene (Kang et al.
2004a). A fusion gene encoding the synthetic LT-B subunit
genetically fused with a synthetic neutralizing epitope of

porcine epidemic diarrhea virus (sLTB-sCOE) was introduced
into lettuce cells (L. sativa) by Agrobacterium-mediated trans-
formation methods. LTB-COE fusion protein comprised about
0.026–0.048 % of the total soluble protein in the transgenic
lettuce leaf tissues (Huy et al. 2009).

Rotavirus is the leading cause of viral gastroenteritis in
young children and animals worldwide. Rotavirus particles
contain 11 dsDNA genomic segments surrounded by three
concentric capsid protein layers: an inner layer VP2, an inter-
mediate layer VP6, and an outer layer made up of capsid
proteins VP7 and VP4 (Estes and Cohen 1989). Capsid pro-
tein VP6 is the major structural protein of rotavirus and makes
up about 50 % of virion mass (Hsu et al. 1997). VP6 has been
expressed in N. benthamiana plants either independently or as
a fusion with the potato virus X coat protein. These plant-
produced VP6 retained the ability to form trimers (O'Brien et
al. 2000). Matsumura et al. (2002) reported expression of the
major capsid protein VP6 of bovine group A rotavirus (GAR)
in transgenic potato plants. Adult BALB/c mice were immu-
nized intraperitoneally with concentrated transgenic potato
extracts emulsified in Freund's adjuvant. Sera collected after
immunization showed the anti-VP6 response. Subsequently,
murine rotavirus gene six encoding VP6 was stably inserted
into the Solanum tuberosum genome. The amount of VP6
protein in transgenic potato leaf and tuber was approximately
0.01 % of total soluble protein. Oral immunization of CD-1
mice generated measurable titers of both anti-VP6 serum IgG
and intestinal IgA antibodies (Yu and Langridge 2003).

Rabies virus vaccine Rabies virus, a rhabdovirus of the
genus Lyssavirus, remains a significant threat to human
and animal health throughout much of the world (Meslin
et al. 1994). In the design of a rabies vaccine, representation
of both the rabies virus glycoprotein (G protein) and nucle-
oprotein (N protein) antigens is desirable. The G protein is
the major antigen responsible for the induction of protective
immunity, while the N protein triggers rabies virus-specific
T cells, facilitating the production of neutralizing antibodies
and other immune mechanisms (Cox et al. 1977; Tollis
et al. 1991).

A chimeric peptide containing antigenic determinants from
rabies virus glycoprotein and nucleoprotein was cloned and
expressed in tobacco and spinach plants.Mice immunizedwith
recombinant virus were protected against challenge infection.
Three of five human volunteers responded against the peptide
antigen after ingesting infected spinach leaves (Yusibov et al.
2002). A Nicotiana tabacum cv. Xanthi cell culture was initi-
ated from a transgenic plant expressing a human anti-rabies
virus monoclonal antibody. Quantification of antibody produc-
tion in plant cell suspension culture revealed 30 μgg−1 of cell
dry weight for the highest-producing culture (0.5 mg/L), three
times higher than from the original transgenic plant (Girard et
al. 2006). Perea Arango et al. (2008) expressed a full-length
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nucleoprotein gene of rabies virus in transgenic tomato plants
and also transiently expressed it in N. benthamiana plants by
agroinfiltration. In both cases, the nucleoprotein was
expressed at high levels, 1–5 % of total soluble protein in
tomato and 45 % in N. benthamiana. In addition, Roy et al.
(2010) reported the expression of a chimeric protein compris-
ing the synthetic CT-B fused at its C-terminal with rabies
surface glycoprotein (G protein) in tobacco plants. The ap-
proximately 80.3 kDa fusion polypeptide expressed at 0.4 %
of the total soluble protein in leaves of the selected transgenic
lines.

Other viral diseases In recent years, there were other re-
combinant virus vaccines expressed in the transgenic plants,
including: Tat protein of HIV-1 vaccine produced in spinach
(Karasev et al. 2005), expression of the Newcastle disease
virus (NDV) fusion protein in transgenic maize (Guerrero-
Andrade et al. 2006), accumulation of recombinant SARS-
CoV spike protein in tobacco plant cytosol and chloroplasts
(Li et al. 2006b), Norwalk virus capsid protein expressed in
tomato plant (Zhang et al. 2006), transgenic tobacco and
potato (Mason et al. 1996), superexpression of tuberculosis
antigens in tobacco leaves (Dorokhov et al. 2007), expres-
sion of influenza A (H5N1) vaccine in barley grains for oral
bird immunization (Bruchmüller et al. 2007), and expres-
sion of EpCAM antigen in Beta vulgaris var. cicla (Swiss
chard) plants (Brodzik et al. 2008).

Malaria vaccine

A gene encoding the C-terminal region of a major surface
antigen of Plasmodium falciparum, referred to as
PfMSP119, a major vaccine candidate for malaria, was
cloned and transformed in tobacco leaves (Ghosh et al.
2002). Wang et al. (2008b) induced protective immunity
against malaria infection in transgenic tobacco plants using
Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/
5) in a mouse model of malaria infection. PyMSP4/5 protein
from the codon-optimized construct accumulated to 0.25 %
of total soluble protein. In addition, tobacco-produced
PyMSP4/5 protein was able to induce antigen-specific anti-
bodies in mice.

The plant expression vector for the truncated fragments of
SAG1 gene (t2SAG1) of Toxoplasma gondii was constructed
and transformed into tomato plants by Agrobacterium tume-
faciens under control of the both constitutively expressed
cauliflower mosaic virus (CaMV) 35S promoter and the to-
mato fruit-specific E8 promoter (Zhou et al. 2004). In addi-
tion, there are relevant studies on the expression of a His-
tagged truncated version of T. gondii dense granule 4 protein
(Gra4163-345) in tobacco leaves (Ferraro et al. 2008), the pro-
tective antigenic gene FH3 of Fasciola hepatica in alfalfa

plants (Li et al. 2003), and the ferritin gene of Schistosoma
japonicum in rape plants (Yuan et al. 2008).

Immunocontraceptive vaccine

Fertility control may provide a non-lethal, more humane al-
ternative for population control of vertebrate animals. A long-
term strategy for it is to adopt immunocontraception, namely,
that vaccination is used to induce antibodies against reproduc-
tive self-antigens, resulting in reduced fertility (Ferro 2002).
In most cases, the zona pellucida (ZP) has been used as the
vaccine antigen, which is composed of three sulfated glyco-
proteins; it can function in the fertilization of the oocyte by
providing a substrate for sperm binding (Bleil andWassarman
1980a; Munro and Pelham 1987). One of the three glycopro-
teins, ZP3, is the primary binding site for the sperm and has
been investigated as a target for immune contraception (Bleil
and Wassarman 1980b; Sacco 1979).

Marsupial-specific reproductive antigens expressed at high
levels in edible transgenic plant tissue might provide a kind of
safe, effective, and cheap oral delivery bait for immunocon-
traceptive control. As proof of concept, female possums vac-
cinated with immunocontraceptive antigens showed reduced
fertility, and possums fed with potato-expressed LT-B had
mucosal and systemic immune responses to the antigen.
This demonstrated that immunocontraception was effective
in possums and oral delivery in edible plant material might
be possible (Polkinghorne et al. 2005).

High-level expression strategies of foreign protein
in transgenic plants

In the early literature, expression levels of recombinant
antigens in transformed plants were not high. Therefore,
the main problem of transgenic plant vaccines was a high-
level expression of foreign genes in the plants. Many scien-
tists have launched research programs in order to improve
the antigen expression level and to make plant vaccines
produce effective immunological function with some signifi-
cant achievements that will be described in the following.

Promoter optimization

The choice of a suitable plant promoter is an important way
to enhance exogenous gene expression. At present, consti-
tutive promoters are usually used in plant genetic engineer-
ing; for example, CaMV 35S promoter is used for
dicotyledonous plants, and the actin promoter of rice and
ubiquitin promoter of maize are used for monocotyledonous
plants. However, constitutive promoters may cause a con-
stant and continuous expression of target genes in plant
tissues, leading to an excessive consumption of material and
energy within the cell. Thus, constitutive expressionmay result
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in the inability to effectively regulate the expression of target
genes both temporally and spatially. The consequence may be
to interrupt the intrinsic metabolic balance in the plant, which
is not conducive to the enhancement of the yield and the
quality of the transgenic plant expression of target genes.
Instead, exogenous genes should be expressed in particular
periods and specific tissues or organs, rather than with a
continuously high-expression level in receptor plants, in order
to maximize production of plant-based vaccines or other med-
ically relevant proteins. Therefore, the use of inducible or
tissue-specific promoters may effectively improve the expres-
sion level of foreign proteins in a particular period or in specific
organs. For example, tomato plants were transformed with the
gene encoding CT-B along with an endoplasmic reticulum
retention signal (SEKDEL) under the control of the CaMV
35S promoter via Agrobacterium-mediated transformation.
Both tomato leaves and fruits expressed CTB at levels up to
0.02% and 0.04% of total soluble protein, respectively (Jani et
al. 2002), but under the control of the tomato fruit-specific E8
promoter, transgenic tomato plants expressing CTB protein
were developed, with the highest amount of CTB protein being
0.081 % of total soluble protein (Jiang et al. 2007).

Codon optimization

The difference in codon usage in plants, animals, and
microbes is an issue that must be considered in any heter-
ologous protein expression system. In order to optimize
expression, the codons of foreign genes should be analyzed
and replaced with appropriate codons preferred by plants.
Codon optimization can significantly improve the expres-
sion level of the exogenous gene in plants. Mason et al.
(1998) constructed a plant-optimized synthetic gene encod-
ing LT-B for use in transgenic plants as an edible vaccine
against enterotoxigenic E. coli. Expression of the synthetic
LT-B gene in potato plants under the control of a constitu-
tive promoter yielded increased accumulation (ranging from
5-to 40-fold) of LT-B in leaves and tubers, as compared to
the bacterial LT-B gene. Dus Santos et al. (2005) trans-
formed the genes encoding the polyprotein P1 and the
protease 3C of FMDV by the codon preferred by A. thaliana
into alfalfa plants. The highest accumulation of VP1 protein
was found in transformed leaves at 0.5–1 mg/g fresh weight.
Other research has shown that plant-optimized coding
sequences can greatly enhance the expression of other bac-
terial genes in plants (Perlak et al. 1991; Adang et al. 1993).

Signal peptide utilization

The synthetic peptide in the cytoplasm and endoplasmic
reticulum can further be located on different areas of the
cell by the decision of a peptide signal sequence. The endo-
plasmic reticulum in plant cells provides an exogenous protein

with a relatively stable environment for protein maturation.
For this reason, the addition of an ER-retention signal at the C
terminus has been suggested to enhance the accumulation of
recombinant proteins in transgenic plants (Munro and Pelham
1987; Napier et al. 1998; Wandelt et al. 1992). Stoger et al.
(2000) reported that protein accumulation was irrespective of
the mRNA level, and suggested that the addition of KDEL at
C terminus resulted in the accumulation of antibodies in
plants. For example, the G protein of the rabies virus, which
contained an endoplasmic reticulum retention signal in its C
terminus, expressed in transgenic tobacco plant lines at 0.38%
of the total soluble leaf protein (Ashraf et al. 2005).

Addition of immune adjuvants

LT-B and CT-B have been shown to be effective carriers and
adjuvants for genetically linked foreign proteins (Bagdasarian
et al. 1999; Arakawa et al. 1998a; b). They can bind to
ceramide-galactose sugar receptor molecules such as GM1
ganglioside (Holmgren et al. 1975). The performances of
LTB carrier and adjuvant in animals immunized with the
LTB-antigen fusion proteins are contingent on pentamer as-
sembly. They can make their toxicity subunits (A) closely
combine on the cell surface of intestinal mucosa so that fusion
protein more easily react with gastrointestinal mucosa, thus
stimulating mucosa to produce IgA and serum IgG and
strengthening the immunity effect (Kim et al. 2007).
Therefore, LTB and CTB can be used as immune adjuvants
by fusing with antigenic determinant gene to enhance hapten
immunogenicity.

Adoption of the chloroplast transformation system

Due to the high copy number of the chloroplast genome,
chloroplast transformation can greatly improve the level of
recombinant protein in transgenic plants. Integration of an
unmodified CTB-coding sequence into chloroplast genomes
(up to 10,000 copies per cell) resulted in the accumulation of
up to 4.1 % of total soluble tobacco leaf protein as functional
oligomers (410-fold higher expression levels than that of the
unmodified LTB gene expressed via the nuclear genome)
(Daniell et al. 2001). In order to resist the fungal pathogen
Colletotrichum, that is so destructive to tobacco, the antimi-
crobial peptide MSI-99, an analog of magainin 2, was
expressed via the chloroplast genome to obtain high levels
of expression in transgenic tobacco (Nicotiana tabacum var.
Petit Havana) plants (DeGray et al. 2001). The chloroplasts
were estimated to express MSI-99 at 21.5 % to 43 % percent
of total soluble protein (TSP). At present, a variety of vaccines
(which can protect against Cholera, tetanus, anthrax, amebic
disease, rotavirus, and so on) have had a successful expression
in the plant chloroplasts (Verma and Daniell 2007). However,
without the endoplasmic reticulum and golgi apparatus, the
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synthesis of protein in chloroplasts cannot be modified by
glycosylation. Thus, chloroplasts are suitable only for express-
ing bacterium antigens and not for glycoproteins.

Safety issues and solutions for transgenic plant vaccines

The good qualities of GM plants are produced according to
human needs, and the subsequently developed transgenic
plants may create enormous economic and social benefits
for mankind. However, as new species, once they are re-
leased to the natural environment, GM plants may bring
mankind tremendous potential or real harm. In this regard,
we have had profound lessons of history, such as the famous
British Pusztai events, Cornell University butterflies event
(Losey et al. 1999), Canada “superweeds” event (Orson
2001), Mexico corn event (Dalton 2001) and China Bt
insect-resistant cotton event. All of these events are wake-
up calls for the whole human race in all fields of research
and application of GM organisms. Recently, safety prob-
lems in the environment and the role of transgenic plant
vaccines in the human diet have become the focus of
controversy.

Possible environmental safety problems

The effects of transgenic plants to non-objective
organisms The genes obtained by transformation technolo-
gy will not only be spread to nature, possibly enter into the
wild group through genetic drift, change genetic traits of the
wild population, and then possibly cause adverse effects.
Therefore, the release of genetically modified organisms
into nature may contaminate the natural gene pool, break
original ecological balance, and produce some unsuspected
impact on the ecological environment (Ma et al. 2001).
Meanwhile, beside pest and germ toxigenicity, insect or
disease resistance by transgenic plants released into the
environment may have direct or indirect negative effects
on many beneficial organisms in the environment and even
cause the death of some beneficial organisms (Zhuang and
Cao 2008).

New environmental problems

Many genetically modified varieties contain the genes
extracted from Bacillus, which may produce a kind of
protein toxic to pests. If the anti-pest GM crop is planted
for a long time in large areas, pests are likely to develop
resistance and then pass it on to their offspring. So trans-
genic plants no longer have insect-resistance ability, the
original pesticides will also no longer be effective, and
eventually more intractable super pests will produce (Chen
and Wang 2002). Meanwhile, transgenic plants released into

the environment may generate gene transfer through polli-
nation and allow some genes (such as genes of insect resis-
tance, disease resistance, herbicide or environmental
stresses tolerant) to become dominant over the related wild
species or weeds (World Health Organization. 2004). Once
obtaining adversity-resistant character of transgenic organ-
isms, these weeds will become “superweeds”, severely en-
danger normal survival and growth of other creatures, and
eventually disrupt the balance of the ecosystem.

The impacts on biodiversity Hilbeck et al. (1998) fed trans-
genic Bacillus thuringiensis variety kurstaki (Berliner) corn
plants to the European corn borer (lepidopterous target pest)
and Spodoptera littoralis (Boisduval) (lepidopterous nontar-
get pest for B. thuringiensis). Mean total immature mortality
for chrysopid larvae raised on B. thuringiensis-fed prey was
62 % compared with 37 % when raised on B. thuringiensis-
free prey. Some biologists think that in order to keep its own
stability and purity, nature's species strictly regulated the
change of genetic material and genetic drift is limited to
between the same species or allied species. A GM
organism is obtained through an artificial method of
mutual transfer between animals, plants, microbes and
even human genes, so it breaks through the traditional
concept of kingdom. GM organisms open a new door
and span the intrinsic barrier among the species, thereby
presenting many features and advantages that native
species do not possess. If such species are released into
the environment, the competitive relationship between
species will change. The original natural ecological bal-
ance will be destroyed, the intrinsic complete food chain
in ecological systems will also be damaged, and even-
tually species extinction and loss of biodiversity are all
possibilities that must be considered (Yang et al. 2002).

Possible dietary safety problems

Toxicity Food safety is a necessary prerequisite for diet, so
the safety of bioengineered food products is currently of the
greatest concern to people. The nutrient component changes
and the appearance of anti-nutritive factors in some GM
organism bodies (such as the changes of protease inhibitors
or lipoxidase) are likely to produce some adverse effects on
human health. Moreover, people know little about gene
activity and worry that the sudden change of genes will lead
to the production of some toxic substances (such as solanine
and cucurbitacin). Furthermore, the transformed genes are
not the ones of the original parent animals and plants, some
of which even come from other creatures of different genera
(including all sorts of bacteria, viruses, and organisms).
Therefore, the safety of exogenous gene expression product
is in doubt.
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Irritability The allergic substances may increase, and new
allergens will also appear in the food supply due to gene
transformation. Food anaphylaxis involves various abnor-
mal reactions of human immune system to a certain protein.
It has been discovered that peanut protein in soybean
(Glycine max), Cry 9C poisonous protein in corn and 2S
albumin in Brazil nuts may induce some people or animals'
allergic reaction (Nordlee et al. 1996).

Antibiotic resistance At present, most of the selected vectors
in genetic engineering are antibiotic-resistant marker genes.
The antibiotic resistance is introduced into the food chain
through gene transfer. Therefore, it may produce drug-
resistant bacteria or viruses within humans or animals, induce
people to develop resistance to particular kinds of antibiotics,
and eventually affect the effectiveness of antibiotic treatment
(Cheng 2002). In 2002, a human DNA residual test of GM
food was demonstrated in Britain. Seven volunteers, who
underwent operations for colonic tissues excision, ate ham-
burgers with GM soybean. In another instance, a transgenic
DNA residue was detectable inside small intestine intestinal
flora (Chen and Yuan 2008). For transgenic soybean with
marker antibiotics, it is thought that the antibiotic-containing
food makes intestinal or oral bacteria produce a kind of
resistance to antibiotics, but this has not been established.

Resolution of safety issues in transgenic organisms

Choice of biosafety marker genes Marker genes in trans-
genic plants mainly include selected genes (enrichment of
transformed cells, many of which are antibiotic-resistance
genes) and reporter genes (easily detected expression products,
such as green fluorescent protein (GFP) gene). In order to
avoid some of the potential dangers of traditional gene selec-
tion (such as genetic drift, the development of immune toler-
ance in the human body, and damage to the ecological
balance), marker genes should be eliminated or a positive
screening system should be developed. The knock-out of
marker genes has the drawbacks of low efficiency and complex
operation; the most effective method at present is to screen for
biological safety by using non-resistance marker genes.
Although the transformed cell cannot be killed, the positive
screening method may make the cell have a specific metabolic
advantage or exploit a specific material by introducing specific
genes, so as to develop vigorous growth and to achieve the
screening purpose. The safe marker genes for the positive
selection system are found to include mainly as follow: the
genes coding enzymes that catalyze special sugars (pmi and
xylA), the genes coding enzymes that interfere with amino acid
metabolism (ak and dapA), green fluorescent protein (GFP)
gene, beta–Glucuronidase (GUS) gene, ribitol operon(rtl) gene
and chlorophyllous biosynthesis enzyme gene (hemL).

Reduction of unexpected side effects and enhancement of
genetic stability Due to the characteristics of transgenic
technology, transformed plants can easily produce unexpected
side effects. The integration of foreign DNA can also affect
chromosome structures in the host plant so as to increase the
mutation rate in the plant. The molecular detection methods
used to detect such negative side effects are mainly proteomic
analysis technology (such as two-dimensional electrophoresis)
and gene expression analysis technology (such as gene chip
technology), both of which have international general “real
identity” principle as a guide to analyze the safety of transgenic
plants. It is much more difficult to analyze chromosomal
mutation in transgenic plants. However, it is remarkable that
although mutation induced by change in chromosomal struc-
ture is an unfavorable factor in the commercialization of plant
genetic engineering, it will provide the material basis for
research on the transcription mechanisms of foreign genes
and the influence of foreign genes on the genome of receptor
plants.

The technique of the exogenous gene removal According to
a report in the Beijing Agricultural Journal, after 6 years of
hard work, the laboratory research team led by Chinese
scientist Li Yi made a great breakthrough in the research
on the potential threats of transgenic plants to ecological
environment and human health (Chui and Li 2007). They
developed a technique to remove an exogenous gene and to
insert the special gene in the target plants, which was con-
trolled by a DNA regulatory fragment promoter. According
to the intention of researchers, the special gene could spon-
taneously remove the exogenous gene at a specific time or a
specific location in the plant. The pollen, sedes, and fruit of
transgenic plants no longer contain foreign genes by using
this method. Thus, a new method has been developed that
permits non-transformed plants to be produced by using
transgenic plants. This technique is expected to thoroughly
resolve safety problems of genetically modified plants for
application in food and medicine.

Other strategies In addition to the above methods, there are
other strategies, such as to improve the security manage-
ment system of genetically modified organisms, to execute
area-delimited management of production, to strengthen
import–export control of transgenic agricultural products
and to raise the level of safety consciousness of all people
to transgenic foods.

Summary and perspectives

Transgenic plant vaccines have significant advantages com-
pared with traditional vaccines. Future research should focus
on producing safe, reliable, and efficient plant vaccines as
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pharmaceutical products. The low level of current expression
systems is one of the major limitations to application of trans-
genic plants vaccines. However, recent publications show that
expression levels can be improved by the chloroplast transfor-
mation, plant breeding, or food processing technology.
Moreover, it is also been indicated that the application of
carrier protein and auxiliary proteins or adjuvants may enhance
the ability of the immune system to recognize antigens (Rigano
andWalmsley 2005). This research has enabled the production
of cheap and safe plant vaccines that can be administered orally
to prevent the spread of disease. However, there is still a long
way to go to industrialize transgenic plant vaccines. Especially
some European countries continue to resist the use of trans-
genic plants, which poses difficulties for the development of
transgenic plant vaccines. Consequently, much vaccine re-
search is still in the experimental stage. Therefore, in order to
promote the rapid development of transgenic plant vaccines,
technological innovation should be intensified, and at the same
time, the public should be informed about the advantages of
transgenic plants to remove the fear. In 2006, the United States
Department of Agriculture (USDA) approved the commercial-
ization of transgenic plants vaccine against Newcastle disease.
Although the vaccine has not yet reached the market, there is
no doubt that this is a successful landmark example for trans-
genic plant vaccines. It is hoped that this example will play a
significant role in promoting the development of other trans-
genic plant vaccines. With the establishment and optimization
of GM technologies and corresponding means of detection,
transgenic plant vaccines and antibodies have the prospect for
vast applications in industrialized production.
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