ERRATUM ## Erratum to: Development and characterization of DehaloR^2, a novel anaerobic microbial consortium performing rapid dechlorination of TCE to ethene Michal Ziv-El·Anca G. Delgado·Ying Yao· Dae-Wook Kang·Katherine G. Nelson· Rolf U. Halden·Rosa Krajmalnik-Brown Published online: 24 May 2012 © Springer-Verlag 2012 Erratum to: Appl Microbiol Biotechnol DOI 10.1007/s00253-011-3388-y Table 2 of the original publication contained errors. The corrected values (highlighted in bold type face in the updated Table below) show that the newly reported DehaloR^2 consortium and the cells of *Dehalococcoides* contained therein, displayed transformation activities comparable to those of the "Unnamed" culture in Table 2, whereas transformation activities tabulated for the SDC-9 consortium were ~3-4 times higher than those of DehaloR^2. Correction of the values does not change any of the interpretations provided in the study. The online version of the original article can be found at http://dx.doi.org/ 10.1007/s00253-011-3388-y. M. Ziv-El·A. G. Delgado·Y. Yao·D.-W. Kang·K. G. Nelson·R. U. Halden·R. Krajmalnik-Brown (⋈) Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, PO Box 875001, Tempe, AZ 85287-5001, USA e-mail: dr.rosy@asu.edu **Table 2** Comparison of maximum chlorinated ethene turnover rates $(\Delta C \Delta t^{-1})_{max}$ to ethene and the corresponding concentration of *Dehalococcoides* (X_{Dhc}), for select chlorinated ethene mixed microbial communities in batch serum bottles | Culture | $(\Delta C \ \Delta t^{-1})_{\text{max}} \ [\text{mM Cl}^- \ \text{d}^{-1}]$ | X_{Dhc} [cells L^{-1}] | $(\Delta C \ \Delta t^{-1})_{\rm max} \ {\rm X_{Dhc}}^{-1}$ [mmol Cl ⁻ cell ⁻¹ d ⁻¹] | |----------------------|--|--------------------------------|--| | DehaloR^2 | 0.92 ± 0.1 (TCE to 90 % ethene) | $1.54 \pm 0.27 \times 10^{11}$ | $6.0 \pm 0.5 \times 10^{-12}$ | | | 0.75 ± 0.1 (TCE to 100 % ethene) | $1.54 \pm 0.27 \times 10^{11}$ | $4.9 \pm 0.4 \times 10^{-12}$ | | SDC-9 ^a | 2.9 (PCE) ⁻ | 1.4×10^{11} | 2.1×10^{-11} | | Unnamed ^b | 0.96 (PCE) | _ | _ | | VS ^c | 0.31 (VC) | 4.0×10^{11} | 7.8×10^{-13} | | KB1 ^d | 0.16 (TCE) | 8×10^{10} | _ | | ANAS | 0.006 ^e (TCE), 0.05 ^f (TCE) | $1.0 \pm 0.29 \times 10^{10e}$ | 6×10^{-13} | | BDI^g | 0.03 (TCE) | 1×10^{11} | _ | The turnover rate per *Dehalococcoides* cell was only calculated when values for $(\Delta C \ \Delta t^{-1})_{max}$ and X_{Dhc} were available from the same source and where data were from the stationary phase $^{^{\}rm a}$ Vainberg et al. (2009), ($\Delta C \; \Delta t^{-1} \,)_{\rm max}$ was calculated from Fig. 4 and $\rm X_{Dhc}$ from Table 1 ^b Xiu et al. (2010) ^c Cupples et al. (2004) ^d Haest et al. (2010), ($\Delta C \Delta t^{-1}$)_{max} and X_{Dhc} were calculated from Fig. 2, and X_{Dhc} was the final concentration of cells $^{^{\}rm e}$ Freeborn et al. (2005), ($\Delta C \ \Delta t^{-1})_{\rm max}$ was from Fig. 1 and $X_{\rm Dhc}$ from Table 3 ^fRichardson et al. (2002), calculated assuming 200 μmoles TCE/bottle were reduced in 10 days ^g Amos et al. (2008), $(\Delta C \Delta t^{-1})_{max}$ was calculated from Fig. 2 and X_{Dhc} was the final concentration of cells in Fig. 1