Skip to main content

Advertisement

Log in

Mitsuaria chitosanase with unrevealed important amino acid residues: characterization and enhanced production in Pichia pastoris

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A chitosan plate assay was employed to screen for chitosanase-producing bacterial strains and isolate 141 was found to exhibit high activity. Characterization of this isolate revealed that it belonged to Mitsuaria (designated as Mitsuaria sp. 141). The encoded chitosanase (choA) gene was then cloned by PCR and the deduced amino acid sequence showed 98% identity to a formerly described Mitsuaria chitosanitabida 3001 ChoA (McChoA). Surprisingly, the ChoA encoded by Mitsuaria sp. 141 (MsChoA) appeared to have a much higher optimum temperature compared to McChoA. Site-directed mutagenesis was then employed to generate five MschoA mutant genes encoding MsChoA K204Q, R216K, T222N, R216K/T222N, or K204Q/R216K/T222N. All the ChoA mutants exhibited a much lower specific activity and a lower optimum temperature. The results confirmed that the substitution of three non-conserved amino acids accounts for the major reduction of the enzyme activity in MsChoA. Furthermore, the MschoA gene was cloned for over-expression in Pichia pastoris after coding sequence optimization. One of the P. pastoris transformants with MutS phenotype was found to produce 1,480.2 ± 340.9 U ChoA mL−1 of cell culture by high-cell-density fermentation. This represents the highest yield of recombinant ChoA production that has ever been reported thus far. The recombinant P. pastoris strain should therefore be well suited for industrial-scale production of chitosanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ando A, Saito A, Arai S, Usuda S, Furuno M, Kaneko N, Shida O, Nagata Y (2008) Molecular characterization of a novel family-46 chitosanase from Pseudomonas sp. A-01. Biosci Biotechnol Biochem 72:2074–2081

    Article  CAS  Google Scholar 

  • Amakata D, Matsuo Y, Shimono K, Park JK, Yun CS, Matsuda H, Yokota A, Kawamukai M (2005) Mitsuaria chitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the 'Betaproteobacteria'. Int J Syst Evol Microbiol 55(Pt 5):1927–1932

    Article  CAS  Google Scholar 

  • Boucher I, Fukamizo T, Honda Y, Willick GE, Neugebauer WA, Brzezinski R (1995) Site-directed mutagenesis of evolutionary conserved carboxylic amino acids in the chitosanase from Streptomyces sp. N174 reveals two residues essential for catalysis. J Biol Chem 270:31077–31082

    Article  CAS  Google Scholar 

  • Buckholz RG, Gleeson MA (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology (N Y) 9:1067–1072

    Article  CAS  Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–38

    Article  CAS  Google Scholar 

  • Fukamizo T, Amano S, Yamaguchi K, Yoshikawa T, Katsumi T, Saito J, Suzuki M, Miki K, Nagata Y, Ando A (2005) Bacillus circulans MH-K1 chitosanase: amino acid residues responsible for substrate binding. J Biochem 138:563–569

    Article  CAS  Google Scholar 

  • Fukamizo T, Juffer AH, Vogel HJ, Honda Y, Tremblay H, Boucher I, Neugebauer WA, Brzezinski R (2000) Theoretical calculation of pKa reveals an important role of Arg205 in the activity and stability of Streptomyces sp. N174 chitosanase. J Biol Chem 275:25633–25640

    Article  CAS  Google Scholar 

  • Fukuda T, Isogawa D, Takagi M, Kato-Murai M, Kimoto H, Kusaoke H, Ueda M, Suye S (2007) Yeast cell-surface expression of chitosanase from Paenibacillus fukuinensis. Biosci Biotechnol Biochem 71:2845–2847

    Article  CAS  Google Scholar 

  • Harish Prashanth KV, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Tech 18:117–131

    Article  Google Scholar 

  • Johnsen MG, Hansen OC, Stougaard P (2010) Isolation, characterization and heterologous expression of a novel chitosanase from Janthinobacterium sp. strain 4239. Microb Cell Fact 9:5

    Article  Google Scholar 

  • Li S, Chen L, Wang C, Xia W (2008) Expression, purification and characterization of endo-type chitosanase of Aspergillus sp. CJ22-326 from Escherichia coli. Carbohydr Res 343:3001–3004

    Article  CAS  Google Scholar 

  • Liu H, Bao X (2009) Overexpression of the chitosanase gene in Fusarium solani via Agrobacterium tumefaciens-mediated transformation. Curr Microbiol 58:279–282

    Article  CAS  Google Scholar 

  • Marcotte EM, Monzingo AF, Ernst SR, Brzezinski R, Robertus JD (1996) X-ray structure of an anti-fungal chitosanase from Streptomyces N174. Nat Struct Biol 3:155–162

    Article  CAS  Google Scholar 

  • Marshall RD (1974) The nature and metabolism of the carbohydrate–peptide linkages of glycoproteins. Biochem Soc Symp 40:17–26

    CAS  Google Scholar 

  • Park JK, Shimono K, Ochiai N, Shigeru K, Kurita M, Ohta Y, Tanaka K, Matsuda H, Kawamukai M (1999) Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. J Bacteriol 181:6642–6649

    CAS  Google Scholar 

  • Rhoades J, Manderson K, Wells A, Hotchkiss AT Jr, Gibson GR, Formentin K, Beer M, Rastall RA (2008) Oligosaccharide-mediated inhibition of the adhesion of pathogenic Escherichia coli strains to human gut epithelial cells in vitro. J Food Prot 71:2272–2277

    CAS  Google Scholar 

  • Saito J, Kita A, Higuchi Y, Nagata Y, Ando A, Miki K (1999) Crystal structure of chitosanase from Bacillus circulans MH-K1 at 1.6-A resolution and its substrate recognition mechanism. J Biol Chem 274:30818–30825

    Article  CAS  Google Scholar 

  • Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (N Y) 12:181–184

    Article  CAS  Google Scholar 

  • Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ (2009) Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol 47:1864–1871

    Article  CAS  Google Scholar 

  • Shimono K, Matsuda H, Kawamukai M (2002) Functional expression of chitinase and chitosanase, and their effects on morphologies in the yeast Schizosaccharomyces pombe. Biosci Biotechnol Biochem 66:1143–1147

    Article  CAS  Google Scholar 

  • Shimosaka M, Nogawa M, Wang X, Kumehara M, Okazaki M (1995) Production of two chitosanases from a chitosan-assimilating bacterium, Acinetobacter sp. strain CHB101. Appl Environ Microbiol 61:438–442

    CAS  Google Scholar 

  • Tremblay H, Blanchard J, Brzezinski R (2000) A common molecular signature unifies the chitosanases belonging to families 46 and 80 of glycoside hydrolases. Can J Microbiol 46:952–955

    Article  CAS  Google Scholar 

  • Wang J, Zhou W, Yuan H, Wang Y (2008a) Characterization of a novel fungal chitosanase Csn2 from Gongronella sp. JG. Carbohydr Res 343:2583–2588

    Article  CAS  Google Scholar 

  • Wang SL, Peng JH, Liang TW, Liu KC (2008b) Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr Res 343:1316–1323

    Article  CAS  Google Scholar 

  • Wang Y, Zhou P, Yu J, Pan X, Wang P, Lan W, Tao S (2007) Antimicrobial effect of chitooligosaccharides produced by chitosanase from Pseudomonas CUY8. Asia Pac J Clin Nutr 16(Suppl 1):174–177

    CAS  Google Scholar 

  • Wilson KH, Blitchington RB, Greene RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28:1942–1946

    CAS  Google Scholar 

  • Yoon HG, Kim HY, Lim YH, Kim HK, Shin DH, Hong BS, Cho HY (2000) Thermostable chitosanase from Bacillus sp. strain CK4: cloning and expression of the gene and characterization of the enzyme. Appl Environ Microbiol 66:3727–3734

    Article  CAS  Google Scholar 

  • Yun C, Amakata D, Matsuo Y, Matsuda H, Kawamukai M (2005) New chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida. Appl Environ Microbiol 71:5138–5144

    Article  CAS  Google Scholar 

  • Yun C, Matsuda H, Kawamukai M (2006) Directed evolution to enhance secretion efficiency and thermostability of chitosanase from Mitsuaria chitosanitabida 3001. Biosci Biotechnol Biochem 70:559–563

    Article  CAS  Google Scholar 

  • Zhang J, Sun Y (2007) Molecular cloning, expression and characterization of a chitosanase from Microbacterium sp. Biotechnol Lett 29:1221–1225

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No. 31100050 and No. 31100096), the National Fund for Talent Training in Basic Science (J1103510) and the National Basic Research Program of China (2009cb724700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Ge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Fig. S1. Coding sequence optimization of MschoA gene. a Coding sequence alignment of original (ori) and optimized (opt) MschoA genes, the signal peptide coding sequence was deleted. b Comparison of the average GC-content between original (upper) and optimized (lower) MschoA genes. Fig. S2. Alignments of Mitsuaria choA genes and their encoded enzymes. a Alignment of the MschoA and McchoA genes. b Alignment of the MsChoA and McChoA enzymes. The catalytic region with conserved amino acid residues is indicated (DOC 1486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, N., Xu, W., Wang, F. et al. Mitsuaria chitosanase with unrevealed important amino acid residues: characterization and enhanced production in Pichia pastoris . Appl Microbiol Biotechnol 97, 171–179 (2013). https://doi.org/10.1007/s00253-012-3901-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3901-y

Keywords

Navigation