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Abstract Enzymatic degradation of plant polysaccharides
has many industrial applications, such as within the paper,
food, and feed industry and for sustainable production of
fuels and chemicals. Cellulose, hemicelluloses, and pectins
are the main components of plant cell wall polysaccharides.
These polysaccharides are often tightly packed, contain
many different sugar residues, and are branched with a
diversity of structures. To enable efficient degradation of
these polysaccharides, fungi produce an extensive set of
carbohydrate-active enzymes. The variety of the enzyme set
differs between fungi and often corresponds to the require-
ments of its habitat. Carbohydrate-active enzymes can be
organized in different families based on the amino acid
sequence of the structurally related catalytic modules.
Fungal enzymes involved in plant polysaccharide degrada-
tion are assigned to at least 35 glycoside hydrolase families,
three carbohydrate esterase families and six polysaccharide
lyase families. This mini-review will discuss the enzymes
needed for complete degradation of plant polysaccharides
and will give an overview of the latest developments
concerning fungal carbohydrate-active enzymes and their
corresponding families.
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Introduction

Plant polysaccharides have applications in many industrial
sectors, such as biofuel, pulp and paper, and food and feed.

Cellulose, hemicelluloses, and pectin are the main compo-
nents of plant cell walls representing up to 70% of the
biomass (Jorgensen et al. 2007). Of the three, cellulose is
the least complex polymer with a linear structure of β-1,4-
linked D-glucose residues. The long glucose chains are
tightly bundled together in microfibrils and are non-
covalently linked together by hemicelluloses (Kolpak and
Blackwell 1976; Carpita and Gibeaut 1993).

Hemicelluloses are classified according to the main
sugar in the backbone of the polymer, i.e., xylan (β-1,4-
linked D-xylose), mannan (β-1,4-linked D-mannose), or
xyloglucan (β-1,4-linked D-glucose). The backbone of
hemicelluloses has many branches composed of monomers
such as D-galactose, D-xylose, L-arabinose, and D-glucuronic
acid. The precise composition of hemicellulose is strongly
dependent on the plant species and tissue (Scheller and
Ulvskov 2010). For instance, hard wood xylans often have
D-glucuronic acid attached to their backbone, whereas L-
arabinose is the most common branching residue in cereal
xylans (de Vries and Visser 2001). Moreover, hemicelluloses
are often acetylated and to a lesser extent ester-linked with
feruloyl or p-coumaroyl residues (Ebringerova et al. 1990;
Xu et al. 2010).

Pectin is less prominently present in most plant biomass
compared to cellulose and hemicellulose. However, some
plant biomass types (e.g., citrus peels) are very rich in
pectin (Angel Siles Lopez et al. 2010; Ridley et al. 2001;
Grohmann and Bothast 1994). The backbone of pectin
consists mainly of alpha-1,4-linked D-galacturonic acid
residues that can be methyl-esterified or substituted with
acetyl groups. Pectins are classified in three general groups,
homogalacturonan (linear polymer), xylogalacturonan
(branched by β-1,3-linked D-xylose), and rhamnogalactur-
onan (Ridley et al. 2001; Wong 2008; Caffall and Mohnen
2009). The latter polysaccharide is the most complex pectin
structure. Its backbone consists of alternating L-rhamnose
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and D-galacturonic acid residues, while branches with β-
1,4-linked D-galactose and different α-linked L-arabinose
residues are connected to the L-rhamnose residues (Ridley
et al. 2001; Wong 2008).

In nature, fungi play a central role in the degradation of
plant biomass. Plant-biomass-degrading fungi produce an
extensive set of carbohydrate-active enzymes specifically
dedicated to degrade plant polysaccharides. However, these
sets differ between fungal species. For instance, Tricho-
derma reesei has a highly efficient set of enzymes involved
in cellulose degradation (Martinez et al. 2008; Kubicek et
al. 2011), while Aspergillus species produce many enzymes
to degrade pectin (Martens-Uzunova and Schaap 2009).
The industrial importance of polysaccharide-degrading
enzymes and the availability of many fungal genomes have
strongly deepened our understanding of fungal biodiversity
with respect to plant cell wall degradation. This mini-
review will give an overview of the latest developments
and insights into fungal enzymes involved in plant
polysaccharide degradation.

Dedicated fungal toolboxes for the degradation
of specific plant polysaccharides

Carbohydrate-active enzymes can be organized in different
families based on amino acid sequence of the structurally
related catalytic modules (www.cazy.org) (Cantarel et al.
2009; Henrissat 1991). Fungal enzymes involved in plant
polysaccharide degradation are assigned to at least 35
glycoside hydrolase (GH) families, three carbohydrate
esterase (CE) families, and six polysaccharide lyase (PL)
families (Battaglia et al. 2011; Coutinho et al. 2009). Even
though enzymes within the same family share sequence
similarity, some families can contain multiple activities. For
example, GH5 contains many catalytic activities, including
exoglucanases, endoglucanases, and endomannanases (Dias
et al. 2004). In addition, a specific enzyme activity can be
present in several CAZy families. This is important for
efficient degradation of plant polysaccharides as enzymes
of each family have often complementary substrate speci-
ficity. For instance, endoxylanases in GH10 have lower
substrate specificity and can degrade xylan backbones with
many substitutions, while GH11 endoxylanases have higher
substrate specificity with preference for unsubstituted xylan
chains (Pollet et al. 2010; Biely et al. 1997).

Annotation of carbohydrate-active enzymes has been
done for many fungal genomes (Pel et al. 2007; Espagne et
al. 2008; Battaglia et al. 2011; Ohm et al. 2010; Martinez et
al. 2004; Martinez et al. 2008). As an illustration, Table 1
shows a comparison of carbohydrate-active enzymes
involved in plant polysaccharide degradation of 13 fungal
genomes, including industrial fungi such as Aspergillus

oryzae, Aspergillus niger, Penicillium chrysogenum, T.
reesei, and Saccharomyces cerevisiae. Most apparent from
this table is the correlation between habitat and the amount
of carbohydrate-active enzymes. For example, the Saccha-
romycete S. cerevisiae does not require extracellular
enzymes for polysaccharide degradation to survive in its
natural niches like surfaces of rotting fruits (Liti et al. 2009;
Cherry et al. 1997). This fungus has therefore hardly any
carbohydrate-active enzymes. Another Saccharomycete
Pichia stipitis can be found, among other places, in the
guts of termites that inhabit and degrade white-rotted
hardwood (Jeffries et al. 2007). The genome of this fungus
contains only a few β-glucosidases and β-mannosidases to
degrade glucan and mannan oligosaccharides, which are
present in the termite guts (Jeffries et al. 2007). In contrast
to both Saccharomycetes, the filamentous fungi in Table 1
have a lifestyle involving degradation of plant biomass and
feeding from plant polysaccharides. The genomes of these
fungi therefore contain many more genes encoding
carbohydrate-active enzymes. For example, the saprobe A.
niger has 178 putative GH enzymes, nine putative CE
enzymes, and 13 putative PL enzymes involved in plant
biomass degradation (Coutinho et al. 2009). However, there
is also variation within this group of fungi. For instance,
Aspergilli have a large number of enzymes involved in
pectin degradation, in contrast to the cellulose-degrading
specialist T. reesei and the lignin-degrader Phanerochaete
chrysosporium. The Zygomycete Rhizopus oryzae has a
different set of carbohydrate-active enzymes compared to
the other filamentous fungi (Battaglia et al. 2011). For
instance, the difficulty of this fungus to grow on xylan
substrates is reflected in its absence of genes required for
xylan degradation. This fungus has therefore also been
described as a fast grower on easily accessible and
digestible substrates (Richardson 2009).

To have a better impression of the latest developments
regarding fungal carbohydrate-active enzymes, the follow-
ing sections will discuss the enzymes needed for each of the
main polysaccharides: cellulose, hemicellulose, and pectin.
Furthermore, as an illustration of a fungal enzyme set, each
section will show the genes encoding characterized and
putative polysaccharide-degrading enzymes of A. niger.

Cellulose degradation

Cellulose degradation requires three classes of enzymes, β-
1,4-endoglucanases (EGL), exoglucanases/cellobiohydrolases
(CBH), and β-glucosidase (BGL), which are divided over
eight GH families (Fig. 1; Vlasenko et al. 2010; de Vries et al.
2011). For example, A. niger has five EGLs within GH
families 5 and 12, four CBHs in families 6 and 7, and 13
BGLs in families 1 and 3 (Table 2). In comparison, one of the
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most efficient cellulose-degrading fungi T. reesei has five
characterized EGLs within GH families 5, 7, 12, and 45, two
highly expressed CBHs in families 6 and 7, and two
characterized BGLs in families 1 and 3 (Martinez et al.
2008; Kubicek et al. 2011). Although T. reesei does not have
the biggest number of cellulases, its set of enzymes is very
efficient in breaking down cellulose by acting synergistically
(Ward et al. 1993). The family numbers are also used in the
nomenclature of hydrolytic enzymes (Henrissat et al. 1998).
For example, the first three letters of endoglucanase Cel5A of
T. reesei refer to its substrate cellulose, the number to
glycoside hydrolase family 5 and the last capital letter
indicates that this was the first enzyme reported of this
family with this activity. This review will mainly refer to
the original functionally based nomenclature. We will
therefore use for instance EGII instead of Cel5A, based
on the consideration that these names were mainly used
in database depositions and give a clearer indication of
function.

EGI (GH7) and EGII (GH5) are the most abundantly
produced of the five EGLs of T. reesei (Foreman et al.
2003; Vlasenko et al. 2010). Both enzymes have a
carbohydrate-binding module which greatly enhances the
efficiency in degradation of cellulose microfibrils by binding
to cellulose (Beckham et al. 2010; Guillen et al. 2010). EGIII,
from GH12, is expressed at a lower level than EGI and EGII,
but has a broad activity against cellulose, β-1,3-1,4-glucan,
xyloglucan, and xylan (Sprey and Bochem 1993; Eriksson et
al. 2002). Two proteins from GH61 were expressed in the
presence of cellulose and activity has been measured
against β-glucan (Saloheimo et al. 1997; Foreman et al.
2003). However, the enzymes within GH61 have recently
shown not to be glycoside hydrolases (Harris et al. 2010).
Although they are involved in improving the efficiency of
degrading tightly packed cellulose microfibrils, the precise
function of GH61 enzymes is still unknown (Harris et al.
2010; Vaaje-Kolstad et al. 2010).

The two highly expressed CBHs of T. reesei, CBHI and
CBHII, belong to families 7 and 6, respectively. These are
considered to work synergistically and have preference for
the reducing or non-reducing end, respectively, of the
cellulose chains (Nutt et al. 1998). CBHs are also
considered to be important for the hydrolysis of the
crystalline parts of cellulose (Liu et al. 2011). These CBHs
of T. reesei are highly sensitive to product inhibition, in
particular by cellobiose, which might explain the need for a
high amount of CBHs in an effective fungal cellulase
enzyme mix (Bezerra and Dias 2005; Holtzapple et al.
1990; Kristensen et al. 2009).

After endo- and exo-cleaving of cellulose, BGLs
belonging to GH families 1 and 3 degrade the remaining
oligosaccharides to monomeric glucose. BGLs are a group
with very diverse properties and cellular location, althoughTa
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most BGLs belong to GH3 and have a similar retaining
mechanism (Decker et al. 2001; Saloheimo et al. 2002).
The two known BGLs of T. reesei, BGI and BGII, are
produced at low levels (Reczey et al. 1998) and subject to
strong product inhibition (Chen et al. 1992). These
characteristics hinder the function of T. reesei for extensive
in vitro saccharification of cellulose. Therefore, in industrial
applications, T. reesei cellulase mixtures are often supple-
mented with BGLs from Aspergilli, which are highly
expressed and more glucose tolerant (Decker et al. 2000;
Reczey et al. 1998; Riou et al. 1998). Another strategy to
convert cellulose into a sustainable product is to express
BGLs in the fermentation host like S. cerevisiae (Li et al.
2010; Ha et al. 2011). This way, oligosaccharides like
cellobiose are directly fermented into fuels or chemicals.

Hemicellulose degradation

Hemicellulose, the second most abundant plant polysac-
charide, is a group of complex structures composed of
different residues with three kinds of backbones and many
different branches (Fig. 2). The three backbones of the
corresponding group of hemicelluloses are hydrolysed by a
specific set of dedicated carbohydrate-active enzymes: β-1,4-
endoxylanase and β-1,4-xylosidase for xylan, xyloglucan-
active β-1,4-endoglucanase and β-1,4-glucosidase for xylo-
glucan, and β-1,4-endomannanase and β-1,4-mannosidase
for (galacto-) mannan (Table 3) (de Vries and Visser 2001).

The fungal β-1,4-endoxylanases belong to GH families
10 and 11 (Polizeli et al. 2005). Similar to enzymes within
families GH1, GH2, and GH5, endoxylanases of GH10
have a TIM-barrel fold at their catalytic domain in contrast
to GH11 which has a β-jelly roll structure at its catalytic
domain (Henrissat and Bairoch 1993; Pollet et al. 2010). As
a consequence, the two groups of endoxylanases differ from
each other in substrate specificity (Biely et al. 1997). GH10
endoxylanases have in general a broader substrate specificity
then endoxylanases of family GH11. Specifically, GH10
enzymes not only degrade linear chains of 1,4-linked D-
xylose residues, but also xylan backbones with a high degree
of substitutions and smaller xylo-oligosaccharides (Biely et
al. 1997; Vardakou et al. 2003; Pollet et al. 2010). GH10
endoxylanases are therefore important for the complete
degradation of substituted xylans. Although, in principal,
less accessory enzymes are required with a higher amount of
GH10 endoxylanases, fungal genomes have no clear
correlation between the amount of GH10 endoxylanases
and number of accessory enzymes.

The released xylo-oligosaccharides are degraded by β-
xylosidases. Most fungal β-xylosidases belong to GH3
(Mozolowski and Connerton 2009), but several putative β-
xylosidases are assigned to GH43 (e.g., in Penicillium herquei
and A. oryzae (Ito et al. 2003; Machida et al. 2005)). GH3 is a
conserved family containing mainly BGLs. As shown in T.
reesei and bacteria, β-xylosidases of GH3 contain the
conserved Asp-311 residue but miss the other active-site Asp-
120 residue of β-glucosidases, which might explain the

Table 2 Genes encoding characterized and putative enzymes of Aspergillus niger CBS513.88 involved in cellulose degradation (Coutinho
et al. 2009)

Enzyme class Code CAZy families Genes of characterized and putative enzymes Reference

β-1,4-endoglucanase EGL GH5 An07g08950 (eglB), An01g11670, An16g06800 (van Peij et al. 1998)

GH7 & GH45 –

GH12 An14g02670 (eglA), An01g03340, An03g05380 (van Peij et al. 1998)

Cellobiohydrolase CBH GH6 An08g01760, An12g02220

GH7 An07g09330 (cbhA), An01g11660 (cbhB) (Gielkens et al. 1999)

β-1,4-glucosidase BGL GH1 An11g02100, An04g03170, An03g03740, An02g08600

GH3 An18g03570 (bgl1), An07g09760, An08g08240,
An11g00200, An14g01770, An17g00520,
An03g05330, An06g02040, An15g01890,
An11g06090, An15g04800

(Dan et al. 2000; Pel et al. 2007)

The genes with names between brackets are biochemically characterized and their references are given in the last column

Fig. 1 Schematic structure
of cellulose with cellulolytic
enzymes. BGL β-glucosidase,
CBH cellobiohydrolase, EGL
β-1,4-endoglucanase
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discrimination betweenβ-xylosidases orβ-glucosidases within
this family (Margolles-Clark et al. 1996; Dodd et al. 2010).

Xyloglucan-active endoglucanases, also referred to as
xyloglucanases, belong to GH families 12 and 74 (Grishutin
et al. 2004). The main difference between enzymes of GH12
and GH74 is their retaining and inverting mechanism,
respectively (Gilbert et al. 2008). The specific modes of
action of the different xyloglucanases were recently eluci-
dated (Desmet et al. 2007; Powlowski et al. 2009; Yaoi et al.
2009; Master et al. 2008). For instance, in contrary to the
GH74 xyloglucanase from T. reesei, the GH12 enzyme from
A. niger does not cleave at branched glucose residues and

prefers xylogluco-oligosaccharides containing more than six
glucose residues with, at least, one non-branched glucose
residue (Master et al. 2008; Desmet et al. 2007).

Endomannanases, involved in the degradation of mannan
polysaccharides, belong to GH families 5 and 26. However,
fungal endomannanases are predominately present in GH5.
The GH5 endomannanases from A. niger and T. reesei both
show substrate specificity towards manno-oligosaccharides
with more than three D-mannose residues (Tenkanen et al.
1997; Do et al. 2009). Like many other fungal carbohydrate-
active enzymes, some endomannanases have a carbohydrate-
binding module (mainly CBM1) which promotes the

Fig. 2 a–c Schematic structure
of three hemicelluloses, xylan,
galacto(gluco)mannan, and xylo-
glucan, with hemicellulolytic
enzymes. ABF α-
arabinofuranosidase, AFC
α-fucosidase, AGL α-1,4-
galactosidase, AGU α-
glucuronidase, AXE acetyl
(xylan) esterase, AXH arabinoxy-
lan α-arabinofuranohydrolase,
AXL α-xylosidase, BXL β-1,4-
xylosidase, FAE feruloyl esterase,
LAC β-1,4-galactosidase, MAN
β-1,4-endomannanase, MND
β-1,4-mannosidase, XEG
xyloglucan-active β-1,4-
endoglucanase, XLN β-1,
4-endoxylanase

Table 3 Genes encoding characterized and putative enzymes of Aspergillus niger CBS513.88 involved in the degradation of the three
hemicellulose backbones (Coutinho et al. 2009)

Enzyme class Code CAZy families Genes of characterized and putative enzymes Reference

Xyloglucan-active XEG GH12 An14g02670 (eglA), An01g03340, An03g05380 (van Peij et al. 1998)

β-1,4-endoglucanase GH74 An01g01870 (eglC) (Hasper et al. 2002)

β-1,4-endoxylanase XLN GH10 An03g00940 (xynA) (Krengel and Dijkstra 1996)

GH11 An01g00780 (xynB), An01g14600, An14g07390,
An15g04550

(Levasseur et al. 2005)

β-1,4-xylosidase BXL GH3 An01g09960 (xynD), An17g00300 (van Peij et al. 1997)

GH43 An11g03120, An02g00140, An08g10780, An08g01900

β-1,4-endomannanase MAN GH5 An05g01320 (manA) (Ademark et al. 1998)

GH26 An15g07760

β-1,4-mannosidase MND GH2 An11g06540 (mndA), An12g01850, An01g06630 (Ademark et al. 2001)

The genes with names between brackets are biochemically characterized and their references are given in the last column
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association of the enzyme with the substrate (Herve et al.
2010; Pham et al. 2010; Boraston et al. 2004). The
released mannobiose and mannotriose are further degraded by
β-1,4-mannosidases belonging to GH family 2 (Ademark et
al. 2001).

To completely degrade hemicellulose, all substitutions on
the hemicellulose backbones have to be released. This
requires at least nine different enzyme activities divided over
at least 12 GH families and four CE families (Table 4).

L-Arabinose, a common residue in hemicellulose, is
cleaved from arabinose-substituted xyloglucan and (arabino-)
xylan by α-arabinofuranosidases and arabinoxylan arabino-
furanohydrolases. Fungal α-arabinofuranosidases are mainly
found in GH families 51 and 54, although some bifunctional
enzymes from GH3 and GH43 were described to have α-
arabinofuranosidase activity (Saha 2000; Ravanal et al.
2010). The difference in substrate specificity between
GH51 and GH54 enzymes is illustrated by the two main
arabinofuranosidases of A. niger. AbfA (GH51) releases L-
arabinose from arabinan and sugar beet pulp, while AbfB
(GH54) also releases L-arabinose from xylan (de Vries and
Visser 2001). Arabinofuranosidases within GH54 are also
described to have a carbohydrate-binding module (CBM 42)
with specific binding to arabinofuranose side chains of
hemicellulose (Miyanaga et al. 2004; Miyanaga et al. 2006).
The arabinoxylan arabinofuranohydrolases from GH62 act
specifically against the α-1,2- or α-1,3-linkage of the L-
arabinose residues of arabinoxylan (Verbruggen et al. 1998),
but are also sensitive to the substitutions of adjacent D-

xylose residues. For instance, AxhA from A. niger is not
able to release arabinobiose from xylan or substituted L-
arabinose from D-xylose residues adjacent to D-glucuronic
acid residues (Verbruggen et al. 1998; Sakamoto et al. 2011).

D-Xylose residues with α-linkages are released from the
xyloglucan backbone by α-xylosidases. Of two α-
xylosidases in Aspergillus flavus, AxlI hydrolyzes xyloglu-
can oligosaccharides and AxlII is most active on
p-nitrophenyl α-L-xylose residues and does not hydrolyze
xyloglucan (Yoshikawa et al. 1993, 1994). α-Xylosidases
were suggested to belong to family GH31 based on genome
analysis within Aspergilli which was proven by over-
expression in Pichia pastoris (Bauer et al. 2006; de Vries
et al. 2005). This GH31 family contains mainly enzymes
with α-glucosidase activity and has only a limited number
of characterized α-xylosidases (de Vries et al. 2005).

L-Fucose residues in xyloglucan branches are released by
α-fucosidases belonging to GH29 and GH95. Several α-
fucosidases of plants have been identified to degrade
xyloglucan (Leonard et al. 2008; Ishimizu et al. 2007;
Minic and Jouanin 2006). Nevertheless, only A. niger,
Aspergillus nidulans, and Penicillium multicolor have been
reported to produce an α-fucosidase which release L-fucose
residues similar to the fucose-linkages in xyloglucan
(Ajisaka et al. 1998; Ajisaka and Shirakabe 1992; Bauer
et al. 2006).

Alpha-linked D-galactose residues are released from
hemicellulose, e.g., xylan and galactomannans, by α-
galactosidases belonging to GH27 and GH36. The α-

Table 4 Genes encoding characterized and putative enzymes of Aspergillus niger CBS513.88 involved in the degradation of the substitutions on
the hemicellulose backbones (Coutinho et al. 2009)

Enzyme class Code CAZy families Genes of characterized and putative enzymes Reference

α-arabinofuranosidase ABF GH51 An01g00330 (abfA), An08g01710, An09g00880 (Flipphi et al. 1993c)

GH54 An15g02300 (abfB) (Flipphi et al. 1993b)

α-xylosidase AXL GH31 –

α-fucosidase AFC GH29 An13g02110

GH95 An16g02760, An16g00540

α-1,4-galactosidase AGL GH27 An06g00170 (aglA), An02g11150 (aglB),
An01g01320, An14g01800, An11g06330

(den Herder et al. 1992;
de Vries et al. 1999)

GH36 An09g00260 (aglC), An04g02700, An09g00270 (Ademark et al. 2001)

β-1,4-galactosidase LAC GH2 –

GH35 An01g12150 (lacA), An01g10350, An07g04420,
An06g00290, An14g05820

(Kumar et al. 1992)

Arabinoxylan
α-arabinofuranohydrolase

AXH GH62 An03g00960 (axhA) (Gielkens et al. 1997)

α-glucuronidase AGU GH67 An14g05800 (aguA) (de Vries et al. 2002c)

GH115 –

Acetyl (xylan) esterase AXE CE1 An12g05010 (axeA) (van Peij et al. 1998)

Feruloyl/p-coumaroyl esterase FAE CE1 An09g00120 (faeA), An12g10390 (faeB), An12g02550 (de Vries et al. 1997;
de Vries et al. 2002d)

The genes with names between brackets are biochemically characterized and their references are given in the last column
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galactosidases of GH27 and GH36 both act via a double-
displacement mechanism and are considered to have a
common evolutionary origin (Rigden 2002). Some enzymes
of GH27 also showed α-N-acetylgalactosaminidase activity
and it is therefore argued that some GH27 α-galactosidases
are not involved in hemicellulose degradation (Kulik et al.
2010). The GH36 α-galactosidases are often larger in size
and are active against mono- and oligosaccharides, such as
melibiose and raffinose (Ademark et al. 2001). The
presence of terminal β-linked D-galactose residues in some
hemicelluloses, e.g., xylan, xyloglucan, and galactogluco-
mannans, suggested that β-galactosidases (GH2 and GH35)
also play a role in degradation of hemicelluloses (Sims et
al. 1997). This was proven by the increased release of D-
galactose residues from wheat flour after supplementing
LacA of A. niger to an enzyme cocktail (de Vries et al.
2000). Bga1, a β-galactosidase of T. reesei, showed broad
substrate specificity with also activity against polymeric
galactans (Gamauf et al. 2007). Nevertheless, the fast
majority of studies concerning β-galactosidases are focused
on their activity against lactose.

D-Glucuronic acid residues from polymeric xylan are
released by α-glucuronidases belonging to GH67 and the
newly identified family GH115 (Ryabova et al. 2009;
Chong et al. 2011). Like many other carbohydrate-active
enzyme families, the difference between α-glucuronidases
from both families lays in their substrate specificity. GH67
α-glucuronidases are active on short oligosaccharides, while
some of the GH115 α-glucuronidases are active on polymeric
xylan (Chong et al. 2011; Tenkanen and Siika-aho 2000). The
GH115 α-glucuronidase from Pichia stipitis showed how-
ever higher activity against short oligosaccharides, which
corresponds with its ability to degrade oligosaccharides
within their environment (Kolenova et al. 2010). Remark-
ably, GH67 α-glucuronidases are found exclusively within
Ascomycetes, while GH115 α-glucuronidases are present in
Ascomycetes and Basidiomycetes (Chong et al. 2011).

Acetyl residues from xylan chains are released by
acetylxylan esterases belonging to CE families 1, 4, 5,
and 16 (Biely et al. 2011). The presence of acetylxylan
esterases is essential for efficient degradation of the xylan
backbone by endoxylanases. For instance, only in the
presence of A. niger acetylxylan esterase, birchwood xylan
can be degraded by the three endoxylanases and the β-
xylosidase of A. niger (Kormelink et al. 1993). The main
difference between the CE families is their preference for
hydrolyzing the different O-linked acetyl groups. CE
families 1, 4, and 5 have a strong preference for 2-O-
linked residues, the most common linkage in hemicellulose,
while CE16 prefers 3-O- and 4-O-linked residues (Li et al.
2008; Biely et al. 2011). There has also been a description
of acetyl esterase of A. oryzae active against acetyl residues
attached to galactomannan chains (Tenkanen et al. 1995).

However, the gene encoding this specific enzyme has not
yet been identified nor characterized in other fungi.

p-Coumaric acid and ferulic acid, the two cinnamic acids
present in xylan, are removed by feruloyl/p-coumaroyl
esterases. Most of these esterases have not been assigned
to CE families. However, several classifications have been
reported for these enzymes based on sequence similarity and
substrate specificity (Crepin et al. 2004; Olivares-Hernandez
et al. 2010; Benoit et al. 2008). One particular group of
esterases, belonging to Aspergillus and Penicillium sp., has
preference for substrates with methoxy substituents (Koseki
et al. 2009; Kroon et al. 1997). For example, FaeA of A.
niger prefers substrates with a methoxy group at position
three, such as ferulic acid (Benoit et al. 2007; Kroon et al.
1997). FaeB of A. niger belongs to another group of
esterases with preference for substrates containing one or
two hydroxyl substitutions, such as p-coumaric acid (de
Vries et al. 1997; Koseki et al. 2009; Kroon et al. 1997).

Pectin degradation

The degradation of pectin backbones (Fig. 3) requires two
classes of enzymes: glycoside hydrolases and polysaccha-
ride lyases (PL; Table 5). A large part of the fungal
glycoside hydrolases involved in the degradation of the
pectin backbone belongs to GH family 28 (Martens-
Uzunova and Schaap 2009). These GH28 enzymes can be
divided in groups according to the specific pectin region
they attack: endo- and exo-polygalacturonase (GH28)
cleave the backbone of the smooth regions, while the more
intricate, hairy regions are further attacked by endo- and
exo-rhamnogalacturonase (GH28), xylogalacturonase
(GH28), α-rhamnosidases (GH78), unsaturated glucuronyl
hydrolases (GH88), and unsaturated rhamnogalacturonan
hydrolases (GH105).

Endo- and exo-polygalacturonases of GH28 in general
cleave theα-1,4-glycosidic bonds between theα-galacturonic
acids. The genome of A. niger contains seven endopolyga-
lacturonases, each of them exhibiting distinct kinetic
properties, substrate methylation sensitivity and mode of
action (Martens-Uzunova and Schaap 2009; Benen et al.
2000; Bussink et al. 1991; Parenicova et al. 1998, 2000a).
For instance, although the structures of PgaI and PgaII are
highly similar, only PgaI has enzyme processivity due to a
narrower substrate binding cleft and the presence of an
arginine at position 96 (van Santen et al. 1999; van
Pouderoyen et al. 2003). The genome of A. niger contains
four potential exopolygalacturonases: PgaX, PgxA, PgxB,
and PgxC (Martens-Uzunova et al. 2006). Of these, PgxB
prefers homogalacturonan as a substrate, while PgxC has
high activity against homogalacturonan and xylogalactur-
onan (Martens-Uzunova et al. 2006). PgxA has a low
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activity against homogalacturonan and is more active against
xylogalacturonan. Therefore, PgxA very likely represents a
new kind of exoxylogalacturanase (Martens-Uzunova et al.
2006). An endo-acting xylogalacturanase, XghA, was
already described to specifically degrade the xylogalactur-
onan present in the hairy regions (van der Vlugt-Bergmans et
al. 2000). Also within R. oryzae, 15 of the 18 putative GH28
polygalacturonases showed different substrate specificity for
polygalacturonan, trigalacturonan, and digalacturonan, and
their activity against polygalacturonan ranged from less than
1 to 200 μmol/min/mg protein (Mertens and Bowman 2011).
These different characteristics between polygalacturonases of
A. niger and R. oryzae shows the requirement for a large
number of isoenzymes to concertedly act on complex plant
polysaccharides.

Another important group of GH28 are the rhamnogalactur-
onan hydrolases, which employ either an endo- or exolytic
mechanism to cleave the α-1,2-glycosidic bonds formed
between D-galacturonic acid and L-rhamnose residues in the
hairy regions (Kofod et al. 1994; Suykerbuyk et al. 1995). A.
niger has two characterized (RhgA and RhgB) and four
putative endorhamnogalacturonanases (Martens-Uzunova and
Schaap 2009; Suykerbuyk et al. 1997). The pattern of
reaction products produced after degradation of modified
hairy regions with either RhgA or RhgB is quite different,
suggesting that each enzyme acts on a structurally different
region of the substrate (Suykerbuyk et al. 1997). Exorham-
nogalacturonases release D-galacturonic acid residues from

the non-reducing end of rhamnogalacturonan chains but not
from homogalacturonans (Mutter et al. 1998). Sequence
analysis of the A. niger genome indicates the presence of
three genes, RgxA, RgxB, and RgxC, encoding putative
exorhamnogalacturonases (Martens-Uzunova et al. 2006).

Hydrolysis of the pectin backbone also requires
enzymes from other GH families: α-rhamnosidases
(GH78), unsaturated glucuronyl hydrolases (GH88), and
unsaturated rhamnogalacturonan hydrolases (GH105). As
several of these enzymes and families have only recently
been described, little biochemical characterization has
been performed on them (see Table 5 for the putative
genes of A. niger). For example, characterization of
unsaturated glucuronyl hydrolases and unsaturated rhamno-
galacturonan hydrolases is lacking in fungi, although several
putative enzymes have been identified.

Pectin and pectate lyases both cleave, via a β-
elimination mechanism, the α-1,4-linked D-galacturonic
acid residues within the smooth regions of pectin (Lombard
et al. 2010). A comparison between the structures of pectin
and pectate lyases has indicated that both lyases most likely
descended from a common ancestor enzyme (Mayans et al.
1997; Vitali et al. 1998). However, both types of lyases
have important differences in their active site. As a
consequence, pectin lyases attack preferentially heavily
methyl-esterified substrates and have their optimum pH
around 5.5 (Mayans et al. 1997). In contrast, pectate lyases
favor lower degrees of esterification, have their optimum

Fig. 3 a–c Schematic structures
of three pectins, rhamnogalac-
turonan I, homogalacturonan,
xylogalacturonan, with pectino-
lytic enzymes. ABF α-
arabinofuranosidase, ABN
endoarabinanase, ABX exoarabi-
nanase, BXL β-1,4-xylosidase,
FAE feruloyl esterase, GAL β-
1,4-endogalactanase, LAC β-
galactosidase, PEL pectin lyase,
PLYpectate lyase, PGA
endopoly-galacturonase, PGX
exo-polygalacturonase, PME
pectin methyl esterase, RGAE
rhamnogalacturonan acetyl es-
terase, RGL rhamnogalactur-
onan lyase, RHG endorham-
nogalacturonase, RGX exorham-
nogalacturonase, XGH
endoxylo-galacturonase, XGX
exoxylogalacturonase. α-
Rhamnosidase (RHA), unsatu-
rated rhamnogalacturonase
(URH), and unsaturated glucur-
onyl hydrolase (UGH) are not
depicted in this figure
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pH around 8.5, and require Ca2+ for their activity (Mayans
et al. 1997). Currently, all characterized pectin lyases
belong to the PL1 family, while the fungal pectate lyases
belong to PL1, PL3, and PL9. As an example, six pectin
lyases and only one pectate lyase have been identified and
partially characterized in A. niger (Benen et al. 2000;
Harmsen et al. 1990; Gysler et al. 1990). In contrast, A.
nidulans has only two pectin lyases, five identified pectate
lyases, and another six putative pectate lyases (Galagan et
al. 2005; Bauer et al. 2006), suggesting significant differ-
ences between these fungi (Coutinho et al. 2009).

Rhamnogalacturonan lyases differ substantially in their
structure from pectin and pectate lyases, and cleave within
the hairy regions of pectin. This group of lyases belongs to
two families, PL4 and PL11, where PL4 lyases have a much
lower optimum pH then PL11 lyases (Jensen et al. 2010).

The PL4 rhamnogalacturonan lyase from Aspergillus
aculeatus showed that cleavage preferably occurs four
residues from L-rhamnose at the reducing end and is
severely affected by the presence of acetyl groups in the
backbone of rhamnogalacturonan (Mutter et al. 1998; de
Vries et al. 2000). Therefore, the cooperative action of
rhamnogalacturonan acetyl-esterases is required for efficient
degradation (de Vries et al. 2000).

The pectin structures xylogalacturonan and rhamnogalac-
turonan also require accessory enzymes to remove the side
chains and provide access for the main-chain hydrolysing
pectinolytic enzymes. Of these, α-arabinofuranosidases
(GH51 and GH54), β-galactosidases (GH2 and GH35), and
β-xylosidases (GH3 and GH43) are also needed for hemicel-
lulose degradation, while endoarabinanases (GH43), exoar-
abinanases (GH93), β-endogalactanases (GH53), and several

Table 5 Genes encoding characterized and putative enzymes of Aspergillus niger CBS513.88 involved in the degradation of pectin (Coutinho et
al. 2009; Martens-Uzunova and Schaap 2009)

Enzyme class Code CAZy families Genes of characterized and putative enzymes Reference

Endopoly-galacturonase PGA GH28 An16g06990 (pgaA), An02g04900 (pgaB),
An05g02440 (pgaC), An09g03260 (pgaD),
An01g14670 (pgaE), An01g11520 (pgaI),
An15g05370 (pgaII)

(Parenicova et al. 2000b; Parenicova
et al. 2000a; Bussink et al. 1992;
Parenicova et al. 1998; Kester and
Visser 1990)

Exopoly-galacturonase PGX GH28 An11g04040 (pgxA), An03g06740 (pgxB),
An02g12450 (pgxC), An12g07500 (pgaX)

(Martens-Uzunova et al. 2006)

Endorhamno-galacturonase RHG GH28 An12g00950 (rhgA), An14g04200 (rhgB),
An06g02070, An11g06320, An11g08700,
An07g01000

(Suykerbuyk et al. 1997)

Exorhamno-galacturonase RGX GH28 An01g14650 (rgxA), An03g02080 (rgxB),
An18g04810 (rgxC)

(Martens-Uzunova et al. 2006)

Endoxylo-galacturonase XGH GH28 An04g09700 (xghA) (van der Vlugt-Bergmans et al. 2000)

α-rhamnosidase RHA GH78 An15g04530, An01g06620, An10g00290,
An08g09140, An12g05700, An07g00240,
An04g09070, An18g04800

Endoarabinanase ABN GH43 An09g01190 (abnA), An16g02730,
An02g01400, An07g04930, An02g10550

(Flipphi et al. 1993a)

Exoarabinanase ABX GH93 49311a

β-1,4-endogalactanase GAL GH53 An18g05940 (galA), An16g06590 (de Vries et al. 2002b)

Unsaturated glucuronyl
hydrolase

UGH GH88 An01g01340

Unsaturated
rhamnogalacturonase

URH GH105 An14g05340, An14g02920

Pectin methyl esterase PME CE8 An03g06310 (pmeA),An04g09690, An02g12505 (Khanh et al. 1991)

Rhamnogalacturonanacetyl
esterase

RGAE CE12 An09g02160 (rgaeA), An04g09360 (de Vries et al. 2000)

Pectin lyase PEL PL1 An14g04370 (pelA), An03g00190 (pelB),
An11g04030 (pelC), An19g00270 (pelD),
An15g07160 (pelF)

(Harmsen et al. 1990; Kusters-van
Someren et al. 1992; Gysler et al.
1990; de Vries et al. 2002a)

Pectate lyase PLY PL1 An10g00870 (plyA) (Benen et al. 2000)

PL3 and PL9 –

Rhamnogalacturonan RGL PL4 An14g01130 (rglA), An11g00390 (de Vries et al. 2002a)

Lyase PL11 –

The genes with names between brackets are biochemically characterized and their references are given in the last column
a Exoarabinanase has only been identified in A. niger isolate ATCC1015
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esterases (CE8, CE12, and CE13) are specific for pectin
degradation (Martens-Uzunova and Schaap 2009).

Future prospects

Many industrial processes make use of relative easy
accessible sugar residues within cellulose or other plant
polysaccharides. In industrial processes, the monomeric
sugars within these structures are released from the plant
material by a limited set of enzymes, utilizing only a small
fraction of the available biodiversity of fungal enzymes. For
instance, a minimal mixture of cellobiohydrolases (CBHI
and CBHII) and endoglucanase (EGI) from T. reesei and β-
glucosidase from A. niger is sufficient to efficiently degrade
pure cellulose (Sternberg et al. 1977; Rosgaard et al.
2007a). Exploitation of the available sugars within the
intricate fractions of plant biomass involves a more
elaborate process. For example, plant polysaccharides have
to be separated from the present lignin compounds by
chemical, physical, or biological pretreatment (Hendriks
and Zeeman 2009; Martinez et al. 2009). And, as described
in the previous sections, releasing the sugars from the
different plant polysaccharides requires a more complex set
of carbohydrate-active enzymes. In addition to a number of
cellulases, efficient enzymatic hydrolysis of pretreated plant
biomass also needs synergistic activity of, at least, several
endoxylanases, β-xylosidase, α-arabinofuranosidase, and
acetyl esterase (Kormelink et al. 1993; Alvira et al. 2011;
Gao et al. 2010). The precise mixture of hydrolytic
enzymes also depends on the method of pretreatment and
type of plant substrate (Rosgaard et al. 2007b; Saha and
Cotta 2010). Nearly complete hydrolysis of specific xylan
and pectin fractions can still be achieved with a relative
small sets of enzymes (de Vries et al. 2000), but this is not
the case for more crude biomass fractions. For this reason, a
better understanding of plant polysaccharide degradation
will help to design an enzyme mixture which can efficiently
degrade a wide range of substrates.

The division of carbohydrate-active enzymes into different
families based on modules of amino acid conservation (www.
cazy.org) can help with a better understanding of the
enzymatic repertoire of different fungi. In recent years, new
families have been described and new activities have been
assigned to known families (Martens-Uzunova et al. 2006;
Cantarel et al. 2009; Li et al. 2008; Chong et al. 2011; Harris
et al. 2010). Nevertheless, more knowledge is required to
fully profit from this large database of information. The
biggest limitation is the low coverage of biochemical
information on specific enzyme classes. This is illustrated
by the small amount of enzymatically characterized proteins
that has been added to the CAZy database in the last decade
in contrast to the large quantity of putative carbohydrate-

active enzymes of sequenced fungal genomes (Cantarel et al.
2009). As a consequence, some enzyme activities are
putatively assigned to families, but do not have biochemical
support. For example, none of the many putative fungal
unsaturated glucuronyl hydrolases (GH88) and unsaturated
rhamnogalacturonan hydrolases (GH105) have been bio-
chemically characterized. Another challenge is the large
carbohydrate-active enzyme families containing enzymes
with different enzyme classes. With increasing biochemical
information, some families like GH2, GH3, GH5, GH28, or
GH43 could be split up in smaller and better defined sub-
families according to their hydrolytic function. This will allow
a better predictive value of future fungal genome annotations,
and thereby will lead to an even larger toolbox to access for
industrial purposes.
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