Appl Microbiol Biotechnol (2010) 85:823-835
DOI 10.1007/500253-009-2221-3

MINI-REVIEW

Engineering of cyclodextrin glucanotransferases
and the impact for biotechnological applications

Hans Leemhuis - Ronan M. Kelly - Lubbert Dijkhuizen

Received: 27 June 2009 /Revised: 25 August 2009 / Accepted: 25 August 2009 /Published online: 18 September 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Cyclodextrin glucanotransferases (CGTases)
are industrially important enzymes that produce cyclic
«-(1,4)-linked oligosaccharides (cyclodextrins) from
starch. Cyclodextrin glucanotransferases are also applied
as catalysts in the synthesis of glycosylated molecules
and can act as antistaling agents in the baking industry.
To improve the performance of CGTases in these various
applications, protein engineers are screening for CGTase
variants with higher product yields, improved CD size
specificity, etc. In this review, we focus on the strategies
employed in obtaining CGTases with new or enhanced
enzymatic capabilities by searching for new enzymes and
improving existing enzymatic activities via protein
engineering.

Keywords Amylase - Biocatalysis - Directed evolution -
Glycoside hydrolase - Protein engineering - Starch

Introduction

Cyclodextrin glucanotransferases (CGTases; EC 2.4.1.19)
convert starch into cyclic «-1,4-glucans, called cyclodextrins
(CDs). Cyclodextrins were identified in 1891 and structurally
characterized in the preceding years. The main products of
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CGTases are «-, 3-, and y-CDs, composed of 6, 7, or
8 glucose residues, although, much larger cyclic glucans are
produced in the early phases of the reaction (Terada et al.
1997; Zheng et al. 2002; Qi et al. 2007). In nature, certain
bacteria and archaea presumably excrete CGTases to
monopolize on the starch substrate, converting it into CDs,
which cannot be utilized by competing microorganisms
(Pajatsch et al. 1999; Hashimoto et al. 2001).
Cyclodextrins have numerous applications in the
pharmaceutical, cosmetics, and food and textile industry,
etc., as reviewed (Martin Del Valle 2009; Li et al. 2007,
Biwer et al. 2002), because of their capacity to encapsulate
hydrophobic molecules within their hydrophobic cavity.
Encapsulation is used to solubilize hydrophobic molecules
in water (CDs have a hydrophilic outside), which is
particularly advantageous as many drug molecules are
poorly soluble in water (Loftsson and Duchene 2007), or
to protect guest molecules from light, heat, or oxidizing
conditions (Astray et al. 2009). Cyclodextrins are also
used to lower the volatility of odor molecules in perfumes
and room refreshers for controlled release of the odor. In
the chemical industry, CDs are used in the separation of
enatiomers to extract toxic chemicals from waste streams
(Martin Del Valle 2009) and in soil bioremediation (Fava
and Ciccotosto 2002). Various other applications of CDs
include the suppression of undesirable (bitter) tastes and
the extraction of compounds such as cholesterol from
foods (Szente and Szejtli 2004; Szejlti and Szente 2005).

CGTases
Cyclodextrin glucanotransferases are members of the
largest family of glycoside hydrolases acting on starch

and related «-glucans, glycoside hydrolase family 13 (Stam
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et al. 20006) (http://www.cazy.org). The first 3D structure of
this enzyme (Klein and Schulz 1991) revealed that
CGTases are five domain proteins with the active site
located at the bottom of a (3/x)g-barrel in the A domain.
Substrates bind across the enzyme’s surface in a long
groove formed by the domains A and B that can accommodate
at least 7 glucose residues at the donor subsites and 3 at the
acceptor subsites (Fig. 1, labeled —7 to +3) as revealed by
kinetic studies and crystal structures of substrate/inhibitor/
product-CGTase complexes (Bender 1990; Kanai et al. 2001;
Leemhuis et al. 2003a; Wind et al. 1998; Schmidt et al.
1998; Uitdehaag et al. 1999b). The C-terminal region of
CGTases is formed by C, D, and E-domains. The function of
domain D is unknown, domain C has been implied in substrate
binding (Penninga et al. 1996), and domain E is a raw starch-
binding domain (Penninga et al. 1996; Dalmia et al. 1995;
Chang et al. 1998). The E-domain is classified as a family 20
carbohydrate binding module (CBM20) (Cantarel et al.
2009; Machovic and Janecek 2006) (http://www.cazy.org).
Cyclodextrin glucanotransferases cleave the «-1,4-
glycosidic bonds between the subsites -1 and +1 in
«-glucans yielding a stable covalent glycosyl-intermediate
bound at the donor subsites (Fig. 1) (Uitdehaag et al.
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Fig. 1 Schematic view of CD formation by CGTase
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1999a). The glycosyl-intermediate is then transferred to the
4-hydroxyl of its own nonreducing end forming a new
«-1,4-glycosidic bond to yield a cyclic product (Fig. 1).
Cyclodextrin glucanotransferases can also transfer the
glycosyl-intermediate to a second «-glucan yielding a
linear product (disproportionation) or to water (hydrolysis).
In addition, CGTase can degrade CDs by opening the CD
ring and transferring the linearalized CD to a sugar acceptor
to yield a linear oligosaccharide (coupling). The large
amount of structural information together with site-directed
mutagenesis data have been used to elucidate the mechanistic
functions of the residues at the catalytic center of CGTases
(e.g., donor subsite -1) (Nakamura et al. 1993; Leemhuis et
al. 2003c; Klein et al. 1992; Haga et al. 2003). However, as
these mutations generally resulted in very low catalytic
proficient CGTase mutants, they are not discussed here.
Mutagenesis studies affecting reaction specificities are
discussed below.

CD production

Cyclodextrins are produced in thousands of tons from
starch annually by several manufactures, and demands are
still rising. The starch is first liquefied, usually via an
energy consuming jet-cooking step (Buchholz and Seibel
2008) (Fig. 2). Unfortunately, the total conversion of starch
into CDs is closer to 50% than 100%. One of the reasons
for this lack of efficiency is that CGTases have difficulty in
bypassing the «-1,6-branches in amylopectin yielding
CGTase limit dextrin (van der Maarel et al. 2002). The
addition of isoamylase or pullulanase debranching enzymes
increases the accessibility of the amylopectin fraction of
starch, thus, increasing the CD yield (Rendleman 1997).
Cyclodextrin yields are also limited due to enzyme product
inhibition (Leemhuis et al. 2003a; Gaston et al. 2009) and
breakdown of CDs by CGTases into linear oligosaccharides
in the coupling reaction. The effects of both product
inhibition and CD degradation are minimized by keeping
the CD concentrations in the reactor low, which is generally
achieved by adding complexing agents leading to the
precipitation of the CDs. Moreover, the type of complexing
agent used strongly influences the ratio of «-, 3-, and y-CD
produced, for details see Blackwood and Bucke (2000),
Biwer et al. (2002), and Zhekova et al. (2009). The
breakdown of CDs is reduced further by restricting the
accumulation of short oligosaccharides through the use of
CGTases with low hydrolytic activity. Indeed, it has been
shown that at high concentrations of saccharides, CGTases
do not produce CDs from starch (Martin et al. 2001).

The other major issue in CD production is that CGTases
produce a mixture of CDs. A selective purification step is,
thus, required to obtain pure «-CD, [3-CD, or y-CD,
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Fig. 2 Flow scheme of CD production. Highlighted are the steps
where protein engineers and process controllers can influence the
process efficiency

through the use of complexing agents during CD synthesis
and the variation in solubility of the different CDs to allow
selective precipitation (Matioli et al. 2000; Lee and Kim
1992; Son et al. 2008). The source of CGTase is the key
factor in the type of CDs produced (Table 1), along with
reaction parameters such as the type of starch used, the
buffer composition, reaction temperature, and pH (Qi et al.
2004; Kamaruddin et al. 2005; Alves-Prado et al. 2008).

Searching nature for better performing CGTases

As the origin of the CGTase is the key factor in determining
the ratios at which the different CDs are produced,
scientists are searching nature for better performing
CGTases. Moreover, novel CGTases may be better suited
to the various industrial processing parameters, including
substrate conversion, stability, and activity, than the
currently available enzymes. There are 3 approaches to
identify novel CGTases: genome mining of DNA databases,
cloning environmental DNA in expression vectors and
identifying recombinant clones displaying CGTase activity,
or isolating bacteria/archaea expressing CGTase activity.
Today CGTases of about fifty microorganisms have been
(partly) characterized for CD specificity (Table 1). Fifteen
of these enzymes were identified in the last 2 years,
displaying a broad variation in optimal reaction pH,

temperature, stability, and CD size specificity. Despite the
availability of a large number of these enzymes, a CGTase
that requires little or no reengineering for industrial
optimization has yet to be identified. The CGTase from
Bacillus clarkii, for example, was shown to produce
approximately 80% vy-CDs (Takada et al. 2003). However,
its overall conversion of starch into CDs was low at 14%.

Chemical modification, immobilization, and enzyme
cross-linking

Before recombinant DNA technologies were developed,
proteins engineers relied on chemical modification of
amino acids such as lysine, cysteine, etc., to improve
enzyme function and to gain insights into functionally
important residues. When combined with mass spectrometry,
one can determine exactly which amino acid residues are
modified, as shown for Bacillus circulans DF 9R CGTase
(Costa et al. 2009). Chemical modifications of amino acids
can have various effects on the reaction specificity as
demonstrated for Thermoanaerorbacter CGTase, where
succinylation and acetylation enhanced the transglycosylation
(Alcalde et al. 2001) and hydrolytic activities of the enzyme,
respectively (Alcalde et al. 1999). Chemical modification is
also the first step in the synthesis of cross-linked enzyme
crystals, which are insoluble particles that retain catalytic
activity under harsh conditions such as extreme pH, high
temperature, and high solvent concentrations as demonstrated
for B. macerans CGTase (Kim et al. 2003). Cross-linking can
also be performed in the presence of substrate/product
molecules, known as molecular imprinting, were one tries
to fixate a productive conformation of an enzyme. Molecular
imprinting of Paenibacillus sp. A1l and Bacillus macerans
CGTase with y-CD vyielded CGTase crystals that converted
over 10% of starch into CDs larger than y-CD (Kaulpiboon
et al. 2007), while the corresponding wild-type does not
produce these large CDs.

Closely related to the chemical modification method is
the immobilization of enzymes onto particles to facilitate
the recovery of the expensive biocatalyst from product
streams for reuse of the expensive biocatalyst. In addition,
immobilization usually stabilizes the biocatalyst under
industrial settings. A small number of reports have
described the immobilization of CGTases covalently to
supports, such as Eupergit C (Martin et al. 2003) and
glyoxyl-agarose (Ferrarotti et al. 2006), or by entrapment in
sodium alginate beads (Arya and Srivastava 2000).
Covalent immobilization is, generally, more favorable as
the biocatalyst is not leaking away, but unfortunately, this
typically reduces the activity of CGTase to below 10% due
to the inaccessibility of a large portion of the immobilized
enzyme for the polymeric substrate. One report describes an
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Table 1 Characterized CGTases

and their CD specificity Strain Main CD produced Reference
Archaea
Pyrococcus furiosus DSM 3638 B (Lee et al. 2007)
Thermococcus kodakaraensis KOD1 B (Rashid et al. 2002)
Thermococcus sp. B1001 o4 (Hashimoto et al. 2001)
Bacteria
Alkalophilic Bacillus agaradhaerens LS-3C B (Martins et al. 2003a)
Alkalophilic Bacillus sp. 1-1 B (Schmid et al. 1988)
Alkalophilic Bacillus sp. 17-1 B (Kaneko et al. 1989)
Alkalophilic Bacillus sp. 38-2 B (Hamamoto and Kaneko 1987)
Alkalophilic Bacillus sp. 1011 B (Kimura et al. 1987)
Alkalophilic Bacillus sp. 8SB* B (Atanasova et al. 2008)
Alkalophilic Bacillus sp. 20RF* B (Atanasova et al. 2008)
Alkalophilic Bacillus sp. A2-5a B (Ohdan et al. 2000)
Alkalophilic Bacillus sp. G-825-6 Y (Hirano et al. 2006)
Alkalophilic Bacillus sp. 1-5 B (Shim et al. 2004)
Anaerobranca gottschalkii x (Thiemann et al. 2004)
Bacillus circulans 8 B (Nitschke et al. 1990)
Bacillus circulans 251 B (Lawson et al. 1994)
Bacillus circulans A1l B (Rimphanitchayakit et al. 2005)
Bacillus circulans DF 9R /3 (Marechal et al. 1996)
Bacillus clarkii 7384 h% (Takada et al. 2003)
Bacillus clausii E16® B (Alves-Prado et al. 2008)
Bacillus firmus 290-3 Bry (Englbrecht et al. 1988)
Bacillus firmus 7B* 8] (Moriwaki et al. 2007)
Bacillus firmus NCIM 5119% B (Gawande et al. 1999)
Bacillus firmus no. 37* B (Matioli et al. 2001)
Bacillus licheniformis o/ (Hill et al. 1990)
Bacillus macerans® x (Takano et al. 1986)
Bacillus megaterium® B (Pishtiyski et al. 2008)
Bacillus obhensis B (Sin et al. 1991)
Bacillus sp. B1018 B (Itkor et al. 1990)
Bacillus sp. BL-31 B (Go et al. 2007)
Bacillus sp. G1 B (Ong et al. 2008)
Bacillus sp. KC201 B (Kitamoto et al. 1992)
Bacillus sp. TS1-1 B (Rahman et al. 2006)
Bacillus stearothermophilus NO2°¢ /3 (Fujiwara et al. 1992)
Brevibacillus brevis CD162 B (Kim et al. 1998)
Geobacillus stearothermophilus ET1 B (Chung et al. 1998)
Klebsiella pneumoniae M5al x (Binder et al. 1986)
Paenibacillus sp. BTO1* /B (Yampayont et al. 2006)
Paenibacillus sp. C36 B (Kinder 2007)
Paenibacillus sp. RB01¢ B (Charoensakdi et al. 2007a)
Paenibacillus sp. T16 Yo% (Charoensakdi et al. 2007b)
® CGTase purified from host Paenibacillus campinasensis H69-3* 8] (Alves-Prado et al. 2007)
organism, but the gene has not Paenibacillus graminis NC22.13 o/ (Vollu et al. 2008)
been identified and sequenced Paenibacillus illinoisensis ST-12 K* B (Doukyu et al. 2003)
®Also known as Paenibacillus Paenibacillus pabuli US132 B (Jemli et al. 2008)
macerans Thermoanaerobacter sp. 501 o/ (Norman and Jorgensen 1992)
“Also known as Geobacillus Thermoanaerobacter sp. ATCC 53627 8] (Jorgensen et al. 1997)
itearothe.rmop hilus NO2 Thermoanaerobacter sp. P4™ 4 p* (Avci and Donmez 2009)
Formation of «- and yCD was Thermoanaerobacterium thermosulfurigenes EM1 /3 (Wind et al. 1998)

not assayed
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alternative strategy to facilitate the recovery of biocatalyst,
namely, entrapping bacterial cells that display CGTases on
the surface in polyvinyl-cryogel beads (Martins et al.
2003b). Chemical modification processes can, therefore,
provide a means of improving the application range of
CGTases in industry.

Protein engineering for improving CD production
by CGTases

The technique of choice for improving enzyme perfor-
mance by today’s protein engineers is directed evolution.
This approach, generally, delivers better enzymes than
site-directed mutagenesis, which is a consequence of our
limited understanding of structure/function relationships
of enzymes. Directed evolution involves the construction
of thousands to millions of variants of preexisting
enzymes, using polymerase-chain-reaction techniques
followed by high-throughput screening for better performing
biocatalysts (Leemhuis et al. 2009; Kelly et al. 2009a). Site-
directed mutagenesis is, nevertheless, highly valuable for
investigating residues selected on basis of 3D structural
knowledge or sequence alignments. Moreover, directed
evolution and site-directed mutagenesis are frequently
combined, randomizing functionally important regions of
enzymes via saturation mutagenesis (Reetz et al. 2008).

Stability

The stability of a biocatalyst is an important factor in industrial
applications. Cyclodextrin glucanotransferases are available
from both mesophiles and extremophiles (Table 1) allowing
selection of a CGTase with an appropriate thermostability.
Highly stable CGTases, however, display greater hydrolytic
activity on starch than their less stable counterparts (Kelly et
al. 2009b). This may result in lower CD yields as hydrolytic
products stimulate the degradation of CDs in the coupling
reaction. The stability of enzymes with otherwise beneficial
properties can be enhanced via protein engineering (Eijsink
et al. 2004), but there is only one report were mutagenesis
was used to improve the temperature stability of a CGTase.
The stability of Bacillus circulans 251 CGTase was raised by
engineering a salt bridge on the surface of the B-domain
(Leemhuis et al. 2004a). Other site-directed mutagenesis and
directed evolution studies have revealed that engineering of
CGTases for reaction specificity, generally, delivers variants
with reduced thermostability (Kelly et al. 2008a).

The alternative approach is to engineer existing highly
stable CGTases towards the desired reaction specificity. The
highly thermostable, but highly hydrolytic, Thermoanaer-
obacterium thermosulfurigenes EM1 CGTase forms large

amounts of short oligosaccharides and degrades CDs in the
later phases of starch conversion via the coupling reaction.
Using directed evolution, a variant of this CGTase (mutant
S77P) was engineered that formed almost no hydrolytic
products while maintaining native CD forming activity and
stability (Kelly et al. 2008b). Moreover, the coupling
activity of this mutant was very low with no degradation
of CDs in the later phases of the starch conversion.

CD specificity

The long standing goal of CGTase engineering is the
construction of variants producing a single type of CD only,
which is extremely challenging as substrates of various
lengths bind along the enzymes surface to allow for
circularization of glucan chains. The challenge is to
engineer CGTases that only permit the binding of glucan
chains of a defined length at the donor subsites prior to
covalent glycosyl-intermediate formation and CD formation.
Such specific CGTase variants have not yet been engineered,
although, CD ratios are strongly influenced by mutations at
the -3/-6/-7 donor subsites. The -1/-2 donor subsites are
crucial for catalytic activity. Strong enzyme-substrate
interactions exist at subsite -6 while a lack of these
interactions at subsites -4/-5 ensures the binding of a
substrate long enough for CD formation. Engineering CD
specificity by mutating conserved acceptor subsites residues
of CGTases is not advisable as this typically results in highly
hydrolytic CGTases (Table 2) that form small quantities of
CDs (Shim et al. 2004; Kelly et al. 2007). Mutating the
nonconserved residue 232 (Lys or Ala) at acceptor subsite +2
slightly altered CD ratios but also lowered CD yields
(Nakagawa et al. 2006; Kelly et al. 2008a). Figure 3 shows
the CGTase residues/regions important for reaction specificity.

Cyclodextrin glucanotransferase 3D structures indicate
that in the process of CD formation, the glucan chain wraps
around the Tyr/Phel95 residue (Fig. 3) suggesting that this
residue has an important role in determining CD specificity.
Indeed, an Y195W mutation increased the amount of y-CD
formed by Bacillus ohbensis CGTase (Table 2) and
enhanced the ratio of y-CD formed by B. circulans 8. In
B. circulans 251, CGTase mutant Y195L increased the ratio
of 3-CD strongly (Table 2). Thus, the centrally located Tyr/
Phel95 is an important target for engineering CD size
specificity, but the effect of a substitution turns out to be
different in various CGTases.

Engineering of subsites -3/-6/-7 has been successful in
altering CD specificity of CGTases. Substituting the
conserved residues of subsite -6 increased (Y167F,
G180L, and N193G) the amount of «x-CDs produced by
B. circulans 251 CGTase (Table 2) (Leembhuis et al. 2002b).
A D371R mutation at subsite -3 of 7. thermosulfurigenes
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Table 2 Mutations affecting reaction and CD product specificity of CGTases”

Position (subsite) Residues found in Mutation % conversion of starch % ratio of indicated Hydrolysis
wild-type CGTases into indicated CD CD (%) (U/mg)

195 (central)® Y, F Y195W° vCD: 8—15 -
Y195WF - vCD: 20— 50 -
Y195L# - BCD: 64—386 -

259 (+2) FY F259N" - - 3—-60
F2591 - - 429
F259E/ - - 54—177

232 (+2) K, A K232E' «CD: 6—1 - -
A232R" - vCD: 26—35 -

194 (+1) L L194Tk - «CD: 10—2 -

230 (+1) A A230V! - 372

47 (-3) R, K, H T H47T™ - vCD: 10—39 -
R47Q" - «CD: 1758 -

89 (-3)° Y,G,D,E Q Y89K® «CD: 15—19 -
Y89R® aCD: 15—21 -
Y89D" aCD: 5.6—6.8 -

371 (-3) D D371K° «CD: 15520 -
D371RP «CD: 9.8—1.7 -
D371R? YCD: 4.9—-7.5 - -

167 Y167F¢ «CD: 4.9—6.7 - -

179 G179L1 «CD: 4.9—2.7 - -

180 GI180L? «CD: 4.9—-5.5 - -

193 (-6) N N193G¢ «CD: 4.9—8.2 - -

146 (=7)° S,E,L,F S146P" «CD: 5.6—9.6 - -

145-151 (-7) A145-151—D* - vCD: 20—40 -

146/89 (—6/-3) S146P/Y89D" «CD: 5.6—12 -

774 S S77p* - 40—3

#Numbering follows that of B. circulans 251 CGTase. Only the most effective mutations in CGTase engineering are listed

° This is the centrally located residue in the substrate binding groove (Fig. 3)

“Note that the length and conformation of this loop is variable among CGTases

4877 is a second shell residue that is important for the orientation of the acid/base catalyst Glu257

® Bacillus ohbensis (Sin et al. 1994)

B. circulans 8 (Parsiegla et al. 1998)

& B. circulans 251 (Penninga et al. 1995)

Y B. circulans 251 (van der Veen et al. 2001)

! Alkalophilic Bacillus sp. I-5 (Shim et al. 2004)

ST thermosulfurigenes EM1 (Leemhuis et al. 2002a)
XB. circulans 8 (Parsiegla et al. 1998)

'B. circulans 251 (Leemhuis et al. 2003d)

"™ Bacillus sp. G1 (Goh et al. 2009)

" B. circulans 251 (van der Veen et al. 2000a)

° P macerans (Li et al. 2009)

P T thermosulfurigenes EM1 (Wind et al. 1998)

9 B. circulans 251 (Leemhuis et al. 2002b)

'B. circulans 251 (van der Veen et al. 2000b)

*T. thermosulfurigenes EM1 (Kelly et al. 2008b), CD forming activity unaffected
' B. circulans 251 (Kelly et al. 2008a)

Y Bacillus clarkii 7364 (Nakagawa et al. 2006)
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Fig. 3 Substrate binding at the active site of CGTase. The upper panel
shows the binding mode of a maltononaose substrate (blue sticks) at the
active site of B. circulans 251 CGTase (crystal structure 1CXK from the
protein data bank). Green—Tyr195; red—subsites +1/+2; orange—
subsite -3; wheat—subsite -6; and magenta—subsite -7. Figure was
created with PyMOL (DeLano 2002). The lower panel gives a
schematic overview of the subsites and the residues providing the
substrate interactions important for reaction specificity

EM1 CGTase strongly increased y-CD and lowered a-CD
production (Table 2). In Bacillus sp. G1 a H47T mutation
raised the ratio of y-CD formed (Table 2), though the total -
CD yield was only mildly enhanced. In Paenibacillus
macerans mutations Y89R and D371K at subsite -3
enhanced the «-CD yield (Table 2). Substrate interactions at
subsite -7 are provided by residues from loop 145-151 and
are thought to create extra interactions with the seventh sugar
residue to favor 3-CD formation. Removing this loop
strongly increased the ratio of y-CD produced by B. circulans
8 (Table 2). The S146P mutation at subsite -7, in contrast,
increased the conversion of starch into «-CDs (Table 2) and
in combination with the Y89D substitution at subsite -3 even
more x-CD was produced (van der Veen et al. 2000b).
Thus, CD ratios and amounts produced by CGTases can
be engineered by mutations, but the effects have been
studied mostly by incubating starch with the mutant
enzymes, which is quite different from industrial process
settings. We expect that most mutations will be even more
effective under industrial production conditions where
continuous precipitation of CDs, etc., selects more for the
initial rates of the enzymes, which are generally more
affected by the mutations than the final CD ratios. As

described above, our current insights are restricted to
knowing many “hotspot” residues for CD size specificity.
However, as the polymeric starch substrates interact with at
least 9 glucose moieties (Fig. 3), single mutants are not
expected to change CD size specificity completely (see
Table 2). Naturally, the extension of recent understanding of
CGTase structure/function would fast track the targeting
of specific areas for combinatorial site-saturation mutagenesis
of the “hotspot” residues followed by high-throughput
screening for highly active and CD size specific variants.
The screening procedure is, ultimately, the constricting factor
in the selection of CD specific CGTase variants. Screening
requires a high-throughput HPLC platform to accurately
assess the CD specificity, as the dyes methyl orange,
phenolphthalein, and bromocresol green used to reveal the
formation of «-, (3-, and y-CD, respectively, show cross-
reactivity with other CD sizes. Moreover, as CGTases will
eventually breakdown CDs in the coupling reaction, the
amount of CDs produced should be measured at several time
points. Thus, the protein engineer must analyze CGTase
variants for CD specificity and percentage of substrate
conversion over a number of time points, which should be
economically feasible to most laboratories using 96-well
format high-throughput HPLC systems.

Baking

Slowing down the retrogradation of the starch fraction in
baked goods is the key to raise their shelf life. This can be
accomplished by exo-acting enzymes, such as maltogenic
amylase, that partly degrade the exterior of the amylopectin
chains during baking process (De Stefanis and Turner
1981). Novamyl, a maltose forming maltogenic amylase, is
used commercially as an antistaling enzyme. This enzyme
shares ~50% sequence identity with CGTases, but does not
form CDs, although, a few mutations are enough to change
it into a CD forming enzyme (Beier et al. 2000). The
opposite experiment, changing a CGTase into a maltogenic
amylase, was also successful (Leemhuis et al. 2003b). The
high similarity of Novamyl with CGTases initiated research
to investigate and improve the antistaling properties of
CGTases. Protein engineers constructed highly hydrolytic
CGTase variants with antistaling properties, using both
site-directed mutagenesis (van der Veen et al. 2001; Lee et
al. 2002; Leemhuis et al. 2002a) and directed evolution
(Shim et al. 2004; Leemhuis et al. 2003d; Kelly et al.
2007). Kelly et al. engineered the most hydrolytic
“CGTases” with virtually no CD forming activity (Kelly
et al. 2007). All the hydrolytic variants mentioned carry
mutations in the residues Phe183, Ala230, or Phe259 at the
acceptor subsites +1/+2 and have (strongly) reduced
cyclization activities. Recently, a CGTase with improved
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hydrolyzing activity was manipulated for bakers yeast
surface display, enhancing the application of these
antistaling enzymes in the baking industry (Shim et al.
2007). Increasingly, protein engineers are opening new
routes in quality improvements in baking.

CGTases in carbohydrate synthesis

Oligosaccharides play key roles in living organisms,
however, their chemical synthesis remains challenging,
explaining the frequent use of enzymes in carbohydrate
synthesis (Faijes and Planas 2007; Plou et al. 2007;
Homann and Seibel 2009; Kaper et al. 2007). CGTases
primarily transfer linear «-1,4-glucans to the 4-hydroxyl
of glucose or longer o-glucans making a new «-1,
4-glycosidic bond. Cyclodextrin glucanotransferase can,
however, also transfer «-1,4-glucans to various other
molecules displaying a single glucose moiety or even
molecules simply displaying a hydroxyl function. An
example of this reaction is the glycosylation of the low
calorie sweeter stevioside, to reduce its bitter after-taste
(Jung et al. 2007). Table 3 gives a list of compounds
glycosylated by CGTases. Glycosylation may increase the
water solubility, improve the bifidogenic characteristics,
and lower cytotoxicity or improve the shelf life of these
compounds. In these acceptor reactions starches, malto-
dextrins or cyclodextrins are used as the donor substrates
and if desired, the attached o«-glucans maybe trimmed by
exo-glycosidases such as (3-amylase or «-glucosidase.
CGTases have also been applied in the synthesis of long
(>10) oligosaccharides using CDs as donor and glucose as
acceptor substrate (Yoon and Robyt 2002b). In addition, a
donor subsite -1 mutant (H140A) CGTase has been shown to
use the potent inhibitor acarbose as substrate and transfers
the unnatural x-glucan compound acarviosyl (acarviosyl is a
pseudo disaccharide composed of C7-cyclitol bound via an
imino bridge to 4-amino-4,6-dideoxyglucose) to acceptor
sugars (Leemhuis et al. 2004b). This demonstrates that
mutant CGTases can be engineered to couple “a-glucan”
like molecules to acceptor sugars.

Maltotriose and maltotetraose are the shortest natural
donor substrates utilized by CGTases, however, CGTase
can effectively use short «-fluorides of glucose and maltose
as donor substrate because they carry an excellent leaving
group (Mosi et al. 1997). For example, branched oligosac-
charides were synthesized by glycosylation of panose at its
2 free 4-hydroxyl groups using x-fluoride maltose (with a
protected 4-hydroxyl group) and CGTase as biocatalyst
(Greffe et al. 2003). Cyclodextrin glucanotransferases also
use o-fluoride maltose derivatives where the oxygen atom
of the glycosidic linkage was substituted with a carbon or
sulfur atom as substrate to synthesize linear and circular
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Table 3 Acceptor substrates of CGTase

Acceptor®

Reference

Acarbose”

Anhydro-D-fructose®

Arbutin®

Ascorbic acid?
Benzo[h]quinazolines®

Curcumin 3-D-glucoside®
Daidzein 7-O-f3-D-glucopyranoside®
Genistin®

Glycerol®

7-Glycolylpaclitaxel 2-O-x-D-glu-
copyranoside®

Hesperidin®™ &

Inositol"

Isomaltose®

Luteolin®

Naringin®#

Pentaerythritol'

Phenyl 3-D-glucopyranoside®
Rutin® €

Salicin®

Saponins®

Sorbito!’

Stevioside®

Sucrose®
Sucrose laurate®

Trimethylolpropane

(Yoon and Robyt 2002a)
(Yoshinaga et al. 2003)
(Sugimoto et al. 2003)
(Jun et al. 2001)
(Markosyan et al. 2009)
(Shimoda et al. 2007)
(Shimoda et al. 2008b)
(Li et al. 2005)

(Nakano et al. 2003)
(Shimoda et al. 2008a)

(Go et al. 2007)
(Sato et al. 1992)
(Vetter et al. 1992)
(Radu et al. 2006)
(Go et al. 2007)
(Nakano et al. 1992)
(Yoon and Robyt 2006)
(Go et al. 2007)
(Yoon et al. 2004)
(Kim et al. 2001)
(Park et al. 1998)

(Kochikyan et al. 2006; Jung et

al. 2007)

(Martin et al. 2004)

(Okada et al. 2007)

(Nakano et al. 1992)

#More information on the type of hydroxyl group used as acceptor is

provided below the table

® Cyclitol (2,3,4-trihydroxyl-5-(hydroxyl)-5,6-cyclohexene

¢ Glucose moiety

9 Hydroxyl of lactone ring
¢ Primary hydroxyl

f Alcohol

€ Phenolic

h 1,2,3,4,5,6-hexahydroxylcyclo-hexane

Reduced glucose
¥ Polyol

“o-glucans” (Bornaghi et al. 1997). In the near future, we
may see an increase in the utilization of engineered
(mutant) CGTase in carbohydrate synthesis, as they may
have a broader donor and acceptor substrate specificity.

Future CGTases

Biocatalysis is, generally, regarded as an environment
friendly technology. Nevertheless, CD synthesis may
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become even more environmental friendly if CGTase
variants can be obtained, either via screening or protein
engineering, that effectively convert native starch gran-
ules into specific CDs. The long standing aim of CGTase
engineering is to construct variants producing a single
type of CD. We feel that the current developments in the
understanding of CGTase structure/function and advances
in CGTase protein engineering will allow the creation of
such a desirable catalyst in the coming years, employing
combinatorial site-saturation mutagenesis. Moreover, new
insights may lead to the design of CGTases forming high
amounts of CDs consisting of 9 or more glucose
monomers or CGTase variants that are capable of
glycosylating, a wide variety of molecules bearing a
hydroxyl function.
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