Skip to main content
Log in

Characterization of novel thermostable dextranase from Thermotoga lettingae TMO

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biochemical properties of a putative thermostable dextranase gene from Thermotoga lettingae TMO were determined in a recombinant protein (TLDex) expressed in Escherichia coli and purified to sevenfold apparent homogeneity. The 64-kDa protein displayed maximum activity at pH 4.3, and enzyme activity was stable from pH 4.3–10. The optimal temperature was 55–60°C during 15 min incubation, and the half-life of the enzyme was 1.5 h at 65°C. The enzyme showed higher activity against α-(1 → 6) glucan and released isomaltose and isomaltotriose as main products from dextran T2000. An unusual kinetic feature of TLDex was the negative cooperative behavior on the reaction of dextran T2000 cleavage. Enzyme activity was not significantly affected by the presence of metal ions, except for the strong inhibited by 1 mM Fe2+ and Ag2+. TLDex may prove useful as an enzyme for high temperature sugar milling processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SG, Madden TL, Schaffer AA, Zhang J, Shang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLSAT: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Aoki H, Sakano Y (1997) A classification of dextran-hydrolysing enzymes based on amino-acid-sequence similarities. Biochem J 323:859–861

    CAS  Google Scholar 

  • Arnold WN, Nguyen TB, Mann LC (1998) Purification and characterization of a dextranase from Sporothrix schenckii. Arch Microbiol 170:91–98

    Article  CAS  Google Scholar 

  • Balk M, Weijma J, Stams AJM (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reaction. Int J Syst Evol Microbiol 52:1361–1368

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Bounias M (1980) N-(1-Naphthyl)ethylenediamine dihydrochloride as a new reagent for nanomole quantification of sugars on thin-layer plates by a mathematical calibration process. Anal Biochem 106:291–295

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Britton HTS, Robinson RA (1931) Universal buffer solutions and the dissociation constant of Veronal. J Chem Soc 1:1456–1462

    Article  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Finnegan PM, Brumbley SM, Shea MGO, Nevalainen KMH, Bergquist PL (2004a) Paenibacillus isolates possess diverse dextran-degrading enzymes. J Appl Microbiol 97:477–485

    Article  CAS  Google Scholar 

  • Finnegan PM, Brumbley SM, Shea MGO, Nevalainen KMH, Bergquist PL (2004b) Isolation and characterization of genes encoding thermoactive and thermostable dextranases from two thermotolerant soil bacteria. Curr Microbiol 49:327–333

    Article  CAS  Google Scholar 

  • Finnegan PM, Brumbley SM, Shea MGO, Nevalainen KMH, Bergquist PL (2005) Diverse dextranase genes from Paenibacillus species. Arch Microbiol 183:140–147

    Article  CAS  Google Scholar 

  • Hild E, Brumbley SM, O’Shea MG, Nevalainen H, Bergquist QL (2007) A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity. Appl Microbiol Biotechnol 75:1071–1078

    Article  CAS  Google Scholar 

  • Hoster F, Daniel R, Gottschalk G (2001) Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. J Gen Appl Microbiol 47:187–192

    Article  CAS  Google Scholar 

  • Igarashi T, Yamamoto A, Goto N (1995a) Characterization of the dextranase gene (dex) of Streptococcus mutans and its recombinant product in an Escherichia coli host. Microbiol Immunol 39:387–391

    CAS  Google Scholar 

  • Igarashi T, Yamamoto A, Goto N (1995b) Sequence analysis of the Streptococcus mutans Ingbritt dex a gene encoding extra cellular dextranase. Microbiol Immunol 39:853–860

    CAS  Google Scholar 

  • Igarashi T, Yamamoto A, Goto N (2000) Nucleotide sequence and molecular characterization of a dextranase gene from Streptococcus doweni. Microbiol Immunol 45:341–348

    Google Scholar 

  • Igarashi T, Morisaki H, Goto N (2004) Molecular characterization of dextranase from Streptococcus rattus. Microbiol Immunol 48:155–162

    CAS  Google Scholar 

  • Khalikova E, Susi P, Korpela T (2005) Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol Mol Biol Rev 69:306–325

    Article  CAS  Google Scholar 

  • Lawman P, Bleiweis AS (1991) Molecular cloning of the extracellular endodextranase of Streptococcus salivarius. J Bacteriol 173:7423–7428

    CAS  Google Scholar 

  • Lee JH, Kim GH, Kim SH, Cho DL, Kim DW, Day DF, Kim D (2006) Treatment with glucanhydrolase from Lipomyces starkeyi for removal of soluble polysaccharides in sugar processing. J Microbiol Biotechnol 16:983–987

    CAS  Google Scholar 

  • McFeeter RF (1980) A manual method for reducing sugar determinations with 2,2′-bicinchoninate reagent. Anal Biochem 103:302–306

    Article  Google Scholar 

  • Nakai H, Kanehisa M (1991) Expert system for predicting protein localization sites in gram-negative bacteria. Proteins 11:95–110

    Article  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, Von Heijine G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  • Oguma T, Kurokawa T, Tobe K, Kobayashi M (1995) Cloning and sequence analysis of the cycloisomaltooligosaccharide glucanotransferase gene from Bacillus circulans T-3040 and expression in Escherichia coli cells. J Appl Glycosci 42:415–419

    CAS  Google Scholar 

  • Wongchawalit J, Yamamoto T, Nakai H, Kim YM, Sato N, Nishimoto M, Okuyama M, Mori H, Saji O, Chanchao C, Wongsiri S, Surarit R, Svasti J, Chiba S, Kimura A (2006) Purification and characterization of α-glucosidase I from Japanese honeybee (Apis cerana japonica) and molecular cloning of its cDNA. Biosci Biotechnol Biochem 70:2889–2898

    Article  CAS  Google Scholar 

  • Wynter CVA, Galea CF, Cox LM, Dawson MW, Patel BK, Inkerman PA, Hamilton S (1995) Thermostable dextranases: screening, detection and preliminary characterization. J Appl Bacteriol 79:203–212

    CAS  Google Scholar 

  • Wynter CVA, Chan M, De Jersey J, Patel B, Inkerman PA, Hamilton S (1997) Isolation and characterization of a thermostable dextranase. Enzyme Microb Technol 20:242–247

    Article  Google Scholar 

  • Yamamoto T, Terasawa K, Kim YM, Kimura A, Kitamura Y, Kobayashi M, Funane K (2006) Identification of catalytic amino acids of cyclodextran glucanotransferase from Bacillus circulans T-3040. Biosci Biotechnol Biochem 70:147–1953

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by grant No. RTI05-01-01 from the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE), South Korea. We are also thankful to Korea Basic Science Institute Gwangju Branch for the DNA sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doman Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YM., Kim, D. Characterization of novel thermostable dextranase from Thermotoga lettingae TMO. Appl Microbiol Biotechnol 85, 581–587 (2010). https://doi.org/10.1007/s00253-009-2121-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2121-6

Keywords

Navigation