Skip to main content
Log in

Sequence analysis and heterologous expression of a new cytochrome P450 monooxygenase from Rhodococcus sp. for asymmetric sulfoxidation

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a 3.7-kb DNA fragment was cloned from Rhodococcus sp. ECU0066, and the sequence was analyzed. It was revealed that the largest one (2,361 bp) of this gene fragment encodes a protein consisting of 787 amino acids, with 73% identity to P450RhF (accession number AF45924) from Rhodococcus sp. NCIMB 9784. The gene of this new P450 monooxygenase (named as P450SMO) was successfully expressed in Escherichia coli BL21 (DE3), and the enzyme was also purified and characterized. In the presence of reduced nicotinamide adenine dinucleotide phosphate, the enzyme showed significant sulfoxidation activity towards several sulfides, with (S)-sulfoxides as the predominant product. The p-chlorothioanisole, p-fluorothioanisole, p-tolyl methyl sulfide, and p-methoxythioanisole showed relatively higher activities than the other sulfides, but the stereoselectivity for p-methoxythioanisole was much lower. The optimal activity of the purified enzyme toward p-chlorothioanisole occurred at pH 7.0 and 30°C. The current study is the first to report a recombinant cytochrome P450 enzyme of Rhodococcus sp. which is responsible for the asymmetric oxidation of sulfides. The new enzymatic activity of P450SMO on the above compounds makes it an attractive biocatalyst for asymmetric synthesis of enantiopure sulfoxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bell KS, Philp JC, Aw DW, Christofi N (1998) The genus Rhodococcus. J Appl Microbiol 85:195–210

    Article  CAS  Google Scholar 

  • Chauvaux S, Chevalier F, Le Dantec C, Fayolle F, Miras I, Kunst F, Beguin P (2001) Cloning of a genetically unstable cytochrome P-450 gene cluster involved in degradation of the pollutant ethyl tert-butyl ether by Rhodococcus ruber. J Bacteriol 183:6551–6557

    Article  CAS  Google Scholar 

  • Dehmel U, Engesser KH, Timmis KN, Dwyer DF (1995) Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310. Arch Microbiol 163:35–41

    Article  CAS  Google Scholar 

  • Boyd DR, Sharma ND, Haughey SA, Kennedy MA, McMurray BT, Sheldrake GN, Allen CCR, Dalton H, Sproule K (1998) Toluene and naphthalene dioxygenase-catalysed sulfoxidation of alkyl aryl sulfides. J Chem Soc, Perkin Trans 1(12):1929–1934

    Article  Google Scholar 

  • Fruetel J, Chang YT, Collins J, Loew G, Ortiz de Montellano PR (1994) Thioanisole sulfoxidation by cytochrome P450cam (CYP101): experimental and calculated absolute stereochemistries. J Am Chem Soc 116:11643–11648

    Article  CAS  Google Scholar 

  • Furusawa Y, Nagarajan V, Tanokura M, Masai E, Fukuda M, Senda T (2004) Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J Mol Biol 342:1041–1052

    Article  CAS  Google Scholar 

  • Guo H, Xiong J (2006) A specific and versatile genome walking technique. Gene 381:18–23

    Article  CAS  Google Scholar 

  • Hamman MABD, Haehner-Daniels SA, Wrighton AE, Rettie Hall SD (2000) Stereoselective sulfoxidation of sulindac sulfide by flavin-containing monooxygenases. Comparison of human liver and kidney microsomes and mammalian enzymes. Biochem Pharmacol 60:7–17

    Article  CAS  Google Scholar 

  • Harshavardhan D, Ranajit C, Jagjit SY (2005) Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92

    Article  Google Scholar 

  • Holland HL (1988) Chiral sulfoxidation by biotransformation of organic sulfides. Chem Rev 88:473–485

    Article  CAS  Google Scholar 

  • Holland HL (1992) Organic synthesis with oxidative enzymes. VCH, New York, p 255

    Google Scholar 

  • Holland HL (2001) Biotransformation of organic sulfides. Nat Prod Rep 18:171–181

    Article  CAS  Google Scholar 

  • Holland HL, Brown FM, Kerridge A, Penkos P, Arensdor J (2003) Biotransformation of sulfides by Rhodococcus erythropolis. J Mol Catal B: Enzymatic 22:219–223

    Article  CAS  Google Scholar 

  • Inmaculada F, Noureddine K (2003) Recent developments in the synthesis and utilization of chiral sulfoxides. Chem Rev 103:3651–3705

    Article  Google Scholar 

  • Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci USA 104:16822–16826

    Article  CAS  Google Scholar 

  • Karlson U, Dwyer DF, Hooper SW, Moore ER, Timmis KN, Eltis LD (1993) Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate. J Bacteriol 175:1467–1474

    CAS  Google Scholar 

  • Lambeth JD, Seybert DW, Lancaster JR, Salerno JC, Kamin H (1982) Steroidogenic electron transport in adrenal cortex mitochondria. Mol Cell Biochem 45:13–31

    Article  CAS  Google Scholar 

  • Larkin MJ, De Mot R, Kulakov LA, Nagy I (1998) Applied aspects of Rhodococcus genetics. Antonie Van Leeuwenhoek 74:133–153

    Article  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    Article  CAS  Google Scholar 

  • Li AT, Zhang JD, Xu JH, Lu WY, Lin GQ (2009) Isolation of Rhodococcus sp. ECU0066: a new sulfide monooxygenase producing strain for asymmetric sulfoxidation. Appl Environ Microbiol 75:551–556

    Article  CAS  Google Scholar 

  • Liu L, Schmid RD, Urlacher VB (2006) Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygenase from Rhodococcus ruber DSM 44319. Appl Microbiol Biotechnol 72:876–882

    Article  CAS  Google Scholar 

  • Malik ZA, Allen CC, Gakhar L, Lipscomb DA, Larkin MJ, Ramaswamy S (2002) Crystallization and preliminary X-ray diffraction analysis of naphthalene dioxygenase from Rhodococcus sp. strain NCIMB 12038. Acta Crystallogr D Biol Crystallogr 58:2173–2174

    Article  Google Scholar 

  • Mata EG (1996) Recent advances in the synthesis of sulfoxides from sulfides. Phosphorus 117:231–286

    Article  CAS  Google Scholar 

  • Maurice M, Pichard L, Daujat M, Fabre I, Joyeux H, Domergue J, Maurel P (1992) Effects of imidazole derivatives on cytochromes P450 from human hepatocytes in primary culture. FASEB J 6:752–758

    CAS  Google Scholar 

  • McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJM, Holt R, Brinkman FSL, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103:15582–15587

    Article  Google Scholar 

  • Mikolajczyk M, Drabowicz J, Kielbasinski P (1997) Chiral sulfur reagents: applications in asymmetric and stereoselective synthesis. CRC, Boca Raton

    Google Scholar 

  • Munro AW, Lindsay JG, Coggins JR, Kelly SM, Price NC (1996) Analysis of the structural stability of the multidomain enzyme flavocytochrome P-450 BM3. Biochim Biophys Acta 1296:127–137

    Google Scholar 

  • Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J, de Mot R (1995) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177:676–687

    CAS  Google Scholar 

  • Nakayama N, Takemae A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem (Tokyo) 119:435–440

    CAS  Google Scholar 

  • Nanne MK, Arjen JJO, Marco WF, Dick BJ (2003) Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase. Appl Environ Microbiol 69:419–426

    Article  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  Google Scholar 

  • Prince RC, Grossman MJ (2003) Substrate preferences in biodesulfurization of diesel range fuels by Rhodococcus sp. strain ECRD-1. Appl Environ Microbiol 69:5833–5838

    Article  CAS  Google Scholar 

  • Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ (2002) Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 184:3898–3908

    Article  CAS  Google Scholar 

  • Roberts GA, Celik A, Hunter DJ, Ost TW, White JH, Chapman SK, Turner NJ, Flitsch SL (2003) A self-sufficient cytochrome P450 with a primary structural organization that includes a flavin domain and a [2Fe–2S] redox center. J Biol Chem 278:48914–48920

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the RDX hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine degradation gene cluster from Rhodococcus rhodochrous 11Y. Appl Environ Microbiol 68:4764–4771

    Article  CAS  Google Scholar 

  • Tanaka Y, Matsui T, Konishi J, Maruhashi K, Kurane R (2002) Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl Microbiol Biotechnol 59:325–328

    Article  CAS  Google Scholar 

  • Verras A, Alian A, Ortiz de Montellano PR (2006) Cytochrome P450 active site plasticity: attenuation of imidazole binding in cytochrome P450cam by an L244A mutation. Protein Eng Design Selection 19:491–496

    Article  CAS  Google Scholar 

  • Warhurst AM, Fewson CA (1994) Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14:29–73

    Article  CAS  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:3003.1–3003.9

    Article  Google Scholar 

  • Zhang WJ, Yamini R (2002) Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Disp 30:314–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant nos. 20506037 and 20672037), Ministry of Science and Technology, P.R. China (grant nos. 2006AA02Z205 and 2007AA02Z225) and China National Special Fund for State Key Laboratory of Bioreactor Engineering (grant no. 2060204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JD., Li, AT., Yang, Y. et al. Sequence analysis and heterologous expression of a new cytochrome P450 monooxygenase from Rhodococcus sp. for asymmetric sulfoxidation. Appl Microbiol Biotechnol 85, 615–624 (2010). https://doi.org/10.1007/s00253-009-2118-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2118-1

Keywords

Navigation