Skip to main content

Advertisement

Log in

Minimizing losses in bio-electrochemical systems: the road to applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bio-electrochemical systems (BESs) enable microbial catalysis of electrochemical reactions. Plain electrical power production combined with wastewater treatment by microbial fuel cells (MFCs) has been the primary application purpose for BESs. However, large-scale power production and a high chemical oxygen demand conversion rates must be achieved at a benchmark cost to make MFCs economical competitive in this context. Recently, a number of valuable oxidation or reduction reactions demonstrating the versatility of BESs have been described. Indeed, BESs can produce hydrogen, bring about denitrification, or reductive dehalogenation. Moreover, BESs also appear to be promising in the field of online biosensors. To effectively apply BESs in practice, both biological and electrochemical losses need to be further minimized. At present, the costs of reactor materials have to be decreased, and the volumetric biocatalyst activity in the systems has to be increased substantially. Furthermore, both the ohmic cell resistance and the pH gradients need to be minimized. In this review, these losses and constraints are discussed from an electrochemical viewpoint. Finally, an overview of potential applications and innovative research lines is given for BESs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006a) Microbial fuel cells for wastewater treatment. Water Sci Technol 54:9–15

    CAS  PubMed  Google Scholar 

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006b) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    CAS  PubMed  Google Scholar 

  • Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008a) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78:409–418

    CAS  PubMed  Google Scholar 

  • Aelterman P, Rabaey K, De Schamphelaire L, Clauwaert P, Boon N, Verstraete W (2008b) Microbial fuel cells as an engineered ecosystem. In: Wall J, Harwood CS, Demain AL (eds) Bioenergy. ASM, Washington, DC, USA, pp 307–320

  • Allen RM, Bennetto HP (1993) Microbial fuel-cells-electricity production from carbohydrates. Appl Biochem Biotechnol 39:27–40

    Google Scholar 

  • Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41:2554–2559

    CAS  PubMed  Google Scholar 

  • Back JH, Kim MS, Cho H, Chang IS, Lee JY, Kim KS, Kim BH, Park YI, Han YS (2004) Construction of bacterial artificial chromosome library from electrochemical microorganisms. FEMS Microbiol Lett 238:65–70

    CAS  PubMed  Google Scholar 

  • Bergel A, Feron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904

    CAS  Google Scholar 

  • Blake RC, Howard GT, McGinness S (1994) Enhanced yields of iron-oxidizing bacteria by in-situ electrochemical reduction of soluble iron in the growth-medium. Appl Environ Microbiol 60:2704–2710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Logan BE (2007a) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9:492–496

    Google Scholar 

  • Cheng S, Logan BE (2007b) Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS 104:18871–18873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    CAS  PubMed  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, DeSchamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    CAS  PubMed  Google Scholar 

  • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569

    CAS  PubMed  Google Scholar 

  • Clauwaert P, Tolêdo R, Van der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K (2008) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57:575–579

    CAS  PubMed  Google Scholar 

  • De Schamphelaire L, Van den Bossche K, Dang HS, Hofte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058

    PubMed  Google Scholar 

  • De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325

    PubMed  Google Scholar 

  • Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    CAS  PubMed  Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim Acta 53:598–603

    CAS  Google Scholar 

  • Freguia S, Rabaey K, Yuan ZG, Keller J (2008) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42:1387–1396

    CAS  PubMed  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604

    CAS  PubMed  Google Scholar 

  • Hammes F, Berney M, Wang YY, Vital M, Koster O, Egli T (2008) Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res 42:269–277

    CAS  PubMed  Google Scholar 

  • Harnisch F, Schröder U, Scholz F (2008) The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. Environ Sci Technol 42:1740–1746

    CAS  PubMed  Google Scholar 

  • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electroanalysis 18:2009–2015

    CAS  Google Scholar 

  • He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 41:5212–5217

    Google Scholar 

  • Kim J, Kang B (2008) DBPs removal in GAC filter-adsorber. Water Res 42:145–152

    CAS  PubMed  Google Scholar 

  • Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    CAS  PubMed  Google Scholar 

  • Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT (2004) Enrichment of microbial community generating electricity using a fuel cell type electrochemical cell. Appl Microbiol Biotechnol 63:672–681

    CAS  PubMed  Google Scholar 

  • Kim GT, Webster G, Wimpenny JWT, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101:698–710

    CAS  PubMed  Google Scholar 

  • Lee JY, Phung NT, Chang IS, Kim BH, Sung HC (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223:185–191

    CAS  PubMed  Google Scholar 

  • Liang P, Huang X, Fan MZ, Cao XX, Wang C (2007) Composition and distribution of internal resistance in three types of microbial fuel cells. Appl Microbiol Biotechnol 77:551–558

    CAS  PubMed  Google Scholar 

  • Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    CAS  PubMed  Google Scholar 

  • Liu H, Cheng SA, Logan BE (2005a) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol 39:5488–5493

    CAS  PubMed  Google Scholar 

  • Liu H, Grot S, Logan BE (2005b) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    CAS  PubMed  Google Scholar 

  • Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952

    CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    CAS  PubMed  Google Scholar 

  • Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    CAS  PubMed  Google Scholar 

  • Niessen J, Schroder U, Rosenbaum M, Scholz F (2004) Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem Commun 6:571–575

    CAS  Google Scholar 

  • Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167:11–17

    CAS  Google Scholar 

  • Orfei LH, Simison S, Busalmen JP (2006) Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface. Environ Sci Technol 40:6473–6478

    CAS  PubMed  Google Scholar 

  • Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292

    CAS  Google Scholar 

  • Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hofte M, Verstraete W, Rabaey K (2008) Metabolites produced by Pseudomonas sp enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77:1119–1129

    CAS  PubMed  Google Scholar 

  • Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233:77–82

    CAS  PubMed  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    CAS  PubMed  Google Scholar 

  • Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535

    CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabaey K, Boon N, Hofte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401–3408

    CAS  PubMed  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005b) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082

    CAS  PubMed  Google Scholar 

  • Rabaey K, Vandesompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40:5218–5224

    CAS  PubMed  Google Scholar 

  • Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18

    CAS  PubMed  Google Scholar 

  • Rabaey K, Read S, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519–527.

    CAS  PubMed  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    CAS  PubMed  Google Scholar 

  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    CAS  PubMed  Google Scholar 

  • Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New York, USA, pp 434–437

    Google Scholar 

  • Rosenbaum M, Schroder U, Scholz F (2006) Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions. J Solid State Electrochem 10:872–878

    CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Buisman CJN (2006a) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211

    CAS  PubMed  Google Scholar 

  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006b) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31:1632–1640

    CAS  Google Scholar 

  • Rozendal R, Sleutels THJA, Hamelers HVM, Buisman CJN (2007a) Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. In: Proceedings of the 11th IWA World Congress on Anaerobic Digestion: Bioenergy for Our Future. PP3A.3, IWA, Brisbane, Australia

  • Rozendal RA, Hamelers HVM, Molenkmp RJ, Buisman JN (2007b) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994

    CAS  PubMed  Google Scholar 

  • Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    CAS  PubMed  Google Scholar 

  • Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    PubMed  Google Scholar 

  • Serway RA, Beichner RJ (2000) Physics for scientists and engineers with modern physics. Saunders College Publishing, Philadelphia, USA, pp 846–848

    Google Scholar 

  • Shantaram A, Beyenal H, Raajan R, Veluchamy A, Lewandowski Z (2005) Wireless sensors powered by microbial fuel cells. Environ Sci Technol 39:5037–5042

    CAS  PubMed  Google Scholar 

  • Shin SH, Choi YJ, Na SH, Jung SH, Kim S (2006) Development of bipolar plate stack type microbial fuel cells. Bull Korean Chem Soc 27:281–285

    CAS  Google Scholar 

  • Ter Heijne A, Hamelers HVM, Buisman CJN (2007) Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ Sci Technol 41:4130–4134

    CAS  PubMed  Google Scholar 

  • Terheijne A, Hamelers HVM, De Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205

    CAS  Google Scholar 

  • Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746

    CAS  PubMed  Google Scholar 

  • van Loosdrecht MCM, Heijnen JJ, Eberl H, Kreft J, Picioreanu C (2002) Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek Int J Gen Molec Microbiol 81:245–256

    Google Scholar 

  • Verstraete W, van Vaerenbergh E (1986) Aerobic activated sludge. In: Rehm HJ, Reed G (eds) Biotechnology, vol. 8. VCH, Weinheim, Germany, pp 43–112

  • Yu EH, Chang K, Scott K, Logan BE (2007) Microbial fuel cell performance with non-Pt cathode catalysts. J Power Sources 171:275–281

    Google Scholar 

  • Zhao F, Harnisch F, Schroder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    CAS  Google Scholar 

  • Zhao F, Harnisch F, Schrorder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Environ Sci Technol 40:5193–5199

    CAS  PubMed  Google Scholar 

  • Zuo Y, Cheng S, Call D, Logan BE (2007) Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ Sci Technol 41:3347–3353

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The useful comments of Nico Boon are kindly acknowledged. This research was funded by a PhD grant (IWT grant 53305) of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen), a postdoctoral grant (EX2006-0963) from the Spanish Ministry of Education and Science and the Flanders Research Foundation (FWO project G.0172.05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clauwaert, P., Aelterman, P., Pham, T.H. et al. Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79, 901–913 (2008). https://doi.org/10.1007/s00253-008-1522-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1522-2

Keywords

Navigation