Skip to main content
Log in

Consistent across-tissue signatures of differential gene expression in Crohn's disease

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

An approach based on analysis of variance was applied to raw expression data on 44,760 transcripts in order to identify those with significant differential expression across ileum and colon in Crohn's disease (CD) and ulcerative colitis (UC). The design treated tissue as a block effect, thereby removing this effect statistically and increasing the power to test for effects of disease states (control, CD, and UC). A significant F-statistic for the disease effect was not correlated with the ratios CD/control or UC/control, evidently because many transcripts with high-expression ratios to the control showed inconsistent patterns across tissues. Of 1,053 transcripts showing a significant effect of disease state at the 1% level by the bootstrap test, 508 showed significant difference at the 1% level in a post hoc test for difference between the mean scores for CD and control. These included a number of genes relevant to the mechanism of pathogenesis of CD and a number of genes mapping to genomic regions that have previously shown linkage to CD in association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An S, Zheng Y, Bleu T (2000) Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5. J Biol Chem 275:288–296

    Article  PubMed  CAS  Google Scholar 

  • Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau W-C, Ledoux P, Rudnev D, Lash AE, Fijibuchi W, Edgar R (2005) NCBI GEO: mining millions of expression profiles—database and tools. Nucleic Acids Res 33:D562–D566

    Article  PubMed  CAS  Google Scholar 

  • Bashirova AA, Wu L, Cheng J, Martin TD, Martin MP, Benveniste RE, Lifson JD, KewalRamani VN, Hughes A, Carrington M (2003) Novel member of the CD209 (DC-SIGN) gene family in primates. J Virol 77:217–227

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3:521–533

    Article  PubMed  CAS  Google Scholar 

  • Carboni S, Aboul-Enein F, Waltzinger C, Killenn N, Lassmann H, Peña-Rossi C (2003) CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis. J Neuroimmunol 145:1–11

    Article  PubMed  CAS  Google Scholar 

  • Cho JH, Nicolae DL, Ramos R, Fields CT, Rabenau K, Corradino S, Brant SR, Espinosa R, LeBeau M, Hanauer SB, Bodzin J, Bonen DK (2000) Linkage and linkage disequilibrium in chromosome band 1p36 in American Chaldeans with inflammatory bowel disease. Hum Mol Genet 9:1425–1432

    Article  PubMed  CAS  Google Scholar 

  • Devauchelle V, Chiocchia G (2004) Quelle place pour les puces à AND dans les maladies inflammatoires? Rev Med Interne 25:732–739

    Article  PubMed  CAS  Google Scholar 

  • Dieckgraefe BK, Stenson WF, Korzenik JR, Swanson PE, Harrington CA (2000) Analysis of mucosal gene expression in inflammatory bowel disease by parallel nucleotide arrays. Physiol Genomics 4:1–11

    PubMed  CAS  Google Scholar 

  • Gasche C, Alizadeh BZ, Peña AS (2003) Genotype–phenotype correlations: how many disorders constitute inflammatory bowel disease? Eur J Gastroenterol Hepatol 15:599–608

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeck TB, Terensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000) identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:575–585

    Article  PubMed  Google Scholar 

  • Girardin SE, Hugot J-P, Sansonetti PJ (2003) Lessons from Nod2 studies: towards a link between Crohn's disease and bacterial sensing. Trends Immunol 24:652–658

    Article  PubMed  CAS  Google Scholar 

  • Heller RA, Schena M, Chai A, Shalon D, Bedilion T, Gilmore J, Woolley DE, Davis RW (1997) Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc Natl Acad Sci U S A 94:2150–2155

    Article  PubMed  CAS  Google Scholar 

  • Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603

    Article  PubMed  CAS  Google Scholar 

  • Iwai K, Hirata K, Ishida T, Takeuchi S, Hirase T, Rikitake Y, Kojima Y, Inoue N, Kawashima S, Yokoyama M (2004) An anti-proliferative gene BTG1 regulates angiogenesis in vitro. Biochem Biophys Res Comm 316:628–635

    Article  PubMed  CAS  Google Scholar 

  • Kashiwakura J, Yokoi H, Saito H, Okayama Y (2004) T cell proliferation by direct crosstalk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles beetween human tonsillar and lung cultured mast cells. J Immunol 173:5247–5257

    PubMed  CAS  Google Scholar 

  • Kok K, Stokkers P, Reitsma PH (2004) Genomics and proteomics: implications for inflammatory bowel diseases. Inflamm Bowel Dis 10(Suppl 1):S1–S6

    Article  PubMed  Google Scholar 

  • Langmann T, Moehle C, Mauerer R, Scharl M, Liebisch G, Zahn A, Stremmel W, Schmitz G (2004) Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 127:26–40

    Article  PubMed  CAS  Google Scholar 

  • Mannick EE, Bonomolo JC, Horswell R, Lentz JJ, Serano M-S, Zapata-Velandia A, Gastanaduy M, Himel JL, Rose SL, Udall JN Jr, Hornick CA, Liu Z (2004) Gene expression in mononuclear cells from patients with inflammatory bowel disease. Clin Immunol 112:247–257

    Article  PubMed  CAS  Google Scholar 

  • Negoro K, McGovern DPB, Kinouchi Y, Takahashi S, Lench NJ, Shimosegawa T, Carey A, Cardon LR, Jewell DP, van Heel DA (2005) Analysis of the IBD5 locus and potential gene–gene interactions in Crohn's disease. Gut 52:541–546

    Article  Google Scholar 

  • Pal S, Nemeth MJ, Bodine D, Miller JL, Svaren J, Thein SL, Lowry PJ, Bresnick EH (2004) Neurokinin-B transcription in erythroid cells. J Biol Chem 279:31348–31356

    Article  PubMed  CAS  Google Scholar 

  • Pruitt KD, Tausova T, Maglott DR (2005) NCBI reference sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–D504

    Article  PubMed  CAS  Google Scholar 

  • Russell RK, Nimmo ER, Satsangi J (2004) Molecular genetics of Crohn's disease. Curr Opin Genet Dev 14:264–270

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman, San Francisco, CA

    Google Scholar 

  • Van Heel DA, Fisher SA, Kirby A, Daly MJ, Rioux JD, Lewis CM, Genome Scan Meta-Analysis Group of the IBD International Genetics Consortium (2005) Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum Mol Genet 13:763–770

    Article  CAS  Google Scholar 

  • Watts DA, Satsangi J (2002) The genetic jigsaw of inflammatory bowel disease. Gut 50:31–36

    Google Scholar 

  • Wu Q, Zhang T, Cheng J-F, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM, Maniatis T (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res 11:389–404

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q-H, Ye M, Wu X-Y, Ren S-X, Zhao M, Zhao C-J, Fu G, Shen Y, Fan H-Y, Lu G, Zhong M, Xu X-R, Han Z-G, Zhang J-W, Tao J, Huang Q-H, Zhao J, Hu G-X, Gu J, Chen S-J, Chen Z (2000) Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells. Genome Res 10:1546–1560

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grant GM43940 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin L. Hughes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, A.L. Consistent across-tissue signatures of differential gene expression in Crohn's disease. Immunogenetics 57, 709–716 (2005). https://doi.org/10.1007/s00251-005-0044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0044-7

Keywords

Navigation