Skip to main content

Advertisement

Log in

Assessing Fungal Community Structure from Mineral Surfaces in Kartchner Caverns Using Multiplexed 454 Pyrosequencing

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Research on the distribution and structure of fungal communities in caves is lacking. Kartchner Caverns is a wet and mineralogically diverse carbonate cave located in an escarpment of Mississippian Escabrosa limestone in the Whetstone Mountains, Arizona, USA. Fungal diversity from speleothem and rock wall surfaces was examined with 454 FLX Titanium sequencing technology using the Internal Transcribed Spacer 1 as a fungal barcode marker. Fungal diversity was estimated and compared between speleothem and rock wall surfaces, and its variation with distance from the natural entrance of the cave was quantified. Effects of environmental factors and nutrient concentrations in speleothem drip water at different sample sites on fungal diversity were also examined. Sequencing revealed 2,219 fungal operational taxonomic units (OTUs) at the 95 % similarity level. Speleothems supported a higher fungal richness and diversity than rock walls. However, community membership and the taxonomic distribution of fungal OTUs at the class level did not differ significantly between speleothems and rock walls. Both OTU richness and diversity decreased significantly with increasing distance from the natural cave entrance. Community membership and taxonomic distribution of fungal OTUs also differed significantly between the sampling sites closest to the entrance and those furthest away. There was no significant effect of temperature, CO2 concentration, or drip water nutrient concentration on fungal community structure on either speleothems or rock walls. Together, these results suggest that proximity to the natural entrance is a critical factor in determining fungal community structure on mineral surfaces in Kartchner Caverns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barton HA, Jurado V (2007) What’s up down there? Microbial diversity in caves. Microbe Am Soc Microbiol 2(3):132

    Google Scholar 

  2. Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69(1):163–178

    Google Scholar 

  3. Jones B (2001) Microbial activity in caves—a geological perspective. Geomicrobiol J 18(3):345–357

    Article  CAS  Google Scholar 

  4. Bhullar K, Waglechner N, Pawlowski A et al. (2012) Antibiotic resistance is prevalent in an isolated cave Microbiome. Aziz RK ed. PLoS ONE 7(4): e34953

  5. Jurado V, Laiz L, Rodriguez-Nava V et al (2010) Pathogenic and opportunistic microorganisms in caves. Int J Speleol 39:15–24

    Article  Google Scholar 

  6. Barton H, Taylor M, Pace N (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21(1):11–20

    Article  CAS  Google Scholar 

  7. Schabereiter-Gurtner C, Saiz-Jimenez C, Pinar G, Lubitz W, Rolleke S (2004) Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonan and La Garma). FEMS Microbiol Ecol 47(2):235–247

    Article  CAS  PubMed  Google Scholar 

  8. Bastian F, Jurado V, Novakova A, Alabouvette C, Saiz-Jimenez C (2010) The microbiology of Lascaux cave. Microbiology 156(3):644–652

    Article  CAS  PubMed  Google Scholar 

  9. Vanderwolf K, Malloch D, McAlpine D, Forbes G (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42(1):9

    Article  Google Scholar 

  10. Hsu MJ, Agoramoorthy G (2001) Occurrence and diversity of thermophilous soil microfungi in forest and cave ecosystems of Taiwan. Fungal Divers 7:27–33

    Google Scholar 

  11. Grishkan I, Nevo E, Wasser SP (2004) Micromycetes from the Saline Arubotaim cave: Mount Sedom, the Dead sea Southwestern Shore, Israel. J Arid Environ 57(4):431–443

    Article  Google Scholar 

  12. Koilraj AJ, Marimuthu G, Natarajan K, Saravanan S, Maran P, Hsu M (1999) Fungal diversity inside caves of Southern India. Curr Sci 77:1081–1084

    Google Scholar 

  13. Nováková A (2009) Microscopic fungi isolated from the Domica Cave system(Slovak Karst National Park, Slovakia). A review. Int J Speleol 38(1):71–82

    Article  Google Scholar 

  14. Docampo S, Mar Trigo M, Recio M, Melgar M, García-Sánchez J, Cabezudo B (2011) Fungal spore content of the atmosphere of the cave of Nerja (southern Spain): diversity and origin. Sci Total Environ 409(4):835–843

    Article  CAS  PubMed  Google Scholar 

  15. Blehert DS, Hicks AC, Behr M et al (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323(5911):227

    Article  CAS  PubMed  Google Scholar 

  16. Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117(9):638–649

    Article  PubMed  Google Scholar 

  17. Lorch JM, Meteyer CU, Behr MJ et al (2011) Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480(7377):376–378

    Article  CAS  PubMed  Google Scholar 

  18. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432

    Article  Google Scholar 

  19. Blackwell M (2011) The fungi: 1, 2, 3 … 5.1 million species? Am J Bot 98(3):426–438

    Article  PubMed  Google Scholar 

  20. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci U S A 103(32):12115–12120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hugenholtz P, Pace N (1996) Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol 14(6):190–197

    Article  CAS  PubMed  Google Scholar 

  22. Reeder J, Knight R (2009) The “rare biosphere”: a reality check. Nat Methods 6(9):636–637

    Article  CAS  PubMed  Google Scholar 

  23. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12(1):118–123

    Article  CAS  PubMed  Google Scholar 

  24. Nagy LG, Petkovits T, Kovács GM et al (2011) Where is the unseen fungal diversity hidden? A study of Mortierella reveals a large contribution of reference collections to the identification of fungal environmental sequences. New Phytol 191(3):789–794

    Article  PubMed  Google Scholar 

  25. Ikner LA, Toomey RS, Nolan G et al (2006) Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microb Ecol 53(1):30–42

    Article  PubMed  Google Scholar 

  26. Blasch K (2011) Methodology to assess water presence on speleothems during periods of low precipitation, with implications for recharge sources—Kartcnher Caverns, Arizona. J Cave Karst Stud 73(2):63–74

    Article  Google Scholar 

  27. Legatzki A, Ortiz M, Neilson JW et al (2012) Factors influencing observed variations in the structure of bacterial communities on calcite formations in Kartchner Caverns, AZ, USA. Geomicrobiol J 29(5):422–434

    Article  Google Scholar 

  28. Vaughan MJ, Maier R, Pryor B (2011) Fungal communities on speleothem surfaces in Kartchner Caverns, Arizona, USA. Int J Speleol 40(1):65–77

    Article  Google Scholar 

  29. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322

    Chapter  Google Scholar 

  30. Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296(1):97–101

    Article  CAS  PubMed  Google Scholar 

  31. Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109(16):6241–6246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schloss PD et al (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12(7):1889–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sun Y, Cai Y, Liu L, Yu F, Farrell ML, McKendree W, Farmerie W (2009) ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Res 37(10):e76

    Article  PubMed Central  PubMed  Google Scholar 

  35. Nilsson RH, Veldre V, Hartmann M, Unterseher M, Amend A, Bergsten J, Kristiansson E, Ryberg M, Jumpponen A, Abarenkov K (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol 3(4):284–287

    Article  Google Scholar 

  36. U’Ren JM, Dalling JW, Gallery RE, Maddison DR, Davis EC, Gibson CM, Arnold AE (2009) Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples. Mycol Res 113(4):432–449

    Article  PubMed  Google Scholar 

  37. Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User’s guide and application published at: http://purl.oclc.org/estimates

  38. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  39. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19(24):5555–5565

    Article  CAS  PubMed  Google Scholar 

  40. U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99(5):898–914

    Article  PubMed  Google Scholar 

  41. U’Ren JM, Lutzoni F, Miadlikowska J, Arnold AE (2010) Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb Ecol 60:340–353

    Article  PubMed  Google Scholar 

  42. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  43. Palmer MW (1993) Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74(8):2215

    Article  Google Scholar 

  44. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167

    Article  Google Scholar 

  45. Ortiz M, Neilson JW, Nelson WM, Legatzki A, Byrne A, Yu Y, Wing RA, Soderlund CA, Pryor BM, Pierson LS, Maier RM (2012) Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ. Microb Ecol 65(2):371–383

    Article  PubMed  Google Scholar 

  46. Jurado V, Sanchez-Moral S, Saiz-Jimenez C (2008) Entomogenous fungi and the conservation of the cultural heritage: a review. Int Biodeterior Biodegrad 62(4):325–330

    Article  Google Scholar 

  47. Gunde-Cimerman N, Zalar P, Jeram S (1998) Mycoflora of cave cricket Troglophilus neglectus cadavers. Mycopathologia 141(2):111–114

    Article  Google Scholar 

  48. Benoit JB, Yoder JA, Zettler LW, Hobbs HH (2004) Mycoflora of a trogloxenic cave cricket, Hadenoecus cumberlandicus (Orthoptera: Rhaphidophoridae), from two small caves in northeastern Kentucky. Ann Entomol Soc Am 97(5):989–993

    Article  Google Scholar 

  49. Shapiro J, Pringle A (2010) Anthropogenic influences on the diversity of fungi isolated from caves in Kentucky and Tennessee. Am Midl Nat 163(1):76–86

    Article  Google Scholar 

  50. Martin F (2014) The ecological genomics of fungi. Wiley, Ames

    Google Scholar 

  51. Welbourn C (1999) Invertebrate cave fauna of Kartchner Caverns, Kartchner Caverns, Arizona. J Cave Karst Stud 61(2):93–101

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Arizona State Parks, the RIM volunteers, and the Kartchner Caverns Cave Unit for all of the support they have provided in sampling and teaching us about Kartchner. Special thanks goes to Steve Willsey for leading the sampling expeditions and Dr. Bob Casavant for organizing them. We would also like to thank Jana U’Ren for her help with the statistical analyses. Thanks are also due to Mary Kay Amistadi at ALEC for analyzing the drip water samples. This study was supported in part by the College of Agriculture and Life Sciences, University of Arizona, by the Arizona State Parks system, and by the National Science Foundation (NSF-MCB #0604300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry M. Pryor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supp. Fig. 1

A principal component analysis (PCA) was conducted to examine the relationships among observed nutrient concentrations and sample sites. The PCA biplot reveals the relationship among measured drip water nutrient content and sites for water collection. The position of sampling sites in relation to the arrows for each nutrient depicts the relative concentration of each nutrient in each sample. Examination of the biplot reveals that separation of sites was strongly correlated with iron and sodium concentrations. The biplot also reveals that separation among samples reflects sampling sites rather than substrate types (GIF 54 kb)

High Resolution (EPS 437 kb)

Supp. Table 1

(DOCX 188 kb)

Supp. Table 2

(PDF 281 kb)

Supp. Table 3

(DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaughan, M.J., Nelson, W., Soderlund, C. et al. Assessing Fungal Community Structure from Mineral Surfaces in Kartchner Caverns Using Multiplexed 454 Pyrosequencing. Microb Ecol 70, 175–187 (2015). https://doi.org/10.1007/s00248-014-0560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0560-9

Keywords

Navigation