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Abstract The hypolithic microbial community associated
with quartz pavement at a high-altitude tundra location in
central Tibet is described. A small-scale ecological survey
indicated that 36% of quartz rocks were colonized.
Community profiling using terminal restriction fragment
length polymorphism revealed no significant difference in
community structure among a number of colonized rocks.
Real-time quantitative PCR and phylogenetic analysis of
environmental phylotypes obtained from clone libraries
were used to elucidate community structure across all
domains. The hypolithon was dominated by cyanobacterial
phylotypes (73%) with relatively low frequencies of other
bacterial phylotypes, largely represented by the chloroflexi,
actinobacteria, and bacteriodetes. Unidentified crenarchaeal
phylotypes accounted for 4% of recoverable phylotypes,
while algae, fungi, and mosses were indicated by a small
fraction of recoverable phylotypes.

Introduction

The study of lithic microbial communities, those inhabiting
rock substrates, has been gathering momentum due to a
growing appreciation of their importance in extreme desert
ecosystems where higher plants are rare or absent [14, 17],
and their application as model systems in ecological studies
due to their simple community structure [34] and relevance
to astrobiologists as analogs for possible life on the cold
arid surface of Mars [5, 25]. Lithic microbial colonization
can be categorized according to orientation with respect to
the substrate into epiliths (on above-ground rock surfaces),
hypoliths (on below-ground rock surfaces), chasmoliths (in
cracks and fissures in rocks), and endoliths (within the rock
matrix itself) [14, 18].

The study of hypoliths has aroused much recent interest
since they tend to occur on translucent stones such as
quartz, which are a near-ubiquitous substrate in arid
locations worldwide including hot and cold deserts, polar
regions, and high-altitude tundra. The term hypolith refers
to the organisms, while hypolithon is used to describe the
hypolithic community [18]. Hypolithic colonization is
viewed as a stress-avoidance strategy from UV radiation
and is also envisaged to confer marginal gains in moisture
availability that creates a more favorable niche than the
surrounding soil [34].

Early surveys of desert flora reported occurrence of
hypolithic microbial colonization [10, 16]. Subsequent re-
search identified cyanobacteria as the most common phylum
observed in hypolithon from the Negev Desert [3], Antarctic
Dry Valleys [7, 8], Namib Desert [9], coastal Antarctic [30],
Mojave Desert [28], Arctic tundra [11], Atacama Desert [35],
and Taklimakan Desert [34]. Morphological studies indicated
hot arid deserts supported an apparent monoculture of
Chroococcidiopsis sp. [34, 35], while polar regions supported
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a relatively more diverse cyanobacterial assemblage compris-
ing various Oscillatoriales, Aphanocapsa, Aphanothece,
Chroococcidiopsis, and Gloeocapsa morphotypes [8, 12].
Culture-independent molecular studies revealed greater cya-
nobacterial diversity including the presence of diazotrophic and
filamentous taxa plus a heterotrophic bacterial component quite
distinct from the surrounding soil [26–28, 30, 35].

The presence of eukaryotic algal morphotypes [8, 12] and
phylotypes [26] has been recorded for the polar hypolithon,
and culture-independent molecular studies have also revealed
fungal phylotypes in arid Mojave Desert hypoliths [28].
Eukaryotic signatures could not, however, be detected from
hypolithon in the hyper-arid Atacama and Taklimakan
Deserts [34, 35]. The archaea have not been detected in
polar hypoliths [26] or those from warm hyper-arid deserts
[27, 35]. Whether the archaea occur as essential components
of other hypolithic communities remains unresolved.

Here we identify microbial diversity across all domains of
hypolithic communities in the high-altitude Tibetan tundra,
and thus expand knowledge of hypolithic biodiversity into a
previously uninvestigated environment and across multiple
domains of microbial life. Importantly, we show that the
Tibetan tundra hypolithon is distinct from that in other
locations investigated to date, and comprises archaeal, algal,
fungal, and moss components in addition to the cyanobacteria-
dominated bacterial assemblage.

Materials and Methods

Field Sampling

The field location was a large un-named plain typical of the
region’s terrain in Gyirong County, in the central southern
region of the Tibet Autonomous Region of China (N29°07′,
E85° 22.05′, altitude 4,638 m). The region is characterized as
a cold desert [21], with an arid tundra landscape experiencing
long snowbound winters and brief arid summers punctuated
by moisture input from snowmelt and rainfall. Sampling was
carried out in October 2005. A small-scale randomized
hierarchical sampling was carried out by employing triplicate
1-m2 quadrats deployed at three separate locations across an
area of 100 m2. Colonization was visually detected as a green

Figure 1 a Quartz pavement at the central Tibetan field location,
quadrat=1 m2; b Typical subsurface hypolithic colonization on a quartz
rock, black line drawn with marker pen indicates ground surface level,
scale bar=2 cm
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band of microbial growth on the subsurface of stones. For
each quadrat, three colonized rocks were randomly selected
for molecular community analysis. All samples were asepti-
cally transferred to sterile (gamma-irradiated) sealable plastic
bags and stored at ambient temperature (at or near freezing) in
darkness until processed (approx. 2 weeks travel from the
remote field site). On-site measurements of photosynthetically
active radiation (PAR), UV-A and UV-B radiation was carried
out at solar noon using a Li-Cor LI-I400 datalogger (Li-Cor
Inc, Nebraska) for PAR, and a UVUVX radiometer (UVP Inc,
California) for UV irradiance. For transmittance studies
through rock substrates, the sensor was placed in situ under
quartz rocks, and edges were sealed using plasticine.

Microscopy

Microscopic examination was carried out using Scanning
Electron Microscopy (SEM) (Stereoscan 440, Leica, Cam-
bridge, UK). Colonized quartz surfaces were fractured from
stones using a geological hammer and fixed in 2.5%
glutaraldehyde for 8 h, air-dried overnight, and then gold-
sputter-coated for 30 s (SCD 005, BAL-TEC, Lichtenstein)
prior to visual examination.

Recovery of Environmental DNA and Target Loci

Total DNA recovery was achieved separately for each sample
by lysis in CTAB with lysozyme and RNAse, followed by
phenol:chloroform extraction at 60°C. Genomic DNA was
checked for quality by electrophoresis in 1% agarose gels and
quantified by spectrophotometry (Smartspec Plus, Bio-Rad,
California). Universal PCR primers used to target small subunit
rRNA genes for bacteria, archaea, and eukarya using 8F [AGA
GTT TGATCC TGGCTCAG] and 1391R [GACGGGCGG
TGW GTR CA]) [23], and 8Fa [TCY SGT TGA TCC TGC
S] [13] and 1492R [GGT TAC CTT GTTATG ACT T] [19].

Real-Time Quantitative PCR (q-PCR)

PCR amplification was quantified in real time (Applied
Biosystems prism 7000, California) by flourometric mon-
itoring with SYBR Green 1 dye (Invitrogen, California).
All standard curves were constructed using plasmids from
cloned rRNA genes (Qiagen, California) separately for
archaea, bacteria, and eukarya.

The number of copies in standards was calculated using
the Zbio.net online converter (http://www.molbiol.ru/eng/

scripts/01_07.html). Slopes of the standard curves generat-
ed were−3.03, −3.21, and −3.28 for archaea, bacteria, and
eukarya, respectively. All three standard curves achieved a
high-correlation coefficient (>0.99). Quantification of genes
in each sample was performed in triplicate. Absolute copy
number of genes was obtained by interpolation from the
respective standard curves generated.

Terminal Restriction Fragment Length
Polymorphism (t-RFLP)

Since q-PCR revealed that the vast majority of recoverable
phylotypes in all samples were bacterial, we used bacterial
t-RFLP as a proxy for diversity. PCR was carried out
independently on the nine samples using a ROX-labeled
forward primer. Gel-purified amplicons were digested using
restriction enzymes HaeIII and MspI (with MspI digest
selected for further analysis). Fragment analysis was achieved
by capillary electrophoresis (Applied Biosystems 3730
Genetic Analyzer), using a GeneScan ROX-labeled GS500
internal size standard. T-RFLP patterns and quality were
analyzed using the freeware PeakScanner™ (version 1.0)
(Applied Biosystems https://products.appliedbiosystems.
com), and a data matrix comprising fragment sizes and
abundance was generated. The Perl and R routines [1] were
then used to identify true peaks and binned fragments of
similar size. The relative abundance of a true terminal
restriction fragment within a given t-RFLP pattern was
generated as a ratio of the respective peak area. A virtual
digest using MspI was carried out on the sequences retrieved
from the bacterial clone library. This allowed the assignment
of phylogenetic identity to individual peaks. All t-RFLP
GeneScan reads were repeated in triplicate.

Clone Library Construction and Sequencing

Since no significant difference between individual rRNA
gene-defined rock communities could be determined using
t-RFLP, equimolar mixtures of pooled PCR amplicons from
each quadrat were used in the construction of three separate
clone libraries for archaea, bacteria, and eukarya. Each
pooled sample was gel-purified and used as template for
construction of the three clone libraries (Qiagen PCR
Cloningplus kit, CA, US). Plasmids were extracted from
positive transformants (Mini-M™ Plasmid DNA extraction
system, Viogene, Taiwan) and screened by restriction
fragment length polymorphism (RFLP) using the restriction
endonucleases MspI and CfoI. At least three samples from
each distinct RFLP pattern were sequenced using the BigDye
Terminator Cycle Sequencing kit (Applied Biosystems,
California) (Applied Biosystems 3730 Genetic Analyzer).
Phylotypes were delineated on the basis of 97% sequence
similarity. All sequences generated by this study have been

Figure 3 Phylogenetic relationships among cyanobacterial 16S rRNA
phylotypes recovered from hypolithon in Tibetan tundra. Phylotypes
recovered during this study are shown in bold type. Tree topologies
are supported by Bayesian posterior probabilities (first number) and
bootstrap values for 1,000 replications (second number). Scale bar
represents 0.1 nucleotide changes per position

�
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deposited in the NCBI GenBank database under accession
numbers FJ790594–FJ790668. Sampling effort was assessed
by the calculation of Coverage and Rarefaction curves, and
estimates of library richness were made using the non-
parametric estimators ACE and Chao 1. All OTU delineation
was made on the basis of sequenced phylotypes.

Sequence Analysis

Approximate phylogenetic affiliations were determined by
BLASTsearches of the NCBI GenBank database (http://www.

ncbi.nlm.nic.gov/). Screening for possible chimeric sequences
used Chimera_Check (Ribosome Database Project, http://rdp.
cme.msu.edu.html). Multiple alignments were created with
reference to selected GenBank sequences using Clustal X
v.1.81 [33]. Maximum likelihood analysis was performed
using PAUP* 4.0b8 [31]. Bayesian posterior probabilities
and bootstrap values (1,000 replications) are shown for
branch nodes supported by more than 50% of the trees.

Results and Discussion

A small-scale survey of colonization at the site indicated
that 35.8% (n=455) of quartz rocks were colonized. A
typical quadrat and colonized quartz rock are pictured in
Fig. 1. No significant difference in colonization frequency
among the nine quadrats was recorded, although we

Figure 5 Phylogenetic relation-
ships among archaeal 18S rRNA
phylotypes recovered from
hypolithon in Tibetan tundra.
Phylotypes recovered during
this study are shown in bold
type. Tree topologies are
supported by Bayesian
posterior probabilities
(first number) and bootstrap
values for 1,000 replications
(second number). Scale bar
represents 0.1 nucleotide
changes per position

Figure 4 Phylogenetic relationships among bacterial 16S rRNA
phylotypes recovered from hypolithon in Tibetan tundra. Phylotypes
recovered during this study are shown in bold type. Tree topologies
are supported by Bayesian posterior probabilities (first number) and
bootstrap values for 1,000 replications (second number). Scale bar
represents 0.1 nucleotide changes per position
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emphasize that this survey was not intended to infer
landscape-scale patterns. The colonization frequency was
significantly lower than that recorded in similar surveys for
the warm arid Mojave Desert [28], the Arctic tundra, and
the coastal Antarctic [13] where near-100% colonization
occurred. It was, however, markedly higher than the values
of around 5% typically reported for the hyper-arid warm
and polar deserts [26, 34, 35]. The greatest similarity in
colonization frequency was with snow-melt influenced soils
(22%) in the Antarctic Dry Valleys [26]. Frequency of
colonization has been directly linked to moisture stress in
warm deserts [35], and although other stressors such as
temperature and irradiance are also likely to be important in
polar and high-altitude deserts, it is reasonable to assume
that colonization frequency generally reflects the level of

aridity. Microscopic observation of colony morphology
revealed an unstructured mass of coccoid bacterial cells,
plus larger morphotypes suggestive of algal cells and fungal
hyphae (Supplementary Online Material, Fig. S1). Biomass
was embedded in a copious extracellular polymeric substance
and this likely obscured other morphotypes.

Temperature (soil 5.8–28.4°C, air sub-freezing −12.8°C)
and irradiance (PAR 2,072 µm/m2/s, UV-A 2.89 mw/cm2,
UV-B 1,734 mw/cm2) at the time of sampling were
recorded but have limited context for long-lived microbial
communities such as these [35], except to reflect that UV
levels were approximately fivefold greater than at sea level
in southern China at the same time. Historical climate data
indicates that a cold desert tundra environment has
persisted in central Tibet over a geological timescale [21].

Figure 6 Phylogenetic relation-
ships among algal 18S rRNA
phylotypes recovered from
hypolithon in Tibetan tundra.
Phylotypes recovered during
this study are shown in bold
type. Tree topologies are
supported by Bayesian
posterior probabilities
(first number) and bootstrap
values for 1,000 replications
(second number). Scale bar
represents 0.1 nucleotide
changes per position

736 F. K. Y. Wong et al.



A ‘greenhouse’ warming effect for the hypolithic habitat
has been observed in the Mojave Desert [28], and this was
reasoned to be most advantageous during colder winter
periods. It is reasonable to envisage a similar benefit to
hypoliths in the cold tundra environment of Tibet. We
observed that colonized quartz filtered 96.3% (±3.3) of PAR
and 100% of incident UV-A and UV-B. At high altitudes
where UV irradiance is high this filtering effect is likely
critical in terms of community development. Although
Chroococcidiopsis is also noted for its radiation-tolerance
[4] it is likely that organisms with lower tolerance to
radiation stress may exist within the community due to this
filtering effect. The hypolithic lifestyle can therefore be
viewed as generally a stress-avoidance strategy, and the term
‘refugia’ has been used to describe hypolithic niches in this
regard [12].

We utilized q-PCR to establish copy number of rRNA genes
as a proxy for the absolute and relative abundance of taxa.
These revealed that for bacteria a mean of 8×106 copies/cm2

colonized rock (±7.6×104) occurred. This corresponded to an
estimated 92.6% of the overall recoverable phylotypes for a
given colonized rock. Markedly lower values were obtained
for archaea (0.37×106 copies/cm2 colonized rock ±11.8×103,
4.3% of total) and eukarya (0.27×106 copies/cm2 colonized
rock ±3.1×103, 3.1% of total). Other studies using an inter-
domain quantitative approach recorded significantly higher
copy number for bacteria and eukarya for Antarctic Dry
Valleys hypoliths [26] and maritime Antarctic soils [37],
although the relative abundance between domains was broadly
comparable between all three studies suggesting that commu-
nity structure of hypoliths varies less than standing biomass.

Since q-PCR revealed that bacteria formed the vast
majority of recoverable phylotypes, we used bacterial–
terminal restriction fragment length polymorphisms (t-RFLP)
as a proxy for overall diversity to assess variation among
colonized rocks. Analysis of t-RFLP taxon-abundance
profiles revealed no significant difference between rocks
(Supplementary Online Material, Fig. S2). Phylogenetic
identity was assigned to t-RFLP fragments (on the basis of
matching sequences from clone libraries) and revealed that
the small variation in t-RFLP profiles could be largely
explained by the presence/absence of plastid phylotypes and
different 16S rRNA-defined strains of Chroococcidiopsis
and Leptolyngbya. The t-RFLP analysis resulted in fewer
recoverable phylotypes than the clone library approach using
the same PCR primers (<60% the number of phylotypes
recovered using clone library), and these generally corre-
sponded to those that were most abundant in the clone library.
The potential for underestimating community diversity using
this technique has been acknowledged [6] and highlights the
need for polyphasic studies where multiple approaches can
be used to validate datasets.

Environmental DNAwas used as template for construction
of three separate clone libraries using bacteria-, archaea-, and
eukarya-specific PCR primers. Estimates of rarefaction, Chao
1, ACE, and Sobs indicated that sampling had approached
asymptote for bacterial (n=103), archaeal (n=48), and
eukaryal (n=49) libraries. The relatively low diversity
encountered in extreme desert environments explains how
library sufficiency can be approached with relatively small
libraries. Sequencing revealed a total of 62 unique phylo-
types (<97% sequence similarity) and these were each
assigned to a given phylum based upon phylogenetic
identity. By interpolating with q-PCR data we were able to
produce an estimate of average overall microbial diversity-
abundance across all three domains (Fig. 2). This indicated a
community dominated by cyanobacteria (73% of recoverable
phylotypes across all domains). This is in general agreement
with the only other quantitative estimate of hypolithic
community composition, from the Antarctic Dry Valleys
[26]. The most commonly recovered cyanobacterial phylo-
types indicated Chroococcidiopsis (FJ790616, FJ790614)
and a Phormidium-like taxon (FJ790627) (Fig. 3). Other
cyanobacterial phylotypes belonging to Leptolyngbya, Nostoc,
Oscillatoria, and some unidentified phylotypes were all
present at low abundances of <10%. Most displayed
phylogenetic affiliations with cyanobacterial phylotypes were
recovered from hypoliths in the Taklimakan Desert, desert
varnish in the Atacama Desert, or Antarctic lakes [22, 27, 32]
(Fig. 3). The Chroococcidiopsis, Leptolyngbya, and Nostoc
phylotypes indicate diazotrophic potential in the community
in addition to photoautotrophy. Cyanobacterial (and algal)
primary production appeared to support a relatively low
abundance of other taxa and this probably also reflects the

Figure 7 Phylogenetic relationships among fungal 18S rRNA
phylotypes recovered from hypolithon in Tibetan tundra. Phylotypes
recovered during this study are shown in bold type. Tree topologies
are supported by Bayesian posterior probabilities (first number) and
bootstrap values for 1,000 replications (second number). Scale bar
represents 0.1 nucleotide changes per position
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nutrient-limiting conditions for heterotrophy in this hypolithic
niche.

Non-cyanobacterial phyla accounted for approximately
20% of total recoverable phylotypes. Among these the
Actinobacteria, Bacteriodetes, and Chloroflexi phylotypes
were most commonly encountered (Fig. 4). These had
highest affiliation to the Alpine, Antarctic, and Atacama
Desert phylotypes and so probably also represent cold/arid-
adapted phylotypes. The Chloroflexi have also been recovered
from tundra soils in Tibet [13] and hypolithon of warm hyper-
arid deserts in China [27]. A likely ecological role for these
photoheterotrophs in arid environments is therefore emerging,
in addition to their well-studied role in hot spring microbial
mats (e.g. [24]). Additional phyla previously recovered from
the hypolithon in other deserts were present in the library
with relatively low abundance (∼1%); including the Acid-
obacteria, Deinococci, and Gamma Proteobacteria. This low
diversity and abundance may reflect the lack of available
organic substrates in addition to environmental stress, since
hypolithic communities are thought to rely to a significant
degree by photo-excretory products from the primary
producers in nutrient-poor desert soils [28].

The second most abundant domain after the bacteria was
the crenarchaeota (4.3% of recoverable phylotypes). A
single phylotype (FJ790594) with phylogenetic affiliations
to uncultivated soil crenarchaeotes from non-extreme
environments accounted for 90% of archaeal phylotypes
(Fig. 5). The archaea remain a relatively under-studied
domain in environmental microbiology and almost nothing
is known of their ecological role. It is apparent that at the
rRNA gene level they appear phylogenetically less diverse
in the environment than bacteria [2]. Few studies have
targeted archaea in lithic niches, but they were regarded as
absent from hypolithon in hyper-arid warm deserts [27, 34]
and Antarctic Dry Valleys hypoliths [26], and endoliths
[15], after repeated attempts to amplify archaeal rRNA genes
using archaea-specific PCR primers.

Moss phylotypes accounted for almost half of the
recoverable phylotypes from the eukaryal clone library but
accounted for only around 1.5% of overall phylotypes in
the hypolithon. Moss phylotypes indicated a Pottia-like
organism that is known as a common colonist in polar
locations [29]. No visual evidence of moss growth was
observed, and this suggests that the moss phylotypes may
have represented resting structures awaiting more favorable
conditions for germination. Presence of the known endo-
lithic lichen phycobiont Trebouxia sp. and related taxa
[36] was indicated (Fig. 6) although the only fungal
phylotype recovered (Elutherascus sp.) (Fig. 7) is not a
previously recorded lichen mycobiont. The nature of the
lichen relationship in lithic environments is poorly understood
and so this may reflect a previously unappreciated lichen
association and/or free living eukaryotes.

The occurrence and multi-domain composition of this
community may have important ecological implications.
Primary productivity estimates for Tundra soils have not
previously taken into account the hypolithic community, and
this is clearly a significant subsurface category of biomass in
otherwise biologically relatively depauperate tundra soils. All
three components (cyanobacteria, putative lichen, and moss)
are known individually as colonists of cold environments
[14]. The major cyanobacterial component can be envisaged
as being a significant driver of carbon and nitrogen input.
The lichenized part of the community may become important
under severe xeric conditions since lichens can exploit niches
with relatively low-water activities [20]. Conversely, the
mosses can be envisaged to provide a significant contribution
to productivity in times of moisture sufficiency. This presents
a picture of a cold-adapted community with partitioned
activity among co-colonists that creates the potential for
hypolithic productivity over a range of moisture availability
regimes encountered in the high-altitude Tibetan tundra.
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