Skip to main content
Log in

Morphological and Phylogenetic Analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from Tropical Inland Water Bodies

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Anabaenopsis spp. are heterocytous cyanobacteria commonly found in tropical, subtropical, and temperate water bodies. So far, the knowledge about the phylogeny of this genus is poor. Therefore, we have isolated 15 Anabaenopsis spp. strains from Kenyan and Mexican alkaline and saline water bodies and from a Ugandan freshwater body and studied the morphology and phylogeny in a polyphasic approach. Morphologically, the investigated strains could be discriminated in two groups. One group was containing six Anabaenopsis abijatae and A. cf. abijatae strains with up to more than 500 vegetative cells in one filament, mostly single intercalary heterocyte formation, and the ability to branch out. The other group comprised nine strains of Anabaenopsis elenkinii with short filaments with up to 38 vegetative cells, intercalary heterocytes in pairs, and no ability to branch out. The morphological differences were reflected in the two distinct clusters, which were found in the phylogenetic trees of 16S rDNA and PC-IGS. While the high 16S rDNA similarity values >97.5% found between all investigated A. abijatae and A. elenkinii strains support the assignment of these two species to one single genus, the morphological differences and the low similarity values (<87.3) found in PC-IGS sequences between the two clusters indicate two separate genera. A close morphological and phylogenetic relationship was found for A. abijatae and Anabaenopsis (Cyanospira) rippkae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Anagnostidis K, Komárek J (1990) Modern approach to the classification of the Cyanophytes, 5-Stigonematales. Arch Hydrobiol Suppl/Algological Studies 59:1–73

    Google Scholar 

  2. Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS, Codd GA, Pflugmacher S (2004a) Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res 26:925–935

    Article  CAS  Google Scholar 

  3. Ballot A, Dadheech PK, Krienitz L (2004b) Phylogenetic relationship of Arthrospira, Phormidium and Spirulina strains from Kenyan and Indian waterbodies. Arch Hydrobiol Suppl/Algological Studies 113:37–56

    Google Scholar 

  4. Ballot A, Krienitz L, Kotut K, Wiegand C, Pflugmacher S (2005) Cyanobacteria and cyanobacterial toxins in the alkaline crater lakes Sonachi and Simbi, Kenya. Harmful Algae 4:139–150

    Article  CAS  Google Scholar 

  5. Bittencourt-Oliveira MC, Oliveira MC, Bolch CS (2001) Genetic variability of Brazilian strains of the Microcystis aeruginosa complex (cyanobacteria/cyanophyceae) using the phycocyanin intergenic spacer and flanking regions (cpcBA). J Phycol 37:810–818

    Article  CAS  Google Scholar 

  6. Bolch CJS, Blackburn SI, Neilan BA (1996) Genetic characterization of strains of cyanobacteria using PCR-RFLP of the cpcBA intergenic spacer and flanking regions. J Phycol 32:445–451

    Article  CAS  Google Scholar 

  7. Bolch CJS, Orr PT, Jones GJ, Blackburn SI (1999) Genetic, morphological, and toxicological variation among globally distributed strains of Nodularia (cyanobacteria). J Phycol 35:339–355

    Article  CAS  Google Scholar 

  8. Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF, Kjelleberg S (2007) Use of 16S rRNA and rpoB gemnes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73:278–288

    Article  PubMed  CAS  Google Scholar 

  9. Cook CM, Vardaka E, Lanaras T (2004) Toxic cyanobacteria in Greek freshwaters, 1987–2000: occurrence, toxicity, and impacts in the Mediterranean region. Acta Hydrochim Hydrobiol 32:107–124

    Article  CAS  Google Scholar 

  10. Dyble J, Paerl HW, Neilan BA (2002) Genetic characterization of Cylindrospermopsis raciborskii (Cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA-IGS nucleotide sequence analysis. Appl Environ Microbiol 68:2567–2571

    Article  PubMed  CAS  Google Scholar 

  11. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  PubMed  CAS  Google Scholar 

  12. Florenzano G, Sili C, Pelosi E, Vincenzini M (1985) Cyanospira rippkae and Cyanospira capsulata (gen. nov. and spp. nov.): new filamentous heterocystous cyanobacteria from Magadi lake (Kenya). Arch Microbiol 140:301–306

    Article  Google Scholar 

  13. Fox GE, Wisotzkey KD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bact 42:166–170

    Article  CAS  Google Scholar 

  14. Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592

    PubMed  CAS  Google Scholar 

  15. Gkelis S, Rajaniemi P, Vardaka E, Moustaka Gouni M, Lanaras T, Sivonen K (2005) Limnothrix redekii (Van Goor) Meffert (cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microb Ecol 49:176–182

    Article  PubMed  CAS  Google Scholar 

  16. Gugger MF, Hoffmann L (2004) Polyphyly of true branching cyanobacteria. Int J Syst Evol Microbiol 54:349–357

    Article  PubMed  CAS  Google Scholar 

  17. Hayes PK, Barker GLA (1997) Genetic diversity within Baltic Sea populations of Nodularia (Cyanobacteria). J Phycol 33:919–923

    Article  Google Scholar 

  18. Hällfors G (1979) A preliminary check-list of the phytoplankton of the northern Baltic Sea. Publ Water Res Inst, National Board of Waters Finland 34:3–24, Helsinki

    Google Scholar 

  19. Hegewald E, Krienitz L, Schnepf E (1994) Studies on Scenedesmus costato-granulatus Skuja. Nova Hedwigia 59:97–127

    Google Scholar 

  20. Hoffmann L, Castenholz RW (2001) Subsection V. (Formerly Stigonematales Geitler 1925). In: Boone DR, Castenholz RW (eds) Bergey’s Manual of Systematic Bacteriology. The Archaea and the Deeply Branching and Phototrophic Bacteria 2nd ed. vol. 1. Springer, New York, pp 589–599

  21. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2002) rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiology 148:481–496

    PubMed  CAS  Google Scholar 

  22. Jeeji-Bai N, Hegewald E, Soeder CJ (1977) Revision and taxonomic analysis of the genus Anabaenopsis. Arch Hydrobiol Suppl/Algological Studies 18:3–24

    Google Scholar 

  23. Jeeji-Bai N, Hegewald E, Soeder C J (1980) Taxonomic studies on the genus Anabaenopsis (Wolosz.) Miller. In: Desikachary TV, Rajarao VN (Eds) Taxonomy of Algae. Univ. Madras, 115–145

  24. Kebede E, Willén E (1996) Anabaenopsis abijatae, a new cyanophyte from Lake Abijata, an alkaline, saline lake in the Ethopian Rift Valley. Arch Hydrobiol/Algological Studies 80:1–8

    Google Scholar 

  25. Komarék J (2005) Phenotypic diversity of the heterocytous cyanoprokaryotic genus Anabaenopsis. Czech Phycology, Olomouc 5:1–35

    Google Scholar 

  26. Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes 4-Nostocales. Arch Hydrobiol Suppl/ Algolocical Studies 56:247–345

    Google Scholar 

  27. Kotai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae. Publication B-11/69. Norwegian Institute for Water Research, Oslo.

  28. Krienitz L (1988) Algologische Beobachtungen in Gewässern des Biosphärenreservates “Steckby-Lödderitzer Forst“ (DDR). Limnologica 19:61–81

    Google Scholar 

  29. Krienitz L, Hegewald E (1996) Über das Vorkommen von wärmeliebenden Blaualgenarten in einem norddeutschen See. Lauterbornia 26:55–63

    Google Scholar 

  30. Laamanen M, Gugger MF, Lehtimäki JM, Hauka K, Sivonen K (2001) Diversity of toxic and nontoxic Nodularia isolates (cyanobacteria) and filament from the Baltic Sea. Appl Environ Microbiol 67:4638–4647

    Article  PubMed  CAS  Google Scholar 

  31. Lyra C, Suomalainen S, Gugger M, Vezie C, Sundman P, Paulin L, Sivonen K (2001) Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis, and Planktothrix genera. Int J Syst Evol Microbiol 51:513–526

    PubMed  CAS  Google Scholar 

  32. Margheri MC, Piccardi R, Ventura S, Viti C, Giovannetti L (2003) Genotypic diversity of Oscillatoriacean strains belonging to the genera Geitlerinema and Spirulina determined by 16S rDNA restriction analysis. Curr Microbiol 46:359–365

    Article  PubMed  CAS  Google Scholar 

  33. Melack JM (1988) Primary producer dynamics associated with evaporative concentration in a shallow, equatorial soda lake (Lake Elmenteita, Kenya). Hydrobiologia 158:1–14

    Article  CAS  Google Scholar 

  34. Miller VV (1923) K sistematic roda Anabaena Bory (Zur Systematik der Gattung Anabaena Bory). Arch russ Protistol Obsc 2:116–126

    Google Scholar 

  35. Moisander PH, McClinton E, Paerl HW (2002) Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–442

    Article  PubMed  CAS  Google Scholar 

  36. Neilan BA, Jacobs D, Goodman A (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 6:3875–3883

    Google Scholar 

  37. Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    PubMed  CAS  Google Scholar 

  38. Oren A (2004) Prokaryote diversity and taxonomy: current status and future challenges. Phil Trans R Soc Lond B 359:623–638

    Article  CAS  Google Scholar 

  39. PCC (2004) PCC9215, Pasteur Culture Collection of Cyanobacteria. http://www.pasteur.fr/recherche/banques/PCC/index.html

  40. Posada D, Crandal KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  41. Rajaniemi P, Hrouzek P, Kastovska K, Willame R, Rantala A, Hoffmann L, Komárek J, Sivonen K (2005) Phylogenetic and morphological evolution of the genera Anabaena, Aphanizomenon, Trichormus, and Nostoc (Nostocales, Cyanobacteria). Int J Syst Evol Microbiol 55:11–26

    Article  PubMed  CAS  Google Scholar 

  42. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  43. Rippka R, Casternholz RW, Herdman M (2001) Subsection IV. (Formerly Nostocales (Castenholz 1989b sensu Rippka, Deruelles, Waterbury, Herdman and Stanier 1979). In Boone DR, Castenholz RW (eds) Bergey’s Manual of Systematic Bacteriology. The Archaea and the Deeply Branching and Phototrophic Bacteria 2nd ed. vol. 1. Springer, New York, pp 562–589

  44. Romo S, Miracle MR (1994) Population dynamics and ecology of subdominant phytoplankton species in a shallow hypertrophic lake (Albufera of Valencia, Spain). Hydrobiologia 273:37–56

    Article  Google Scholar 

  45. Sequentix (2006) Align. http://www.sequentix.de

  46. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition and bacteriology. Int J Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  47. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.0 b10. Sinauer, Sunderland, Massachusetts, USA.

  48. Teneva I, Dzhambazov B, Mladenov R, Schirmer K (2005) Molecular and phylogenetic characterization of Phormidium species (Cyanoprokaryota) using the cpcB-IGS-cpcA locus. J Phycol 41:188–194

    Article  CAS  Google Scholar 

  49. Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis, comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67:2810–2818

    Article  PubMed  CAS  Google Scholar 

  50. Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol (Suppl) 11:13–52

    CAS  Google Scholar 

  51. Vareschi E (1979) The ecology of Lake Nakuru (Kenya). II. Biomass and spatial distribution of fish (Tilapia grahami Boulenger). Oecologia 37:321–335

    Google Scholar 

  52. Vareschi E (1982) The ecology of Lake Nakuru (Kenya). III. Abiotic factors and primary production. Oecologia 55:81–101

    Article  Google Scholar 

  53. Wilmotte A (1994) Molecular evolution and taxonomy of cyanobacteria. In: Bryant DA (Ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 1–25

    Google Scholar 

  54. Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Boone DR, Castenholz RW (eds) Bergey´s manual of systematic bacteriology. The archaea and the deeply branching and phototrophic bacteria vol. 1. 2nd ed., Springer, New York, pp 487–493

    Google Scholar 

  55. Woloszyńska J (1912) Das Phytoplankton Einiger javanischer Seen, mit Berücksichtigung des Sawa-Planktons. Bull Acad Sci Cracovie, mat.-nat ser B. 1912:649–709

Download references

Acknowledgements

The authors thank the authorities of the Republic of Kenya, especially the Ministry of Education Science and Technology for providing research permission (No. MOEST 13/001/31 C90). We thank the Uganda National Council for Science and Technology for providing research permit (No. UNCST-EC584) and Eberto Novelo and La Gerencia del Lago de Texcoco, CNA, México, for permission to collect phytoplankton samples. We thank Randi Skulberg for providing the two NIVA-CYA strains from the NIVA Culture collection of Algae. We are grateful to the German Federal Ministry of Education and Research for financial support (grant No. BIOLOG 01LC0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ballot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballot, A., Dadheech, P.K., Haande, S. et al. Morphological and Phylogenetic Analysis of Anabaenopsis abijatae and Anabaenopsis elenkinii (Nostocales, Cyanobacteria) from Tropical Inland Water Bodies. Microb Ecol 55, 608–618 (2008). https://doi.org/10.1007/s00248-007-9304-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9304-4

Keywords

Navigation