Skip to main content
Log in

Quorum Sensing and Phenazines are Involved in Biofilm Formation by Pseudomonas chlororaphis (aureofaciens) Strain 30-84

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The biological control bacterium Pseudomonas chlororaphis (aureofaciens) strain 30-84 employs two quorum sensing (QS) systems: PhzR/PhzI regulates the production of the antibiotics phenazine-1-carboxylic acid, 2-hydroxy-phenazine-1-carboxylic acid, and 2-hydroxy-phenazine, whereas CsaR/CsaI regulates currently unknown aspects of the cell surface. Previously characterized derivatives of strain 30-84 with mutations in each QS system and in the phenazine biosynthetic genes were screened for their ability to form surface-attached biofilm populations in vitro, using microtiter plate and flow cell biofilm assays, and on seeds and roots. Results from in vitro, seed, and root studies demonstrated that the PhzR/PhzI and the CsaR/CsaI QS regulatory systems contribute to the establishment of biofilms, with mutations in PhzR/PhzI having a significantly greater effect than mutations in CsaR/CsaI. Interestingly, phenazine antibiotic production was necessary for biofilm formation to the same extent as the PhzR/PhzI QS system, suggesting the loss of phenazines was responsible for the majority of the biofilm defect in these mutants. In vitro analysis indicated that genetic complementation or AHL addition to the growth medium restored the ability of the AHL synthase phzI mutant to form biofilms. However, only phenazine addition or genetic complementation of the phenazine biosynthetic mutation in trans restored biofilm formation by mutants defective in the transcriptional activator phzR or the phzB structural mutant. QS and phenazine production were also involved in the establishment of surface-attached populations on wheat seeds and plant roots, and, as observed in vitro, the addition of AHL extracts restored the ability of phzI mutants, but not phzR mutants, to form surface attached populations on seeds. Similarly, the presence of the wild type in mixtures with the mutants restored the ability of the mutants to colonize wheat roots, demonstrating that AHL and/or phenazine production by the wild-type population could complement the AHL- and phenazine-deficient mutants in situ. Together, these data demonstrate that both QS systems are involved in the formation of surface-attached populations required for biofilm formation by P. chlororaphis strain 30-84, and indicate a new role for phenazine antibiotics in rhizosphere community development beyond inhibition of other plant-associated microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abken, HJ, Tietze, M, Brodersen, J, Baumer, S, Beifuss, U, Deppenmeier, U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Go1. J Bacteriol 180: 2027–2032

    PubMed  CAS  Google Scholar 

  2. Arevalo-Ferro, C, Reil, G, Gorg, A, Eberl, L, Riedel, K (2005) Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Syst Appl Microbiol 28: 87–114

    Article  PubMed  CAS  Google Scholar 

  3. Bauer, WD, Mathesius, U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7: 429–433

    Article  PubMed  CAS  Google Scholar 

  4. Beloin, C, Ghigo, JM (2005) Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13: 16–19

    Article  PubMed  CAS  Google Scholar 

  5. Cao, H, Baldini, RL, Rahme, LG (2001) Common mechanisms for pathogens of plants and animals. Annu Rev Phytopathol 39: 259–284

    Article  PubMed  CAS  Google Scholar 

  6. Cha, C, Gao, P, Chen, YC, Shaw, PD, Farrand, SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11: 1119–1129

    Article  PubMed  CAS  Google Scholar 

  7. Christensen, BB, Sternberg, C, Andersen, JB, Palmer Jr, RJ, Nielsen, AT, Givskov, M, Molin, S (1999) Molecular tools for study of biofilm physiology. Methods Enzymol 310: 20–42

    PubMed  CAS  Google Scholar 

  8. Cucarella, C, Solano, C, Valle, J, Amorena, B, Lasa, I, Penades, JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183: 2888–2896

    Article  PubMed  CAS  Google Scholar 

  9. Davey, ME, Caiazza, NC, O'Toole, GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185: 1027–1036

    Article  PubMed  CAS  Google Scholar 

  10. Davies, DG, Parsek, MR, Pearson, JP, Iglewski, BH, Costerton, JW, Greenberg, EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298

    Article  PubMed  CAS  Google Scholar 

  11. Deziel, E, Comeau, Y, Villemur, R (2001) Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183: 1195–1204

    Article  PubMed  CAS  Google Scholar 

  12. Fuqua, C, Parsek, MR, Greenberg, EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35: 439–468

    Article  PubMed  CAS  Google Scholar 

  13. Genavaux, P, Muller, S, Bauda, P (1996) A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiol Lett 142: 27–30

    Article  Google Scholar 

  14. Heilmann, C, Gerke, C, Perdreau-Remington, F, Goetz, F (1996) Characterization of Tn917 insertion mutants of Staphylococcus epidermitis affected in biofilm formation. Infect Immun 64: 277–282

    PubMed  CAS  Google Scholar 

  15. Hernandez, ME, Newman, DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58: 1562–1571

    Article  PubMed  CAS  Google Scholar 

  16. Heydorn, A, Ersboll, BK, Hentzer, M, Parsek, MR, Givskov, M, Molin, S (2000) Experimental reproducibility in flow-chamber biofilms. Microbiology 146: 2409–2415

    PubMed  CAS  Google Scholar 

  17. Klausen, M, Heydorn, A, Ragas, P, Lambertsen, L, Aaes-Jorgensen, A, Molin, S, Tolker-Neilsen, T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48: 1511–1524

    Article  PubMed  CAS  Google Scholar 

  18. Kierek-Pearson, K, Karatan, E (2005) Biofilm development in bacteria. Adv Appl Microbiol 57: 79–111

    PubMed  CAS  Google Scholar 

  19. Laursen, JB, Nielsen, J (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104: 1663–1686

    Article  PubMed  CAS  Google Scholar 

  20. Lazazzera, BA (2005) Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol 2: 222–227

    Article  CAS  Google Scholar 

  21. Loo, CY, Corliss, DA, Ganeshkumar, N (2000) Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182: 1374–1382

    Article  PubMed  CAS  Google Scholar 

  22. Mazzola, M, Cook, RJ, Thomashow, LS, Weller, DM, Pierson, LS (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58: 2616–2624

    PubMed  CAS  Google Scholar 

  23. McLean, RJ, Whiteley, M, Stickler, DJ, Fuqua, WC (1997) Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol Lett 154: 259–263

    Article  PubMed  CAS  Google Scholar 

  24. Miller, MB, Bassler, BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165–199

    Article  PubMed  CAS  Google Scholar 

  25. Morris, CA, Monier, JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41: 429–453

    Article  PubMed  CAS  Google Scholar 

  26. O'Toole, G, Kaplan, HB, Kolter, R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54: 49–79

    Article  PubMed  Google Scholar 

  27. O'Toole, GA, Kolter, R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304

    Article  PubMed  Google Scholar 

  28. O'Toole, GA, Kolter, R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WC365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol Microbiol 28: 449–461

    Article  PubMed  Google Scholar 

  29. Parsek, MR, Greenberg, EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13: 27–33

    Article  PubMed  CAS  Google Scholar 

  30. Pierson III, LS, Keppenne, VD, Wood, DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density. J Bacteriol 176: 3966–3974

    PubMed  CAS  Google Scholar 

  31. Pierson, LS III, Thomashow, LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol Plant Microbe Interact 5: 330–339

    PubMed  CAS  Google Scholar 

  32. Pierson III, LS, Wood, DW, Pierson, EA, Chancey, ST (1998) Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36: 207–225

    Article  PubMed  CAS  Google Scholar 

  33. Pratt, LA, Kolter, R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30: 285–293

    Article  PubMed  CAS  Google Scholar 

  34. Ramey, BE, Koutsoudis, M, von Bodman, SB, Fuqua, C (2004) Biofilm formation in plant–microbe associations. Curr Opin Microbiol 7: 602–609

    Article  PubMed  CAS  Google Scholar 

  35. Rice, SA, Koh, KS, Queck, SY, Labbate, M, Lam, KW, Kjellberg, S (2005) Biofilm formation and sloughing in Serratia marcescens are controlled by quorum sensing and nutrient cues. J Bacteriol 187: 3477–3485

    Article  PubMed  CAS  Google Scholar 

  36. Rupp, ME, Ulphani, JS, Fey, PD, Mack, D (1999) Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesion/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immuol 67: 2656–2659

    CAS  Google Scholar 

  37. Sauer, K, Camper, AK (2001) Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 183: 6579–6589

    Article  PubMed  CAS  Google Scholar 

  38. Schuster, M, Lostroh, CP, Ogi, T, Greenberg, EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185: 2066–2079

    Article  PubMed  CAS  Google Scholar 

  39. Staskawicz, B, Dahlbreck, D, Keen, N, Napoli, C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169: 5789–5794

    PubMed  CAS  Google Scholar 

  40. Turner, JM, Messenger, AJ (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol 27: 211–275

    Article  PubMed  CAS  Google Scholar 

  41. Ulrich, RL, Hines, HB, Parthasarathy, N, Jeddeloh, JA (2003) Mutational analysis and biochemical characterization of the Burkholderia thailandensis DW503 quorum-sensing network. J Bacteriol 186: 4350–4360

    Article  CAS  Google Scholar 

  42. Von Bodman, SB, Bauer, WD, Coplin, DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41: 455–482

    Article  CAS  Google Scholar 

  43. Wagner, VE, Bushnell, D, Passador, L, Brooks, AI, Iglewski, BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185: 2080–2095

    Article  PubMed  CAS  Google Scholar 

  44. Watnick, PI, Kolter, R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34: 586–595

    Article  PubMed  CAS  Google Scholar 

  45. Whitehead, NA, Barnard, AM, Slater, H, Simpson, NJ, Salmond, GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25: 365–404

    Article  PubMed  CAS  Google Scholar 

  46. Wood, DW, Pierson III, LS (1996) The phzI gene of Pseudomonas aureofaciens 30-84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168: 49–53

    Article  PubMed  CAS  Google Scholar 

  47. Wood, DW, Gong, F, Aykin, MM, Williams, P, Pierson III, LS (1997) N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179: 7663–7670

    PubMed  CAS  Google Scholar 

  48. Yoshida, A, Ansai, T, Takehara, T, Kuramitsu, HK (2005) LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol 71: 2372–2380

    Article  PubMed  CAS  Google Scholar 

  49. Zhang, Z, Pierson III, LS (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67: 4305–4315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Patricia Figuli, Shaina Schwartz, and Dr. Cheryl Whistler for technical assistance and Christopher Rensing for critical discussions. This work was supported by USDA NRICGP grant No. 2001-02684.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Pierson III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddula, V.S.R.K., Zhang, Z., Pierson, E.A. et al. Quorum Sensing and Phenazines are Involved in Biofilm Formation by Pseudomonas chlororaphis (aureofaciens) Strain 30-84. Microb Ecol 52, 289–301 (2006). https://doi.org/10.1007/s00248-006-9064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9064-6

Keywords

Navigation