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Abstract
Local exponential stabilization of the three-dimensional Navier–Stokes system to a
given reference trajectory via receding horizon control (RHC) is investigated. The
RHC enters as the linear combinations of a finite number of actuators. The actuators
are spatial functions and can be chosen in particular as indicator functions whose
supports cover only a part of the spatial domain.
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1 Introduction

In this paper, we are concerned with the following controlled Navier–Stokes system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ty − νΔy + (y · ∇)y + ∇p = ∑N
i=1 ui�i + f̂ in (0,∞) × Ω,

div y = 0 in (0,∞) × Ω,

y = 0 on (0,∞) × ∂Ω,

y(0) = y0 in Ω,

(1.1)

where Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω , the vector

valued function y(t, x) = (y1(t, x), y2(t, x), y3(t, x)) stands for the fluid veloc-
ities, the real valued function p(t, x) indicates the pressure field, and f̂(t, x) =
( f̂1(t, x), f̂2(t, x), f̂3(t, x)) is a source field. Moreover, ν > 0 is the viscosity con-
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stant, y · ∇ denotes the differential operator y1∂x1 + y2∂x2 + y3∂x3 , and for N ∈ N

the vector valued functions �i (x) = (�i1(x),�i2(x),�i3(x)) with i = 1, . . . , N
are specified and defined as actuators. These actuators can be chosen as the indicator
functions whose supports are contained in an open subset ω of the domain Ω .

The control objective here is to find a control vector u(t) := [u1(t), . . . , uN (t)] ∈
L2((0,∞);RN ) by the receding horizon framework that steers system (1.1) to a
reference trajectory ŷ satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t ŷ − νΔŷ + (ŷ · ∇)ŷ + ∇p̂ = f̂ in (0,∞) × Ω,

div ŷ = 0 on (0,∞) × ∂Ω,

ŷ = 0 on (0,∞) × ∂Ω,

ŷ(0) = ŷ0 on Ω,

(1.2)

for any given ŷ0 in a neighbourhood of y0. Here, ŷ(t, x) = (ŷ1(t, x), ŷ2(t, x), ŷ3(t, x))
and p̂(t, x) denote the associated fluid velocities and the pressure field, respectively.
To be more precise, we show that there exists an r > 0 such that for every initial
function y0 satisfying ‖y0 − ŷ0‖H1

0 (Ω;R3) ≤ r , and the receding horizon state yrh
corresponding to the RHC urh(y0) ∈ L2((0,∞);RN ), it holds

‖yrh(t) − ŷ(t)‖2
H1
0 (Ω;R3)

≤ cV e
−ζ t‖y0 − ŷ0‖2H1

0 (Ω;R3)
∀t > 0,

where the positive constants cV and ζ are independent of y0.
One efficient approach for the stabilization of a class of continuous-time infinite-

dimensional controlled systems is receding horizon framework, see e.g., [1–5] and the
references therein. In this approach, a stabilizing RHC is constructed through the con-
catenation of a sequence of finite horizon open-loop optimal controls on overlapping
temporal intervals covering [0,∞). These optimal control problems are computed
according to a performance index function which enhances the desirable properties
and structures of the control. Here, for every T ∈ (0,∞], we consider the following
performance index function

JoT (u; t0, y0) :=
t0+T∫

t0

‖y(t) − ŷ(t)‖2
H1
0 (Ω;R3)

dt + β

t0+T∫

t0

|u(t)|22dt (1.3)

for β > 0 and initial pair (t0, y0) ∈ R+ × H1(Ω;R3), where | · |2 stands for the 
2-
norm. The receding horizon framework bridges to a certain degree the gap between
closed-loop control and open-loop control. Themain issue is then to justify the stability
of RHC. Depending on the structure of the underlying problem, this is usually done,
by techniques involving the design of appropriate sequences of temporal intervals,
using an adequate concatenation scheme, or adding terminal costs and\or constraints
to the finite horizon problems. Due to the structure of the receding horizon framework,
the resulting control acts as a feedback mechanism.
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Considering the performance index function defined in (1.3), the stabilization of
the control system (1.1) towards the trajectory ŷ of (1.2) can be also reformulated as
the following infinite horizon optimal control problem

inf
u∈L2((0,∞);RN )

{Jo∞(u; 0, y0) s.t. (1.1) and (1.2)}. (OPo∞(y0))

In connection to the infinite horizon problem OPo∞(y0), the receding horizon frame-
work delivers approximations to the solution of this problem which are considered
suboptimal solutions.

We continue our investigations on the receding horizon framework for infinite
horizon optimal control problems governed by partial differential equations, that we
initiated in [2] for autonomous systems and, recently extended in [3] for time-varying
infinite-dimensional linear systems. In this framework, the exponential stability and
suboptimality of RHC are obtained by generating an appropriate sequence of over-
lapping temporal intervals and applying a suitable concatenation scheme. There is
no need for terminal costs or terminal constraints imposed on the open-loop prob-
lems. Previously, this framework was investigated for finite-dimensional autonomous
systems in e.g, [6, 7] and for discrete-time autonomous systems in e.g, [8, 9].

In the receding horizon approach, we choose a sampling time δ > 0 and an appro-
priate prediction horizon T > δ. Then, we define sampling instances tk := kδ for
k = 0 . . . . At every sampling instance tk , an open-loop optimal control problem is
solved over a finite prediction horizon (tk, tk +T ). Then the optimal control is applied
to steer the system from time tk with the initial state yrh(tk) until time tk+1 := tk + δ

at which point, a new measurement of state is assumed to be available. The process is
repeated starting from the new measured state: we obtain a new optimal control and a
new predicted state trajectory by shifting the prediction horizon forward in time. The
sampling time δ is the time period between two sample instances. Throughout, we
denote the receding horizon state- and control variables by yrh(·) and urh(·), respec-
tively. Also, (y∗

T (·; t0, y0),u∗
T (·; t0, y0)) stands for the optimal state and control of the

optimal control problem with finite time horizon T , and initial function y0 at initial
time t0. The receding horizon framework is summarized in Algorithm 1.

1.1 RelatedWork

Optimal control and feedback stabilization of the Navier–Stokes equations are still
active research topics and a considerable amount of research has been devoted to
these fields. Among them we can mention [10–17] for feedback stabilization, [18–
24] for open-loop optimal control problems, and [25–28] for controllability results.
We also quote the works [11, 19], where instantaneous control is employed for the
Navier–Stokes system. In this approach, which is somehow related to RHC, discrete-
in-time feedback control is computed by solving sequences of stationary optimal
control problems at selected time instances.

While most of the literature on feedback stabilization is concerned with the stabi-
lization of the Navier–Stokes equations to the steady-state, similarly to [14], we are
interested in the stabilization towards a given reference trajectory by means of finite-
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Algorithm 1 Receding Horizon Algorithm
Require: Let the prediction horizon T , the sampling time δ < T , and the initial

function y0 be given. Then we proceed through the following steps:
1: k := 0, t0 := 0, and yrh(t0) := y0.
2: Find the optimal triple (y∗

T (·; tk, yrh(tk)),u∗
T (·; tk, yrh(tk))) over the time interval

(tk, tk + T ) by solving the finite horizon open-loop problem

min
u∈L2((tk ,tk+T );RN )

JoT (u; tk , yrh(tk )) :=
∫ tk+T

tk
(‖y(t) − ŷ(t)‖2

H1
0 (Ω;R3)

+ β|u(t)|22)dt

s.t

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ty − νΔy + (y · ∇)y + ∇p = ∑N
i=1 ui�i + f̂ in (tk , tk + T ) × Ω,

div y = 0 in (tk , tk + T ) × Ω,

y = 0 on (tk , tk + T ) × ∂Ω,

y(tk ) = yrh(tk ) in Ω,

(1.4)

3: Set

urh(τ ) := u∗
T (τ ; tk, yrh(tk)) for all τ ∈ [tk, tk + δ),

yrh(τ ) := y∗
T (τ ; tk, yrh(tk)) for all τ ∈ [tk, tk + δ],

tk+1 := tk + δ,

k := k + 1.

4: Go to step 2.

dimensional controls. In this case, it is needed to derive the stabilizability results for
a nonautonomous system, which requires different techniques compared to the case
of autonomous systems, see e.g, [14, Introduction] for more details. We also refer
the readers to [29–31] for more recent results concerning the stabilizability of the
nonautonomous parabolic-like differential equations by finite-dimensional controls.

1.2 Contributions

This manuscript deals with the analysis of the RHC for the Navier–Stokes equations.
Besides the fact that RHC has not been investigated for these equations before, the
present paper also contains novelties compared to our recent investigations [1–3] on
the analysis of RHC for infinite-dimensional systems: (i) Here our objective is to
stabilize the system around a given reference trajectory. In this case, depending on the
regularity of the given reference trajectory, in order to study the stability and well-
posedness ofRHC,we consider the translated controlled system.This system, obtained
by subtracting (1.1) from (1.2), is a system of nonlinear time-varying equations and,
thus, we are concerned with the local stabilizability of a nonautonomous system. (ii)
For the three-dimensional Navier–Stokes equations, in order to ensure the uniqueness,
we need to work with the so-called strong variational solutions. For this purpose, the
stabilizability of the controlled system is investigated with respect to the H1-norm.
In this matter, in order to establish the exponential stability of RHC, we need to
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derive an observability type inequality with respect to the H1-norm. (iii) For the three-
dimensional Navier–Stokes equations, the existence of the global strong solution is
only guaranteed for small initial data and forcing terms. Therefore, an extra effort
needs to be made to guarantee both well-posedness of the open-loop subproblems
and the smallness of the H1-norm of the states at sampling instances tk during the
concatenation process within the receding horizon framework.

Furthermore, compared to the work [14] dealing with the stabilization of Navier–
Stokes equations to reference trajectories, the present work differs not only in the fact
that we employ and investigate the receding horizon framework for stabilization, but
also that our theory allows the stabilization to less regular reference trajectories, and as
actuators, we can use the indicator functions which are more practical in applications
in comparison to the eigenfunctions of the Stokes operator.

1.3 Organization of the Paper

The rest of the paper is organized as follows: In Sect. 2, we introduce the notions and
functional spaces used in the theory of the three-dimensionalNavier–Stokes equations.
Then, we review some preliminaries about the well-posedness and regularity of the
solution to the translated system, which is obtained by subtracting (1.1) from (1.2).
Based on four key properties, Sect. 3 dealswith the stability and suboptimality of RHC.
In Sect. 4, we investigate the local stabilizability of (1.1) around a given trajectory
ŷ by finitely many controllers. Further, sufficient conditions on the set of actuators
are given, for which the stabilizability results hold. Then in Sect. 5, first the validity
of the four properties given in Sect. 3 is established. Then the main results i.e., the
local exponential stabilizability of the receding horizon state towards a given target
trajectory and the suboptimality of RHC are proven. Finally, to improve the readability
of the paper, we provide proofs to some of results from Sects. 2–4 only in the appendix.

2 Notation and Preliminaries

2.1 Functional Spaces and Translated Systems

We write R+ for the set of non-negative real numbers. For a Banach space X , we
denote by ‖ ·‖X the associated norm, by X ′ the associated dual space, and by 〈·, ·〉X ′,X
the dual paring between X ′ and X . In the case that X is a Hilbert space, we use
the scalar product (·, ·)X . Further, L(X ,Y ) denotes the space of continuous linear
operators from X to Y with the usual operator norm ‖ · ‖L(X ,Y ). In case X = Y , we
write L(X) := L(X , X) instead. Let X and Y be Banach spaces, then for any open
interval (t0, t1) ⊂ R+ we define

W ((t0, t1); X ,Y ) :=
{
y ∈ L2((t0, t1); X) : ∂ty ∈ L2((t0, t1); Y )

}
,

where the derivative ∂t is taken in the sense of distributions. This space is endowed
with the norm
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‖y‖W ((t0,t1);X ,Y ) =
(
‖y‖2L2((t0,t1);X)

+ ‖∂ty‖2L2((t0,t1);Y )

) 1
2
.

We frequently use open intervals of the form IT (t0) := (t0, t0+T ) ⊂ R+ with t0 ∈ R+
and T ∈ R+ ∪ {∞}. Then, we denote [t0, t0 + T ] and [t0,∞), by I T (t0) and I∞(t0),
respectively.

Let Ω ⊂ R
3 be an open, bounded, and connected set with smooth boundary

∂Ω . Throughout, for simplicity, we use the notations Lp := L p(Ω;R3), Wp,q :=
W p.q(Ω;R3) for p, q > 0, H1

0 := H1
0 (Ω;R3), and H−1 := (H1

0)
′. Similarly,

for every open subset ω ⊂ Ω , we denote Lp(ω) := L p(ω;R3) for p > 0, and
H1

0(ω) := H1
0 (ω;R3). We shall use the standard spaces of divergence-free vector

fields

D := {y ∈ C∞
0 (Ω;R3) : div y = 0 in Ω},

H := {y ∈ L2 : div y = 0 in Ω and n · y = 0 on ∂Ω},
V := {y ∈ H1

0 : div y = 0 in Ω},
D(A) := H2 ∩ V ,

where n is the unit outward normal vector on ∂Ω . The spaces H and V are the closure
of the space D with respect to the L2- and H1

0-norms, respectively. It is wellknown
that

D(A) ↪→ V ↪→ H = H ′ ↪→ V ′ ↪→ D(A)′,

with a densely compact embedding, and as a consequence, we recall from e.g., [32]
that for an open interval (t0, t1) ⊂ R+ it holds

W ((t0, t1); V , V ′) ↪→ C([t0, t1]; H) and W ((t0, t1); D(A), H) ↪→ C([t0, t1]; V ).

(2.1)

Moreover, if we denote the Leray projection on H byΠ : L2 → H , we haveΠ(∇p) =
0 and can define the Stokes operator A : D(A) → H by

A := −ΠΔ.

The spaces H , V , and D(A) are endowed with the scalar products

(y, v)H = (y, v)L2 , (y, v)V := 〈Ay, v〉V ′,V , and (y, v)D(A) := (Ay,Av)H .

In order to define the weak variational form of the Navier–Stokes equations, we intro-
duce the continuous bilinear form B : V × V → V ′ defined by

B(y, v) = Π(y · ∇)v with 〈B(y, v),w〉V ′,V =
3∑

i, j=1

∫

Ω

yi∂xi v jw j dx,
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and trilinear form b : V × V × V → R defined by

b(y, v,w) := 〈B(y, v),w〉V ′,V .

It is wellknown from e.g., [33, Lemma 1.3.], that for b it holds that

b(y, v, v) = 0 and b(y, v,w) = −b(y,w, v). (2.2)

Moreover, using standard Sobolev’s embeddings, we can obtain that

|b(y, v,w)| ≤ c‖y‖L4‖v‖W1,4
0

‖w‖H
≤ c‖y‖V ‖v‖D(A)‖w‖H for y ∈ V , v ∈ D(A),w ∈ H ,

|b(y, v,w)| ≤ c‖y‖L∞‖v‖V ‖w‖H for y ∈ L∞, v ∈ V ,w ∈ H ,

|b(y, v,w)| ≤ c‖y‖L6‖∇v‖L3(Ω;R9)‖w‖H for y ∈ L6, v ∈ W1,3,w ∈ H ,

(2.3)

where c is a generic constant depending on Ω .
We denote the nonlinear term in the Navier–Stokes equations by

N (y) := B(y, y).

For any given ŷ ∈ V , we define the linear operator B(ŷ) : V → V ′ by

B(ŷ)v := B(ŷ, v) + B(v, ŷ).

For specifying the regularity of the reference trajectory, we need to introduce the
following Banach space

L∞
div(I∞(0) × Ω;R3)

:=
{
y ∈ L∞(I∞(0) × Ω;R3) : div y(t) = 0 in Ω, for a.e. t ∈ I∞(0)

}
,

endowed with the norm ‖y‖L∞
div(I∞(0)×Ω;R3) := ‖y‖L∞(I∞(0)×Ω;R3). Note that due the

fact that L∞(I∞(0) × Ω;R3) is dual of L1(I∞(0) × Ω;R3), we obtain that

L∞(I∞(0) × Ω;R3) = L∞
w (I∞(0);L∞) ⊃ L∞(I∞(0);L∞),

where the subscript w stands for the weak measureability, see e.g., [34, Sects. 5.0 and
9.1].

For any given t0 ∈ R+, T ∈ R+ ∪ {∞}, and a fix σ > 6
5 , we consider the spaces

Wt0,T and Vt0,T for the measurable vector functions y = (y1, y1, y3) defined in
IT (t0) × Ω satisfying

‖y‖Wt0,T :=
(
‖y‖2L∞

w (IT (t0);L∞
div)

+ ‖∂ty‖2L2(IT (t0);Lσ )

) 1
2

< ∞,

‖y‖Vt0,T :=
(
‖y‖2Wt0,T

+ ‖∇y‖2L2(IT (t0);L3(Ω;R9))

) 1
2

< ∞,
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where L∞
div := {y ∈ L∞ : div y = 0 in Ω}.

Further, for given t0 ∈ R+, T ∈ R+ ∪ {∞}, and λ ≥ 0, we will use the Banach
space Vλ

t0,T
⊂ L∞(IT (t0); V ) ∩ L2(IT (t0); D(A)) endowed with the norm

‖v‖2Vλ
t0,T

:= sup
t∈IT (t0)

‖e λ
2 (t−t0)v(t)‖2V +

t0+T∫

t0

‖e λ
2 (t−t0)v(t)‖2D(A) dt .

These spaces will be used within the contraction mapping theorem for the existence
results for the nonlinear system of equations.

Using the Leray projection and the notations introduced above, (1.1) and (1.2) can
equivalently be written as

⎧
⎪⎨

⎪⎩

∂ty(t) + νAy(t) + N (y(t)) = Π

(
N∑

i=1
ui (t)�i + f̂(t)

)

t ∈ I∞(0),

y(0) = y0,
(2.4)

and

{
∂t ŷ(t) + νAŷ(t) + N (ŷ(t)) = Π f̂(t) t ∈ I∞(0),

ŷ(0) = ŷ0,
(2.5)

respectively. Setting v := y − ŷ, v0 := y0 − ŷ0, and subtracting (2.4) from (2.5), we
come up with the following system of time-varying nonlinear differential equations

⎧
⎪⎨

⎪⎩

∂tv(t) + νAv(t) + B(ŷ(t))v(t) + N (v(t)) = Π(
N∑

i=1
ui (t)�i ) t ∈ I∞(0),

v(0) = v0.
(2.6)

This system is called the translated system.Our control objective cannowbe expressed,
equivalently, as the local exponential stabilization of the nonlinear time-varying system
(2.6) to zero with respect to V -norm by means of RHC.

2.2 Local Existence and Estimates

In this section, we are concerned with the well-posedness and regularity of the system
of nonlinear time-varyingEq. (2.6). Let ŷ be the solution to (2.5) for a pair (ŷ0, f̂). Then
for every initial function v0 and forcing term f , we consider the auxiliary nonlinear
system

{
∂tv(t) + νAv(t) + B(ŷ(t))v(t) + N (v(t)) = f(t) t ∈ IT (t0),

v(t0) = v0,
(2.7)
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and for λ ≥ 0 the auxiliary linear system

{
∂tv(t) + νAv(t) − λ

2v(t) + B(ŷ(t))v(t) = f(t) t ∈ IT (t0),

v(t0) = v0.
(2.8)

Throughout the paper, we impose the following regularity condition for the reference
trajectory ŷ.

Assumption 1 Let (ŷ, p̂) be a global smooth solution to (1.2), for which it holds with
constants ε̂ > 0, σ > 6

5 , and R > 0, that

‖ŷ‖L∞
div(I∞(0)×Ω;R3) + sup

τ∈[0,+∞)

‖∂t ŷ‖L2((τ,τ+ε̂);Lσ )

+ sup
τ∈[0,+∞)

‖∇ŷ‖L2((τ,τ+ε̂);L3(Ω;R9)) ≤ R.
(RA)

Our stabilizability result is based on the concatenation of exact controllability controls
on a family of finite intervals covering [0,∞). Here we used the exact controllability
result given in [25, Proposition 1.] and, thus, the regularity condition (RA) ismotivated
by the one given in [25, p. 3].

Remark 1 Due to regularity condition (RA), for every (t0, T ) ∈ R
2+ the quantities

‖ŷ‖Wt0,T and ‖ŷ‖Vt0,T are bounded by constants depending only on ε̂, T , and R.

Lemma 1 Let ν > 0 and λ ≥ 0 be given. Then, for every (t0, T , v0, f) ∈ R
2+ × H ×

L2(IT (t0); V ′), (2.8) admits a unique weak solution v ∈ W (IT (t0); V , V ′) satisfying

‖v‖2
C(I T (t0);H)

+ ‖v‖2L2(IT (t0);V )
≤ c1

(
‖v0‖2H + ‖f‖2L2(IT (t0);V ′)

)
. (2.9)

Moreover, for every (t0, T , y0, f) ∈ R
2+ × V × L2(IT (t0); H), Eq. (2.8) admits a

unique strong solution v ∈ W (IT (t0); D(A), H) satisfying

‖v‖2
C(I T (t0);V )

+ ‖v‖2L2(IT (t0);D(A))
≤ c2

(
‖v0‖2V + ‖f‖2L2(IT (t0);H)

)
. (2.10)

Finally, for every (t0, T , v0, f) ∈ R
2+ × H × L2(IT (t0); H), we have

√· − t0v ∈
W (IT (t0); D(A), H), and the corresponding estimate

‖√· − t0v‖2C(I T (t0);V )
+ ‖√· − t0v‖2L2(IT (t0);D(A))

≤ c3
(
‖v0‖2H + ‖f‖2L2(IT (t0);H)

)
.

(2.11)

The positive constants c1, c2, and c3 depend on ŷ, λ, T , and ν.

Proof The proof follows by using the standard arguments given in e.g. [33, Chapter
3] and estimates (2.3). Thus, we omit the proof here. ��
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In the next proposition, we investigate the existence of the nonlinear system (2.7) for
small pairs of initial functions v0 and forcing functions f .

Proposition 1 For every given T > 0, there exists r = r(T ) > 0 such that for every
(t0, v0, f) ∈ R+ × V × L2(IT (t0); H) satisfying

‖v0‖2V + ‖f‖2L2(IT (t0);H)
≤ r2, (2.12)

eq. (2.7) admits a unique strong solution v ∈ W (IT (t0); D(A), H). Moreover, for this
solution we have the following estimates

‖v‖2
C(I T (t0);V )

+ ‖v‖2L2(IT (t0);D(A))
≤ c4

(
‖v0‖2V + ‖f‖2L2(IT (t0);H)

)
, (2.13)

and

‖v‖W (IT (t0);D(A),H) ≤ K (T , ŷ, v0, f), (2.14)

where the constant c4 depends on ŷ and T , and the constant K depends on T , ŷ, v0,
and f .

Proof The proof is given in Appendix 1. ��
In the next Lemma, we establish an observability inequality which is essential for the
exponential stability of RHC.

Lemma 2 Assume that for T > 0, r(T ) > 0, and arbitrary given (t0, v0, f) ∈ R+ ×
V × L2(IT (t0); H) satisfying (2.12), system of equations (2.7) admits a solution v ∈
W (IT (t0); D(A), H). Then, for every δ with 0 < δ ≤ T , we have

‖v(t0 + δ)‖2V ≤ c5

t0+δ∫

t0

(
‖v(t)‖2V + ‖f(t)‖2H

)
dt, (2.15)

where the constants c5 depends on δ, T , ν, and ŷ.

Proof The proof follows by energy estimates and it is given in Appendix 2. ��

3 Stability of RHC

This section is devoted to investigating the stability of RHC. For simplicity in pre-
sentation, we use the notations B := [Π�1, . . . ,Π�N ] for the set of actuators
Uω := {�i ∈ L2 : i = 1, . . . , N } with cUω

:= N max1≤i≤N ‖�i‖2H .
For any T ∈ R+ ∪ {∞}, t0 ≥ 0, v0 ∈ V , and u ∈ L2(IT (t0);RN ), we consider the

following nonlinear time-varying controlled system

{
∂tv(t) + νAv(t) + B(ŷ(t))v(t) + N (v(t)) = Bu(t) t ∈ IT (t0),

v(t0) = v0.
(CS(T , t0, v0))
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Then, for u = [u1, . . . , uN ]t we obtain

Bu =
N∑

i=1

ui�i ∈ L2(IT (t0); H) and ‖B‖2L(RN ,H)
≤ cUω

. (3.1)

Further, due to Proposition 1, for every given T > 0, there exists a radius rc :=
1

max{1,cUω }r(T ) such that for given triple (t0, v0,u) ∈ R
2+ × V × L2(IT (t0);RN )

satisfying

‖v0‖2V + ‖u‖2L2(IT (t0);RN )
≤ r2c ,

equation CS(T , t0, v0) admits a unique solution yu ∈ W (IT (t0); D(A), H).
For the sake of convenience in presentation, we proceed the stability analysis of

RHC with a general class of incremental functions which contains the one associated
to (1.3) as a spacial case (See Remark 2). In this matter, for defining the optimal control
problems associated to the receding horizon framework, we consider an incremental
functions 
 : R+ × V × R

N → R+ satisfying


(t, v,u) ≥ α
(‖v‖2V + |u|22) for a.e. t ≥ 0 and every (v,u) ∈ V × R
N ,


(t, 0, 0) = 0 for a.e. t ≥ 0,
(3.2)

where the number α
 > 0 is independent of (t, v,u).
For every interval length T > 0, initial state v0 ∈ V , and initial time t0, we use

frequently the finite horizon optimal control problems of the form

min
u∈L2(IT (t0);RN )

JT (u; t0, v0) :=
t0+T∫

t0


(t, v(t),u(t))dt s.t. CS(T , t0, v0).

(OPT (t0, v0))

The solution of OPT (t0, v0) is denoted by the pair (v∗
T (·; t0, v0),u∗

T (·; t0, v0)). Then,
the reeding horizon algorithm for dealing with the infinite horizon problem

inf
u∈L2(I∞(0);RN )

{J∞(u; 0, v0) s.t. CS(∞, 0, v0)}, (OP∞(v0))

is given in Algorithm 2.

Remark 2 It is easy to check that by setting

v0 := y0 − ŷ0, and 
(t, v,u) := ‖v‖2V + β|u|22 for (t, v,u) ∈ R+ × V × R
N , (3.3)

in OPT (t0, v0), (3.2) holds for α
 := min{1, β} and Algorithm 1 can be equivalently
expressed by Algorithm 2. To be more precise, due to (3.3) and using the fact that
v = y − ŷ, it can be easily verified that the finite horizon optimal control problems
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defined on the same temporal interval in both of Algorithms 1 and 2 are equivalent.
Thus, both of these algorithms deliver the same RHC urh and approximations for
the value functions. Hence, we restrict ourselves here to investigate the stability and
suboptimality of RHCs obtained by Algorithm 2.

Algorithm 2 Receding Horizon Algorithm for the Translated Equation
Require: Let the prediction horizon T , the sampling time δ < T , and the initial point

v0 ∈ V be given. Then we proceed through the following steps:
1: k := 0, t0 := 0, and vrh(t0) := v0.
2: Find (v∗

T (·; tk, vrh(tk)),u∗
T (·; tk, vrh(tk))) over the interval IT (tk) by solving

OPT (tk, vrh(tk)).
3: Set tk+1 := tk + δ, k := k + 1, and

urh(τ ) := u∗
T (τ ; tk, vrh(tk)) for all τ ∈ [tk, tk + δ),

vrh(τ ) := v∗
T (τ ; tk, vrh(tk)) for all τ ∈ [tk, tk + δ].

4: Go to step 2.

Definition 1 For any v0 ∈ V the infinite horizon value function V∞ : V → R+ is
defined by

V∞(v0) := inf
u∈L2(I∞(0);RN )

{J∞(u; 0, v0) s.t. CS(∞, 0, v0)}.

Similarly, for every (T , t0, v0) ∈ R
2+ × V , the finite horizon value function VT :

R+ × V → R+ is defined by

VT (t0, v0) := inf
u∈L2(IT (t0);RN )

{JT (u; t0, v0) s.t. CS(T , t0, v0)}.

In order to show the exponential stability and suboptimality of RHC obtained by
Algorithm 2, we need to verify the following properties for CS(T , t0, v0), the finite
horizon value function VT , and open-loop problems OPT (t0, v0). Throughout, Br (v)
denotes a ball in V centred at v with radius r > 0.

P1: There exists a radius rs such that for every positive number T , VT is globally
decrescent on Brs (0)with respect to the V -norm. That is, there exists a continuous,
non-decreasing, and bounded function γ : R+ → R+ such that

VT (t0, v0) ≤ γ (T )‖v0‖2V for every (t0, v0) ∈ R+ × Brs (0). (3.4)

Since, inAlgorithm 2, the solution of OP∞(v0) is approximated by solving a sequence
of the finite horizon open-loop optimal controls, we need a priori to guarantee that any
of these optimal control problems in Step 2 of Algorithm 2 is well-posed.
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For any given T > 0, there exists a radius re = re(T ) such that for every (t0, v0) ∈
R+ × Bre (0) and u satisfying

‖u‖L2(IT (t0);RN ) ≤ √
γ (T )/α
 ‖v0‖V , (3.5)

we have the following properties:

P2: CS(T , t0, v0) is well-posed and its associated solution satisfies

‖v‖2
C(I T (t0);V )

≤ c̄1

⎛

⎝‖v0‖2V +
t0+T∫

t0

|u(t)|22 dt
⎞

⎠ , (3.6)

with a positive constant c̄1 = c̄1(T ).
P3: Every finite horizon optimal control problem of the form OPT (t0, v0), over the

set of all control u satisfying (3.5), admits a solution.
P4: For every δ with 0 < δ ≤ T , there exists a constant c̄2 = c̄2(δ, T ) > 0 such that

‖v(t0 + δ)‖2V ≤ c̄2

⎛

⎝

t0+δ∫

t0

‖v(t)‖2V dt +
t0+δ∫

t0

|u(t)|22 dt
⎞

⎠ . (3.7)

The estimate (3.7) will be used to derive the exponential stability of RHC.
The validity of Properties P1-P4 will be addressed in Sect. 5. In particular, the

justification of Property P1 is based on the stabilizability of (2.6) by finitely many
controllers. This result will be investigated in Sect. 4.

For the sake of simplicity, throughout this section, we use the notation


∗
T (t; t0, v0) := 
(t, v∗

T (t; t0, v0),u∗
T (t; t0, v0)) for every t ∈ IT (t0).

Remark 3 Let Properties P1-P3 hold and v0 ∈ Bre (0) ∩ Brs (0) be given. Then,
for every optimal control of OPT (t0, v0), the control constraint ‖u‖L2(IT (t0);RN ) ≤√

γ (T )/α
 ‖v0‖V is automatically satisfied and it is not needed to be imposed to
OPT (t0, v0). In fact, due to (3.2) and (3.4) for every optimal control u∗

T (·; t0, v0) ∈
L2(IT (t0);RN ) of OPT (t0, v0), we obtain that

α


t0+T∫

t0

|u∗
T (t; t0, v0)|22 dt ≤

t0+T∫

t0


∗
T (t; t0, v0)dt = VT (t0, v0)

≤ γ (T )‖v0‖2V .

(3.8)

Therefore, OPT (t0, v0) can be considered as an unconstrained problem.
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Lemma 3 If P1-P3 hold and T > δ > 0, then there exists a neighbourhood Bd1(0) ⊂
V with d1 = d1(T ) > 0 such that for every (t0, v0) ∈ R+ × Bd1(0) the following
inequalities hold

VT (t0 + δ,v∗
T (t0 + δ; t0, v0)) ≤

t0+t∗∫

t0+δ


∗
T (t; t0, v0)dt

+ γ (T + δ − t∗)‖v∗
T (t0 + t∗; t0, v0)‖2V for all t∗ ∈ [δ, T ],

(3.9)

and

t0+T∫

t0+t∗

∗
T (t; t0, v0)dt ≤ γ (T − t∗)‖v∗

T (t0 + t∗; t0, v0)‖2V for all t∗ ∈ [0, T ]. (3.10)

Proof First observe that due to (3.8) in Remark 3, we have for every v0 ∈ Bre (0) ∩
Brs (0) that

‖u∗
T (·; t0, v0)‖2L2(IT (t0);RN )

≤ γ (T )

α


‖v0‖2V .

Thus, using (3.4) and (3.6), we have for every t̃ ∈ [0, T ] that

‖v∗
T (t0 + t̃; t0, v0)‖2V ≤ c̄1(T )

⎛

⎝‖v0‖2V +
t0+T∫

t0

|u∗
T (t; t0, v0)|22 dt

⎞

⎠

≤ c̄1(T )(1 + γ (T )

α


)‖v0‖2V .

Choosing d1 := min{δ1,
√
(
c̄1(T )(1 + γ (T )

α

)
)−1

δ21} with δ1 := min{rs, re}, we
obtain that

v∗
T (t0 + t̃; t0, v0) ∈ Brs (0) ∩ Bre (0) for all (t̃, v0) ∈ [0, T ] × Bd1(0). (3.11)

Now, we come to the verification of (3.9) for v0 ∈ Bd1(0). Due to Bellman’s optimality
principle, we have for every t∗ ∈ [δ, T ] that

VT (t0 + δ, v∗
T (t0 + δ; t0, v0))

= min
u∈L2((t0+δ,t0+t∗);RN )

⎧
⎪⎨

⎪⎩

t0+t∗∫

t0+δ


(t, vu(t),u(t))dt + VT+δ−t∗ (t0 + t∗, vu(t0 + t∗))

⎫
⎪⎬

⎪⎭

≤
t0+t∗∫

t0+δ


∗
T (t; t0, v0)dt + VT+δ−t∗ (t0 + t∗, v∗

T (t0 + t∗; t0, v0))
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≤
t0+t∗∫

t0+δ


∗
T (t; t0, v0)dt + γ (T + δ − t∗)‖v∗

T (t0 + t∗; t0, v0)‖2V , (3.12)

where vu in the above equality is the solution to CS(t∗ − δ, t0 + δ, v∗
T (t0 + δ; t0, v0))

for any u ∈ L2((t0 + δ, t0 + t∗);RN ) and in the last inequality, (3.4) and (3.11) were
used.

To show (3.10), suppose that t∗ ∈ [0, T ] is given. Using Bellman’s principle and
(3.4) and (3.11), we have

t0+T∫

t0+t∗

∗
T (t; t0, v0)dt = VT−t∗(t0 + t∗, v∗

T (t0 + t∗; t0, v0))

≤ γ (T − t∗)‖v∗
T (t0 + t∗; t0, v0)‖2V ,

as desired. ��
Lemma 4 Suppose that P1-P3 hold, and for given (T , δ, t0, v0) ∈ R

3+ × Bre (0) with
T > δ, properties (3.9) and (3.10) of Lemma 3 are satisfied. Then for the choice of

θ1(T , δ) := 1 + γ (T )

α
(T − δ)
, θ2(T , δ) := γ (T )

α
δ
,

we have the following estimates

VT (t0 + δ, v∗
T (t0 + δ; t0, v0)) ≤ θ1

t0+T∫

t0+δ


∗
T (t; t0, v0)dt, (3.13)

and

t0+T∫

t0+δ


∗
T (t; t0, v0)dt ≤ θ2

t0+δ∫

t0


∗
T (t; t0, v0)dt . (3.14)

Proof The proof is similar to the one given in [3, Lemma 2.4]. The only difference lies
on the fact that here the estimates are with respect to the V -norm instead of H -norm.
This requires that v∗

T (·; v0, t0) ∈ C(I T (t0); V ) which is true according to Property
P2. ��
Proposition 2 Suppose that P1-P3 hold and let δ > 0 be given. Then there exist
T ∗ > δ and α ∈ (0, 1) such that for every T ≥ T ∗ and (t0, v0) ∈ R+ × Bd1(0) with
d1(T ) defined in Lemma 3, the inequalities

VT (t0 + δ, v∗
T (t0 + δ; t0, v0)) ≤ VT (t0, v0) − α

t0+δ∫

t0


∗
T (t; t0, v0)dt, (3.15)
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and

VT (t0 + δ, v∗
T (t0 + δ; t0, v0)) ≤ e−ζ δVT (t0, v0), (3.16)

hold, where ζ is a positive number depending on α, δ, and T , but it is independent of
(t0, v0).

Proof The proof is given in Appendix 3. ��
Theorem 1 (Suboptimality and exponential stability) Suppose that P1-P4 hold and
let a sampling time δ > 0 be given. Then there exist numbers T ∗ > δ and α ∈ (0, 1),
such that for every fixed prediction horizon T ≥ T ∗ and every v0 ∈ Bd2(0) with
d2(T ) > 0, the receding horizon control urh obtained from Algorithm 2 satisfies the
suboptimality inequality

αV∞(v0) ≤ α J∞(urh; 0, v0) ≤ VT (0, v0) ≤ V∞(v0), (3.17)

and the exponential stability inequality

‖vrh(t)‖2V ≤ cV e
−ζ t‖v0‖2V for t ≥ 0, (3.18)

where the positive numbers ζ and cV depend on α, δ, and T , but are independent of
v0.

Proof First we deal with (3.17). The right and left inequalities are obvious, thus we
only need to verify the middle one. For fixed δ > 0 we choose T ∗ and α according to

Proposition 2 and define d2 := min{
√

α
d21
c̄2γ (T )

, d1}, where T ≥ T ∗, d1 is defined as in

Lemma 3, and c̄2 = c̄2(δ, T ) is given in Property P4. For the moment, we will show
by induction that for every integer k ≥ 1, the following conditions hold:

vrh(tk) ∈ Bd1(0), (3.19)

VT (tk, vrh(tk)) ≤ VT (0, v0) − α

tk∫

0


(t, vrh(t),urh(t))dt, (3.20)

and

VT (tk, vrh(tk)) ≤ e−ζ tk VT (0, v0). (3.21)

Induction base (k = 1): Since d2 ≤ d1, the assumptions of Proposition 2 are
applicable and we have

VT (t1, vrh(t1)) ≤ VT (0, v0) − α

∫ t1

0

(t, vrh(t),urh(t))dt,
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and

VT (t1, vrh(t1)) ≤ e−ζ δVT (0, v0),

where α and ζ have been defined in Proposition 2.
Induction step:We assume that (3.19)–(3.21) hold for k = k′ with k′ ∈ N, we will

show that (3.19)–(3.21) are also satisfied for k = k′ + 1. Since vrh(tk′) ∈ Bd1(0), by
Proposition 2 we have

VT (tk′+1, vrh(tk′+1)) ≤ VT (tk′ , vrh(tk′)) − α

tk′+1∫

tk′


(t, vrh(t),urh(t))dt, (3.22)

and

VT (tk′+1, vrh(tk′+1)) ≤ e−ζ δVT (tk′ , vrh(tk′)). (3.23)

Combining (3.22) and (3.23) with (3.20) and (3.21) for k = k′, respectively, we can
infer that

VT (tk′+1, vrh(tk′+1)) ≤ VT (0, v0) − α

∫ tk′+1

0

(t, vrh(t),urh(t))dt, (3.24)

and

VT (tk′+1, vrh(tk′+1)) ≤ e−ζ(k′+1)δVT (0, v0) = e−ζ tk′+1VT (0, v0). (3.25)

Moreover, due to the induction hypothesis ((3.19) for k = k′), P1 is applicable and by
using (3.8) in Remark 3, we can write

‖urh‖L2((tk′ ,tk′+1);RN ) ≤ ‖u∗
T (·; tk′ , vrh(tk′)‖L2(IT (tk′ );RN )

≤ √
γ (T )/α
 ‖vrh(tk′)‖V .

(3.26)

Hence, for initial pair (tk′ , vrh(tk′)), Property P4 is also applicable and we can write
that

‖vrh(tk′+1)‖2V
(3.7)≤ c̄2

∫ tk′+1

tk′
(‖vrh(t)‖2V + |urh(t)|22)dt

(3.2)≤ c̄2
α


tk′+1∫

tk′


(t, vrh(t),urh(t))dt ≤ c̄2
α


VT (tk′, vth(tk′))

(3.25)≤ c̄2
α


e−ζ tk′ VT (0, v0)
(3.4)≤ c̄2γ (T )

α


e−ζ tk′ ‖v0‖2V ≤ d21 .

(3.27)
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Hence vrh(tk′+1) ∈ Bd1(0). From this together with (3.24) and (3.25), we can conclude
the induction step and, thus, (3.19)–(3.21) hold for any k ∈ N0.

Now, taking the limit k → ∞ in (3.20), we find

α J∞(urh, v0) = α

∫ ∞

0

(t, vrh(t),urh(t))dt ≤ VT (0, v0),

which concludes (3.17).
Now we turn to inequality (3.18). Using (3.27) and setting c′

V = c̄2γ (T )
ηα


with

η = e−δζ , we have

‖vrh(tk+1)‖2V ≤ c̄2γ (T )

α


e−ζ tk‖v0‖2V = c′
V e

−ζ tk+1‖v0‖2V for any k ≥ 0. (3.28)

Moreover, for every t > 0 there exists a k ∈ N such that t ∈ [tk, tk+1]. Using (3.6),
(3.26), and (3.28), we have for t ∈ [tk, tk+1] that

‖vrh(t)‖2V
(3.6)≤ c̄1

(
‖vrh(tk)‖2V + ‖u∗

T (·; tk, vrh(tk)‖2L2(IT (tk );RN )

)

(3.26)≤ c̄1

(

1 + γ (T )

α


)

‖vrh(tk)‖2V
(3.28)≤ c̄1c

′
V

(

1 + γ (T )

α


)

e−ζ tk‖v0‖2V

≤ c̄1c
′
V

(

1 + γ (T )

α


)

η−1e−ζ tk+1‖v0‖2V ≤ c̄1c
′
V

(

1 + γ (T )

α


)

η−1e−ζ t‖v0‖2V ,

and therefore, by setting cV := c̄1c′
V (1+ γ (T )

α

)η−1,we arefinishedwith the verification

of (3.18) and the proof is complete. ��
Remark 4 ifwehadα = 1, the inequality (3.17)would imply the optimality of theRHC
urh . Since γ (T ) is bounded and δ is fixed, it follows from (7.10) that limT→∞ α(T ) =
1. This means that, RHC is asymptotically optimal.

4 Stabilizability

In this section, we are concerned with the stabilizability results for (2.6) by finitely
many controllers. The possibility of stabilization by a control associated with finitely
many actuators has been studied in several papers, see e.g., [10, 11, 15, 29–31, 35].
Here, we follow the similar arguments as in [29–31].

We introduce a set of actuators Uω := {�i : i = 1, . . . , N } supported in an open
set ω ⊂ Ω . For this set of actuators, we prove, under some suitable conditions, the
local stabilizability of the nonlinear system. This result is the key condition for the
verification of Property P1. To provide Uω with ω ⊂ Ω , we use frequently a function
� = �(ω) ∈ L∞(Ω) satisfying

supp(�) ⊆ ω and �|ω1 = 1 with an nonempty open set ω1 ⊆ ω ⊆ Ω. (4.1)
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Then, for a given set Û := {�̂i : i = 1, . . . , N } ⊂ L2 and � satisfying (4.1), we
define

Uω := {�i : i = 1, . . . , N } = � Û := {��̂i : i = 1, . . . , N }. (4.2)

Further, without loss of generality, we assume that Uω is linearly independent.
To prove the local stabilizability ofCS(∞, t0, v0), first, we study the stabilizability

of this controlled system without the nonlinear term N . Then using the perturbation
theory, we extend the result to the local stabilizability for the original controlled system
with the nonlinearity. In this matter, we consider the following linear system

{
∂tv(t) + νAv(t) + B(ŷ(t))v(t) + Π�PNq(t) = 0 t ∈ I∞(t0),

v(t0) = v0,
(4.3)

where q ∈ L2(I∞(t0);L2) stands for the control input and PN : L2 → span Û ⊂ L2

is the orthogonal projection onto the span of Û . A stabilizing control q for (4.3) is
constructed through concatenation of a sequence of controls on equidistant finite hori-
zon intervals covering [t0,∞). These controls are associated to the null controllability
problems introduced in the next lemma.

Lemma 5 Suppose that λ ≥ 0, and a nonempty open set ω ⊂ Ω be given. Further,
assume that for the reference trajectory ŷ regularity condition (RA) holds. Then for
every T > 0, and (t0, v0) ∈ R+ × H, the following system

{
∂tv(t) + Av(t) − λ

2v(t) + B(ŷ(t))v(t) = Π1ωη(t) t ∈ IT (t0),

v(t0) = v0,
(4.4)

is null controllable with a constant cob = cob(T , λ, ŷ). That is, there exists a control
η∗ ∈ L2(IT (t0),L2(ω)) satisfying

‖η∗‖2L2(IT (t0),L2(ω))
≤ cob‖v0‖2V , (4.5)

whose associated state at time t0 + T is equal to zero.

Proof By setting v(τ ) := e− λ
2 τv(τ + t0) for τ ∈ (0, T ), we can transform (4.4) to the

following controlled system

{
∂τv(τ ) + Av(τ ) + B(y(τ ))v(τ ) = Π1ωη(τ) τ ∈ IT (0),

v(0) = v0,
(4.6)

where y(τ ) := ŷ(τ + t0) for τ ≥ 0. Due to (RA), it follows for y that the terms
‖y‖L∞

div(IT (0)×Ω;R3) and ‖∂ty‖L2(IT (0);Lσ ) with σ > 6
5 are bounded by a constant

c̄ = c̄(ε̂, R, T ) which is independent of t0. We are now in the position to apply the
null controllability result from [25, Proposition 1] for (4.6). According to this result,
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for a given v0 ∈ H , there exists a control η(v0) ∈ L2(IT (0);L2(ω)) which drives the
system to zero at T and satisfies

‖η‖2L2(IT (0);L2(ω))
≤ c̄ob‖v0‖2H , (4.7)

where the constant c̄ob = c̄ob(T , y) > 0 is related to the Carleman inequality given

in [25, Lemma 1]. For the choice of η∗(t) := e
λ
2 (t−t0)η(t − t0) with t ∈ IT (t0), the

control η∗ ∈ L2(IT (t0),L2(ω)) steers (4.4) at time t0 + T to zero and (4.5) holds for

cob := c̄obe
λ
2 T . ��

In the next proposition, we show that for every (t0, v0) ∈ R+ × H , there exists a
control q(v0) ∈ L2(I∞(t0);L2) which steers exponentially system (4.3) to zero.

Proposition 3 (Uniform exponential stabilizability of (4.3)) Let λ > 0 and � ∈
L∞(Ω) satisfying (4.1) be given. Then there exists a constantΥ := Υ (λ, ν, ŷ, �) > 0
such that: If, for Û , �, and the identity mapping id ∈ L(L2), the following holds

‖Π�(id − PN )�‖2L(L2,V ′) < Υ −1, (COAC)

then the control system (4.3) is exponentially stabilizable. That is, for every (t0, v0) ∈
R+ × H, there exists a control q(v0, λ) ∈ L2(I∞(t0);L2) such that

‖v(t)‖2H ≤ Θ1e
−λ(t−t0)‖v0‖2H for t ≥ t0, (4.8)

and

‖e λ
2 (·−t0)q‖2L2(I∞(t0);L2)

≤ Θ2‖v0‖2H , (4.9)

where the constants Θ1 and Θ2 depend on ŷ, Û , �, and ν, but are independent of
(t0, v0).

Proof The proof is inspired by those given in [29, Theorem 2.10] and [31] with the
deferences that here we deal with a system of equations and for the Navier–Stokes
system, we need to deal with the Leray projection. For the sake of completeness, we
give the proof in Appendix 4. ��
In the following, we present two examples of Û , for which the condition (COAC) is
satisfied. These examples are inspired by those given in [29, Examples 2.11, 2.12] for
parabolic equations. For simplicity, we assume that ω is an open nonempty rectangle
defined by

ω :=
3∏

i=1

(ai , bi ) ⊂ Ω. (4.10)

Due to [13, Definition A.1.2, Page 98], the Leray projection Π : L2 → H can be
naturally extended to a continuous operator from H−1 to V ′. In this case, there exists
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a constant cΠ > 0 such that ‖Π‖L(H−1,V ′) ≤ cΠ and, as a consequence, condition
(COAC) holds provided that

c2Π‖�(id − PN )�‖2L(L2,H−1)
< Υ −1. (4.11)

For both the examples, we investigate the actuators component-wise. In this matter,
for the sequence of scalar valued spatial functions {φ j }Mj=1 ⊂ L2(Ω), we consider the

functions �j ∈ L2 defined by

�j = (φ j1 , φ j2 , φ j3) for j := ( j1, j2, j3) ∈ {1, . . . , M}3. (4.12)

Then we can define

Û = {�̂i : i = 1, . . . , N } := {�j : j ∈ {1, . . . , M}3}, (4.13)

where N = M3. For this setting, the orthogonal projection PN : L2 → span Û will
have the form

PNw = (PMw1, PMw2, PMw3) for every w := (w1, w2, w3) ∈ L2, (4.14)

where PM : L2(Ω) → span({φ j }Mj=1) stands for the orthogonal projection from

L2(Ω) onto span({φ j }Mj=1). Therefore, due to (4.11) and (4.14), condition (COAC)
holds provided that

‖Π�(id − PN )�‖2L(L2,V ′) ≤ c2Π‖�(1 − PM )�‖2L(L2(Ω),H−1(Ω))
< Υ −1. (4.15)

This means that, we only need to verify condition (COAC) component-wise. In each
example, we choose {φ j }Mj=1 in (4.12), and � in such a way that (4.15) holds. In this

case, for the corresponding Û defined in (4.13) and the chosen �, Proposition 3 is
applicable and Uω defined in (4.2) is the desirable set of actuators.

Example 1 (Laplacian Eigenfunctions) Suppose that {φ̂i ∈ C∞(ω) : i = 1, 2, 3, . . . }
is a complete system of eigenfunctions associated to the negative of Laplacian −Δ,
which is defined on the domain ω with homogeneous Dirichlet boundary conditions.
Wemayalso assume that these eigenfunctions are orderedwith respect to the increasing
sequence of the eigenvalues 0 < λ1 ≤ λ2 ≤ · · · with limi→∞ λi = ∞. Moreover,
let � ∈ C2(Ω) satisfying (4.1) be given. For instance, � can be chosen to be a bump
function.

By defining the orthonormal projection Pω
M : L2(ω) → span({φi }Mi=1) and setting

φ j := E0φ̂ j for j = 1, . . . , M with the extension-to-zero operator E0 : L2(ω) →
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L2(Ω), we obtain for every w ∈ L2(Ω) and v ∈ H1
0 (Ω) that

〈�(1 − PM )�w, v〉H−1(Ω),H1
0 (Ω) = (�w, (1 − Pω

M )�v)L2(ω)

≤ ‖�w‖L2(ω)‖(1 − Pω
M )�v‖L2(ω) ≤ λ

− 1
2

M ‖�w‖L2(ω)‖(1 − Pω
M )�v‖H1

0 (ω)

≤ 2λ
− 1

2
M ‖� · ‖L(L2(Ω),L2(ω))‖w‖L2(Ω)‖� · ‖L(H1

0 (Ω),H1
0 (ω))‖v‖H1

0 (Ω)

≤ 2λ
− 1

2
M ‖�‖2C1(ω)

‖w‖L2(Ω)‖v‖H1
0 (Ω).

(4.16)

Therefore, for these choices of Û defined by (4.12)–(4.13) and �, condition (COAC)
holds due to (4.15) if for a large enough N = M3 the following inequality holds

4c2Πλ−1
M ‖�‖4C1(ω)

≤ Υ −1.

For ω of the form (4.10), due to the asymptotic behaviour λM ≥ DM
2
3 from [36,

Corollary 1] with

D := 12π2

3 + 2|ω| 23 |B| 23
and |ω| :=

3∏

i=1

(bi − ai ),

and |B| denoting the volume of the unit ball in R
3, we obtain the following estimate

on the number of required actuators

N
1
3 = M ≥ D

−3
2 (4c2Π‖�‖4C1(ω)

Υ )
3
2 .

Example 2 (Piecewise constant functions) Here we set � := χω for (4.10), where
χω : Ω → {0, 1} is the characteristic function defined on ω. Then we consider the
uniform partitioning of ω to a family of sub-rectangles. For every i ∈ {1, 2, 3}, the
interval (ai , bi ) is divided into di ∈ N intervals defined by Ii,ki = (ai + ki

Īi
di

, ai +
(ki + 1) Īi

di
) with ki ∈ {0, 1, . . . , di − 1} and Īi := bi − ai . In this case, ω is divided

into M := ∏3
i=1 di sub-rectangles defined by

{Ri : i ∈ {1, . . . , M}} :=
{

3∏

i=1

Ii,ki : ki ∈ {0, 1, . . . , di − 1}
}

.

Then the set of actuators is defined by setting φi := 1
‖1Ri ‖L2 1Ri with i = 1, . . . , M

in (4.12), where 1Ri stands for the indicator function of Ri . Then by following the
arguments given in [29, Example 2.12] we can infer that

‖�(1 − PM )�‖2L(L2(Ω),H−1(Ω))
≤ (μMπ2)−

1
2 , (4.17)
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where λi is the smallest positive eigenvalue of the Laplace operator with homogeneous
Neumann boundary conditions on the rectangle Ri . That is, −Δ�i = λi�i in Ri and

∂ν�i = 0 on ∂Ri . Further we have λi = μMπ2 withμM := { d2i
Ī 2i

: i ∈ {1, 2, 3}}, since
the partitions are uniform on any intervals (ai , bi ).

Since μM → 0 ( equivalently μN → 0) as di → 0 for each i ∈ {1, 2, 3}, due to
(4.15) it can be shown that for this choice of Û defined in (4.12)–(4.13), condition
(COAC) is satisfied provided that the partitions are fine enough so that

c2Π(μNπ2)−1 ≤ Υ −1.

Consequently, condition (COAC) is satisfied provided that dmin
Ī

≥ c2ΠΥ

π2 , where dmin :=
min1≤i≤3 di and Ī := max1≤i≤3 Īi . Then the inequality M2

Ī 6
≥ c6ΠΥ 3

π6 is sufficient for
(COAC) and we have the following lower bound on the number of actuators

N
1
3 = M ≥

(
Ī 2c2ΠΥ

π2

) 3
2

.

Due to Proposition 3, system (4.3) is globally stabilizable and the control q(v0) ∈
L2(I∞(t0);L2) can be taken as a bounded function of an initial function v0 ∈ H .
Relying on this, in the following Proposition, we derive a stabilizing feedback law of
the form

Kλ(t)v(t) ∈ spanUω for a.e. t ≥ t0.

This feedback law enters the linear system (4.3) in the place of �PNq(t).

Proposition 4 Let ŷ, λ > 0, and � ∈ L∞(Ω) satisfying (4.1) be given. Moreover,
assume that for Û and �, condition (COAC) holds with Υ = Υ (λ, ν, ŷ, �) > 0. Then
depending on (ŷ, �, Û , λ, ν), there exist a family of continuous operators Kλ(t) :
H → spanUω, and constants cK = cK(ŷ, �, Û , λ, ν) and Θ3 = Θ3(ŷ, �, Û , λ, ν)

such the following conditions are satisfied:

1. The mapping t �→ Kλ(t) is continuous in the weak operator topology, and its
operator norm is bounded by cK.

2. For every pair (t0, v0) ∈ R+ × H, the following system

{
∂tv(t) + νAv(t) + B(ŷ(t))v(t) = ΠKλ(t)v(t) t ∈ I∞(t0),

v(t0) = v0,
(4.18)

in the interval I∞(t0) is well-defined and its solution satisfies

‖v(t)‖2H ≤ Θ3e
−λ(t−t0)‖v0‖2H for all t ≥ t0. (4.19)
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Proof Due to Proposition 3, there exists at least a stabilizing control, namely �PNq ∈
L2(I∞(t0); spanUω).Using standard techniques basedon the dynamical programming
principle, one can construct a feedback operator satisfying the properties 1 and 2. The
proof is given in [14, Sect. 3.2]. ��
In the next theorem, we show the local exponential stabilizability of the nonlinear
system relying on the results of Proposition 4.

Theorem 2 Let the assumptions of Proposition 4 hold. Then there exist a family of
continuous operators K̃λ(t) : H → spanUω and a constant cK̃ = cK̃(ŷ, �, Û , λ, ν),
for which the first statement in Proposition 4 holds. Further, there exists a radius rs
such that for every pair (t0, v0) ∈ R+×Brs (0)withBrs (0) ⊂ V , the nonlinear system

{
∂tv(t) + νAv(t) + B(ŷ(t))v(t) + N (v(t)) = ΠK̃λ(t)v(t) t ∈ I∞(t0),

v(t0) = v0,
(4.20)

is well-posed and its solution satisfies

‖v(t)‖2V ≤ Θ4e
−λ(t−t0)‖v0‖2V for t ≥ t0, (4.21)

where Θ4 = Θ4(ŷ, �, Û , λ, ν).

Proof The proof is provided in Appendix 5. ��

5 Main Result

In this section, we present the main result of the paper, i.e, the local exponential
stability of the RHC obtained by Algorithm 1, or equivalently, by Algorithm 2 for
the setting (3.3). Beforehand, we need to verify Properties P1-P4 for the incremental
function 
 defined in (3.3). Clearly, in this case 
 satisfies (3.2) with α
 := min{1, β}.
Proposition 5 Let T > 0 be given. Suppose that for chosen set of actuators Û ⊂
H, λ > 0, and � ∈ L∞(Ω) satisfying (4.1), condition (COAC) holds with Υ =
Υ (λ, ν, ŷ, �) > 0. Then there exist a radius rs > 0 and a nondecreasing, continuous,
and bounded function γ : R+ → R+ such that (3.4) holds for VT . Thus P1 holds.

Proof Due to Theorem 2, there exist a uniformly bounded family of continuous oper-
ators K̃λ(t) : H → spanUω and a radius rs such that for every pair (t0, v0) ∈
R+ ×Brs (0) the feedback law K̃λv is exponentially stabilizing. By defining the linear
isomorphism I : spanUω → R

N , and setting ũ(v0) = (ũ1, . . . , ũN )t := I K̃λv, we
obtain that

ΠK̃λ(t)v(t) = Π

N∑

i=1

ũi (t)�i = Bũ(t). (5.1)
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Using (4.21) and (5.1), we can infer that

‖ũ‖2L2(IT (t0);RN )
= ‖I K̃λv‖2L2(IT (t0);RN )

≤ c2Ic
2
K̃

t0+T∫

t0

‖v(t)‖2V dt

≤ c2Ic
2
K̃
Θ4‖v0‖2V

t0+T∫

t0

e−λ(t−t0)dt =
c2Ic

2
K̃
Θ4

λ
(1 − e−λT )‖v0‖2V ,

(5.2)

where constant cI is related to I. Due to the definition of VT and using (4.21) and
(5.2), we can write for any given (t0, v0) ∈ R+ × Brs (0) that

VT (t0, v0) ≤ JT (û; t0, v0) =
t0+T∫

t0

(‖v(t)‖2V + β|û(t)|22)dt

≤
Θ4(1 + βc2Ic

2
K̃
)

λ

(
1 − e−λT

)
‖v0‖2V .

Hence, by setting γ (T ) := Θ4(1+βc2Ic
2
K̃

)

λ

(
1 − e−λT

)
, we are finished with the verifi-

cation of Property P1. ��
In the next proposition, we investigate Properties P2-P4.

Proposition 6 (Verification of P2-P4) Suppose that the incremental function 
 is
defined as in (3.3) and let T > 0 be given. Then there exists a ball Bre (0) ⊂ V
with radius re = re(T ), such that for every (t0, v0) ∈ R+ × Bre (0) and u satisfying

‖u‖L2(IT (t0);RN ) ≤ √
γ (T )/α
 ‖v0‖V , (5.3)

Properties P2-P4 hold. Here, γ is defined as in Proposition 5 and α
 = min{1, β}.
Proof First we deal with the verification of P2. Due to Proposition 1, for every given
T > 0, there exists a radius r = r(T ) such that for every (t0, v0,u) ∈ R+ × V ×
L2(IT (t0);RN ) satisfying

‖v0‖2V + ‖Bu‖2L2(IT (t0);H)
≤ r , (5.4)

there is unique solution v ∈ W (IT (t0); D(A), H) to CS(T , t0, v0) satisfying

‖v‖2
C(I T (t0);V )

+ ‖v‖2L2(IT (t0);D(A))
≤ c7

(
‖v0‖2V + ‖u‖2L2(IT (t0);RN )

)
, (5.5)

with c7 depending on ŷ, T , and cUω
.
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Setting re(T ) := (1+ cUωγ (T )

α

)−1r(T ) we obtain for every (t0, v0) ∈ R+ ×Bre (0)

and u satisfying (5.3) that

‖v0‖2V + ‖Bu‖2L2(IT (t0);H)
≤ ‖v0‖2V + cUω

‖u‖2L2(IT (t0);RN )

≤
(

1 + cUω
γ (T )

α


)

‖v0‖2V ≤ r .
(5.6)

Hence, CS(T , t0, v0) iswell-posed and (3.6) follows from (5.5). Further, due to (2.14),
(5.3), and (5.6), there exists a constant K̄ = K̄ (T , re, ŷ) > 0 such that

‖v‖W (IT (t0);D(A),H) ≤ K̄ . (5.7)

This completes the verification of P2.
Now we turn to verification of P3. We show that for (t0, v0) ∈ R+ ×Bre (0) and the

set of admissible controls u satisfying (5.3), OPT (t0, v0) with incremental function

 defined in (3.3) admits a solution. The proof is based on the direct method in the
calculus of variations. Due to the fact that JT (t0, v0;u) is nonnegative and the set of
admissible controls is bounded, there exists a weakly convergent minimizing sequence
{un}n ⊂ L2(IT (t0);RN ) satisfying

lim
n→∞ JT (un; t0, v0) = σ,

with σ > 0 and un⇀u∗ for u∗ satisfying (5.3). Using (5.5) and (5.7), we find that the
sequence of solutions {vn}n ∈ W (IT (t0); D(A), H) to CS(T , t0, v0) corresponding
to {un}n are bounded in W (IT (t0); D(A), H) and it holds

vn⇀v∗ in L2(IT (t0); D(A)) ∩ H1(IT (t0); H). (5.8)

We will next show that v∗ is the solution corresponding to u∗. Using (2.3) we can
write for every w ∈ W (IT (t0); D(A), H) that

‖B(ŷ)w‖L2(IT (t0);H) ≤ ‖B(ŷ,w)‖L2(IT (t0);H) + ‖B(w, ŷ)‖L2(IT (t0);H)

≤ c
(
‖∇ŷ‖L2(IT (t0);L3(Ω;R9)) + ‖ŷ‖Wt0,T

)
‖w‖W (IT (t0);D(A),H)

≤ cĉ‖w‖W (IT (t0);D(A),H)

(5.9)

where c depends only onΩ , and ĉ = ĉ(ε̂, T , R) due to Remark 1. Therefore, B(ŷ) is a
continuous linear operator from L2(IT (t0); D(A))∩H1(IT (t0); H) to L2(IT (t0); H).
Using this fact together with (5.8), we find that

(∂tvn,Avn,B(ŷ)vn,Bun)⇀(∂tv∗,Av∗,B(ŷ)v∗,Bu∗) in (L2(IT (t0); H))4

(5.10)

Therefore, in order show that the solution v∗ ∈ W (IT (t0); D(A), H) is corresponding
to the control u∗, it remains only to prove that N (vn)⇀N (v∗) in L2(IT (t0); H). We
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can write

‖N (vn) − N (v∗)‖L2(IT (t0);H)

= ‖B(vn − v∗, vn) + B(v∗, vn − v∗)‖L2(IT (t0);H)

≤ ‖B(vn − v∗, vn)‖L2(IT (t0);H) + ‖B(v∗, vn − v∗)‖L2(IT (t0);H).

(5.11)

Further, for the terms in the last line of (5.11), we obtain

‖B(vn − v∗, vn)‖2
L2(IT (t0);H)

≤ c

t0+T∫

t0

‖vn(t) − v∗(t)‖2L∞‖vn(t)‖2V dt

≤ c‖vn‖2L∞(IT (t0);V )

t0+T∫

t0

‖vn(t) − v∗(t)‖V ‖vn(t) − v∗(t)‖D(A)dt

≤ c‖vn‖2L∞(IT (t0);V )‖vn − v∗‖L2(IT (t0);V )‖vn − v∗‖L2(IT (t0);D(A)),

(5.12)

and

‖B(v∗, vn − v∗)‖2
L2(IT (t0);H)

≤ c

t0+T∫

t0

‖vn(t) − v∗(t)‖2V ‖v∗(t)‖2L∞dt

≤ c‖vn − v∗‖L∞(IT (t0);V )‖v∗‖L∞(IT (t0);V )

t0+T∫

t0

‖vn(t) − v∗(t)‖V ‖v∗(t)‖D(A)dt

≤ c‖vn − v∗‖L∞(IT (t0);V )‖v∗‖L∞(IT (t0);V )‖vn − v∗‖L2(IT (t0);V )‖v∗‖L2(IT (t0);D(A)),

(5.13)

where c > 0 is a generic constant depending on Ω , and in both of (5.12) and (5.13)
we have used Agmon’s inequality [37, Lemma 13.2]

‖z‖L∞ ≤ cag‖z‖
1
2
D(A)

‖z‖
1
2
V for z ∈ D(A),

with cag depending on Ω . Due to the fact that the embedding L2(IT (t0); D(A)) ∩
H1(IT (t0); H) ↪→ L2(IT (t0); V ) is compact (see e.g., [38]) and the terms
‖vn‖L∞(IT (t0);V ), ‖vn − v∗‖L2(IT (t0);D(A)), ‖vn − v∗‖L∞(IT (t0);V ), ‖v∗‖L∞(IT (t0);V ),
and ‖v∗‖L2(IT (t0);D(A)) are bounded, we can conclude that

‖N (vn) − N (v∗)‖L2(IT (t0);H) → 0,

and, thus, v∗ ∈ W (IT (t0); D(A), H) is the solution corresponding to the control u∗.
Since vn → v∗ strongly in L2(IT (t0); V ) and un⇀u∗ in L2(IT (t0);RN ) we have

0 ≤ JT (u∗; t0, v0) ≤ lim inf
n→∞ JT (un; t0, v0) = σ,

and, as a consequence, the pair (v∗,u∗) is optimal.We are finishedwith the justification
of P3.
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Finally, due to (5.3) and (5.6), Lemma 2 is applicable. Using estimate (2.15) for
any δ with 0 < δ ≤ T , we obtain

‖v(t0 + δ)‖2V ≤ c5(δ)

t0+δ∫

t0

(
‖v(t)‖2V + ‖Bu(t)‖2H

)
dt

≤ c̄2(δ)

t0+δ∫

t0

(
‖v(t)‖2V + |u(t)|22

)
dt,

where c̄2(δ) := max{cUω
, 1}c5(δ) and, thus, we complete the justification of P4. ��

Nowwe are in the position that we can present the main result. Beforehand, we denote
the value function associated to OPo∞(y0) by V̄∞(y0). That is

V̄∞(y0) := inf
u∈L2(I∞(0);RN )

{Jo∞(u; 0, y0) s.t. (1.1) and (1.2)}.

Theorem 3 Suppose that for a given regular enough (f̂, ŷ0) ∈ L2(I∞(0);L2)×V , the
reference trajectories (ŷ, p̂), as the solution to (1.2), satisfies (RA). Further, assume
that for given Û ⊂ H, λ > 0, and � ∈ L∞(Ω) satisfying (4.1), condition (COAC)
holds withΥ = Υ (λ, ν, ŷ, �) > 0. Then, for any given δ, and the fixed set of actuators
Uω := �Û , there exist numbers T ∗ = T ∗(δ,Uω) > δ and α = α(δ,Uω) < 1
such that: For every fixed prediction horizon T ≥ T ∗, and every y0 ∈ Bd2(ŷ0) with
d2 = d2(T ) > 0, the RHC urh obtained by Algorithm 1 satisfies the suboptimality
inequalities

αV̄∞(y0) ≤ α Jo∞(urh; 0, y0) ≤ V̄∞(y0), (5.14)

and the exponentially stable estimate

‖yrh(t) − ŷ(t)‖2V ≤ cV e
−ζ t‖y0 − ŷ0‖2V for t ≥ 0, (5.15)

where ζ and cV depend on Uω, δ, and T , but are independent of y0.

Proof The proof is based on using Theorem 1. First due to Remark 2, for the setting
(3.3) the both of Algorithms 1 and 2 are equivalent and yield the same RHC urh .
Thus, it is sufficient to consider Algorithm 2 for the setting (3.3). Further, due to
Propositions 5 and 6 , Properties P1-P4 hold. Therefore, Theorem 1 is applicable, and,
as a consequence, there exist numbers T ∗ = T ∗(δ,Uω) > δ and α = α(δ,Uω) < 1
such that: For every fixed prediction horizon T ≥ T ∗, and every v0 ∈ Bd2(0) with
d2 = d2(T ) > 0, the receding horizon urh obtained by Algorithm 2 satisfies (3.17)
and (3.18) for v0 = y0 − ŷ0. Therefore, using the fact that vrh = yrh − ŷ, V̄∞(y0) =
V∞(v0) = V∞(y0−ŷ0), and Jo∞(urh; 0, y0) = J∞(urh; 0, v0)we can infer that (5.14)
and (5.15) hold and the proof is complete. ��
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Remark 5 Due to Theorem 3, condition (COAC) is the essential condition for the
set of actuators for which the stabilizability of RHC holds. In view of Example 2,
indicator functions supported on a fixed open subset of the domain can be chosen as
the actuators.

In the next proposition, we derive an estimate for the pressure corresponding to the
receding horizon control urh .

Proposition 7 (Estimate for the pressure) Suppose that the assumptions of Theorem 3
hold and for given T > δ > 0, the receding horizon control urh obtained by Algo-
rithm 1 is stabilizing i.e., (5.14) and (5.15) are satisfied for a given y0 ∈ Bd2(ŷ0) with
d2 = d2(T ) > 0. Then for the pressure prh associated to yrh as the solution of (1.1)
for u = urh , we have prh ∈ L2(I∞(0); H1(Ω)) and

‖prh − p̂‖L2(I∞(0);H1(Ω))

≤ cp‖y0 − ŷ0‖V
(
1 + ‖y0 − ŷ0‖V

)3
, (5.16)

where cp is independent of y0.

Proof The proof of the well-posedness of the pressure prh ∈ L2(I∞(0); H1(Ω)) for
the strong solution follows with the same argument as in the proof of [39, Theorem
V.2.1]. Therefore, we restrict ourselves here to derive the estimate (5.16).

Throughout the proof c is a generic constant and does not depends on y0. Similarly
to the proof of Theorem 3, we consider the translated equation obtained by subtracting
(1.1) with u = urh from (1.2)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tvrh − νΔvrh + (ŷ · ∇)vrh + (vrh · ∇)ŷ
+(vrh · ∇)vrh + ∇p̄ = ∑N

i=1(urh)i (t)�i in (0,∞) × Ω,

div vrh = 0 in (0,∞) × Ω,

vrh = 0 on (0,∞) × ∂Ω,

vrh(0) = v0 in Ω,

(5.17)

where vrh = yrh − ŷ, v0 = y0 − ŷ0, and the pressure p̄ is defined by p̄ := prh − p̂. We
will show that p̄ ∈ L2(I∞(0); H1(Ω)) and (5.16) holds. Beforehand we derive some
auxiliary estimates. Projecting (5.17) to the divergence-free spaces, multiplying with
Avrh , integrating over Ω , and using (2.3), we obtain

d

2dt
‖vrh(t)‖2V + ν‖Avrh(t)‖2H

≤ c
(
‖ŷ‖L∞

div(I∞(0)×Ω;R3) + ‖∇ŷ(t)‖L3(Ω;R9)

)
‖vrh(t)‖V ‖Avrh(t)‖H

+ c‖vrh(t)‖
3
2
V ‖Avrh(t)‖

3
2
H + ‖Burh(t)‖H‖Avrh(t)‖H .

(5.18)
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Using Young’s inequality and (3.18), we can write

d

2dt
‖vrh(t)‖2V + ν

2
‖Avrh(t)‖2H

≤ c
(
‖ŷ‖2L∞

div(I∞(0)×Ω;R3)
‖vrh(t)‖2V + ‖∇ŷ(t)‖2L3(Ω;R9)

‖vrh(t)‖2V
)

+ c
(
‖vrh(t)‖6H + cUω

|urh(t)|22
)

≤ ccV e
−ζ t

(
‖ŷ‖2L∞

div(I∞(0)×Ω;R3)
+ ‖∇ŷ(t)‖2L3(Ω;R9)

)
‖v0‖2V

+ c
(
c3V e

−3ζ t‖v0‖6H + cUω
|urh(t)|22

)
.

(5.19)

Integrating (5.19) over (0,∞), using (3.17) and (3.18), together with the fact that

‖urh‖2(I∞(0);RN )
≤ β−1 J∞(urh; 0, v0) ≤ β−1α−1VT (0, v0) ≤ c‖v0‖2V , (5.20)

for urh = ((urh)1, . . . , (urh)N ) and

∞∫

0

e−ζ t‖∇ŷ(t)‖2L3(Ω;R9)
‖v0‖2V dt ≤ ‖v0‖2V

∞∑

k=1

kε̂∫

(k−1)ε̂

‖∇ŷ(t)‖2L3(Ω;R9)
e−ζ t dt

≤ R‖v0‖2V
∞∑

k=1

kε̂∫

(k−1)ε̂

e−ζ t dt ≤ c‖v0‖2V ,

(5.21)

with R and ε̂ defined in (RA), we infer that

‖Avrh‖2L2(I∞(0);H)
≤ c

(
‖v0‖6V + ‖v0‖2V

)
. (5.22)

Further, similarly to (7.4), using (3.18), (5.21), and (5.22), it can be shown that

‖∂tvrh‖L2(I∞(0);H)

= ‖ − νAvrh − N (vrh) − B(ŷ(t))vrh + Burh‖L2(I∞(0);H)

≤ c

(

‖Avrh‖L2(I∞(0);H) + ‖vrh‖L∞(I∞(0);V )‖vrh‖L2(I∞(0);D(A))

+ ‖ŷ‖L∞
div(I∞(0)×Ω;R3)‖vrh‖L2(I∞(0);V ) +

⎛

⎝

∞∫

0

e−ζ t‖∇ŷ(t)‖2L3(Ω;R9)
‖v0‖2V dt

⎞

⎠

1
2

+ ‖Burh‖L2(I∞(0);H)

)

≤ c‖v0‖V (1 + ‖v0‖V )3 ,

(5.23)
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and, as a consequence, by using [39, Theorem IV.5.11], we conclude that

vrh ∈ C(I∞(0); V ) ∩ L2(I∞(0); V ∩ H2) with ∂tvrh ∈ L2(I∞(0);L2). (5.24)

Moreover, using the fact that ‖vrh‖H2 ≤ c̃‖vrh‖D(A) with a constant c̃ > 0 (see e.g.,
[39, Proposition IV.5.9]), we can write

‖(vrh · ∇)vrh‖L2(I∞(0);L2)

≤ c‖∇vrh‖L∞(I∞(0);L2)‖vrh‖L2(I∞(0);H2) ≤ c‖v0‖V (1 + ‖v0‖V )3 ,
(5.25)

and

‖(ŷ · ∇)vrh + (vrh · ∇)ŷ‖L2(I∞(0);L2) ≤ c

(

‖ŷ‖L∞
div(I∞(0)×Ω;R3)‖∇vrh‖L2(I∞(0);L2)

+
⎛

⎝

∞∫

0

e−ζ t‖∇ŷ(t)‖2L3(Ω;R9)
‖v0‖2V dt

⎞

⎠

1
2)

≤ c‖v0‖V .

(5.26)

Now, due to (5.20), (5.23), (5.25), and (5.26), we know that ∂tvrh , (vrh · ∇)vrh ,
(ŷ · ∇)vrh + (vrh · ∇)ŷ, and

∑N
i=1(urh)i�i are in L2(I∞(0);L2). Thus, we have

∇p̄ = − ∂tvrh + νΔvrh − (ŷ · ∇)vrh

− (vrh · ∇)ŷ − (vrh · ∇)vrh +
N∑

i=1

(urh)i�i ∈ L2(I∞(0);L2),
(5.27)

with

‖∇p̄‖L2(I∞(0);L2) ≤ c‖v0‖V (1 + ‖v0‖V )3 . (5.28)

Choosing, as usual, p̄ having a zero mean and using the Poincaré-Wirtinger inequality
[39, Proposition III.2.39], we can conclude that p̄ ∈ L2(I∞(0); H1(Ω)) with

‖p̄‖L2(I∞(0);H1(Ω)) ≤ c‖v0‖V (1 + ‖v0‖V )3 , (5.29)

and this completes the proof. ��

6 Conclusions

To sum up, we have established the local stabilizability of the three-dimensional
Navier–Stokes system towards a given trajectory satisfying suitable regularity con-
ditions via finite-dimensional RHC. This RHC enters as time depending linear
combinations of a finite number of actuators. Our theory allows us to employ the
indicator functions whose supports cover a part of the domain as actuators.
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In this paper, we confined ourselves to the three-dimensional Navier–Stokes
equations. Obviously, all the results remain also valid for the two-dimensional Navier–
Stokes equations. We believe that for the two-dimensional case the local exponential
stabilizability of the RHC can even be proven for the weakly variational solution, as
a consequence, with respect to the H -norm.
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Appendix A: Proofs

Appendix A.1: Proof of Proposition 1

Proof We use the Banach fixed point theorem. For given κ > 0, we define the set

V0,κ
t0,T

:=
{

φ ∈ V0
t0,T : ‖φ‖2V0

t0,T
≤ κ

(
‖v0‖2V + ‖f‖2L2(IT (t0);H)

)}

,

and the mapping Ψ : V0,κ
t0,T

→ V0
t0,T

, which maps a given function z ∈ V0,κ
t0,T

to the
solution of the following problem

{
∂tw(t) + νAw(t) + B(ŷ(t))w(t) = f(t) − N (z(t)) t ∈ IT (t0),

w(t0) = v0.
(7.1)

That is, Ψ (z) = w. Then, we show that the unique solution to (2.7) is the fixed point
of Ψ . First, using (2.3), we have for every z ∈ V0,κ

t0,T
that

‖N (z)‖2L2(IT (t0);H)
≤ c‖z‖2L2(IT (t0);D(A))

‖z‖2L∞(IT (t0);V ).

Therefore, using Lemma 1 for λ = 0, the linear system (7.1) has a strong solution for
any z ∈ V0,κ

t0,T
and we can use the estimate (2.10).
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Next we choose κ and r(T ) such that the mapping Ψ : V0,κ
t0,T

→ V0,κ
t0,T

is a contrac-

tion. Using (2.3) and (2.10) with λ = 0, we can write for every z ∈ V0,κ
t0,T

that

‖Ψ (z)‖2V0
t0,T

≤ c2
(
‖v0‖2V + ‖f‖2L2(IT (t0);H)

+ ‖N (z)‖2L2(IT (t0);H)

)

≤ c2
(
‖v0‖2V + ‖f‖2L2(IT (t0);H)

+ c‖z‖2L2(IT (t0);D(A))
‖z‖2L∞(IT (t0);V )

)

≤ c2(1 + cκ2r2)
(
‖v0‖2H + ‖f‖2L2(IT (t0);H)

)
,

where c is a generic constant which depends only onΩ . Setting κ := 2c2 and choosing
r2 ≤ 1

4cc2
, we obtain c2(1+ cκ2r2) ≤ κ and, as a consequence, Ψ maps the set V0,κ

t0,T
into itself. Now it remains to show that the mapping Ψ is a contraction for a small
enough r . Let two functions z1, z2 ∈ V0,κ

t0,T
be given. Then using (2.3), (2.10), and

(7.1), we obtain that

‖Ψ (z1) − Ψ (z2)‖2V0
t0,T

≤ c2‖N (z1) − N (z2)‖2L2(IT (t0);H)

≤ c2
(
‖B(z1, z1 − z2)‖2L2(IT (t0);H)

+ ‖B(z1 − z2, z2)‖2L2(IT (t0);H)

)

≤ c2c
(
‖z1‖2L∞(IT (t0);V )‖z1 − z2‖2L2(IT (t0);D(A))

+ ‖z1 − z2‖2L∞(IT (t0);V )‖z2‖2L2(IT (t0);D(A))

)

≤ c2c

(

‖z1‖2V0
t0,T

+ ‖z2‖2V0
t0,T

)

‖z1 − z2‖2V0
t0,T

≤ 2c2cκr
2‖z1 − z2‖2V0

t0,T

= 4c22cr
2‖z1 − z2‖2V0

t0,T
,

(7.2)

where in the last inequality we set κ = 2c2. Thus, for given γ̄ < 1, by choosing
r2 = min{ 1

4cc2
,

γ̄

4cc22
}, the mapping Ψ is a contraction with rate γ̄ and we can use the

Banach fixed point theorem. Therefore, there exists a unique solution v ∈ V0,κ
t0,T

with
κ = 2c2 to (2.7).

Now we turn to the verification of (2.13) and (2.14). Due to the definition of V0,κ
t0,T

,
for c4 := κ we obtain that

‖v‖2L∞(IT (t0);V ) + ‖v‖2L2(IT (t0);D(A))
≤ c4

(
‖v0‖2V + ‖f‖2L2(IT (t0);H)

)
. (7.3)

Further, due to (2.7), we can write

‖∂tv‖L2(IT (t0);H) ≤ c
(
ν + ‖ŷ‖L∞

w (IT (t0);L∞
div)

+ ‖v‖L∞(IT (t0);V )

)
‖v‖L2(IT (t0);D(A))

+ c‖∇ŷ‖L2(IT (t0);L3(Ω;R9))‖v‖L∞(IT (t0);V ) + ‖f‖L2(IT (t0);H),

(7.4)

where the terms ‖ŷ‖L∞
w (IT (t0);L∞

div)
and ‖∇ŷ‖L2(IT (t0);L3(Ω;R9)) ≤ ‖ŷ‖Vt0,T are

bounded due to Remark 1 and (RA). Thus, using (2.1), (7.3), and (7.4), the ver-
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ification of (2.13) and (2.14) is complete. To show the uniqueness in the space
L∞(IT (t0); V ) ∩ L2(IT (t0); D(A)), we suppose that an another solution p is given,
then the difference of these solutions z := v − p satisfies

{
∂tz(t) + νAz(t) + B(ŷ(t))z(t) + B(z, v) + B(p, z) = 0 t ∈ IT (t0),

z(t0) = 0.
(7.5)

Taking the scalar product of (7.5) with z in H and proceeding some standard energy
estimates (see, e.g., [33]), we will obtain that z = 0. Thus, the proof is complete. ��

Appendix A.2: Proof of Lemma 2

Proof Throughout the proof, c is a generic constant independent of (t0, v0, f). Mul-
tiplying (2.7) by (t − t0)Av(t) and integrating over Ω we obtain for almost every
t ∈ Iδ(t0) that

d

2dt
‖√t − t0v(t)‖2V + ν‖A√

t − t0v(t)‖2H
≤ 1

2
‖v(t)‖2V + |b(√t − t0v(t), ŷ(t),A

√
t − t0v(t))|

+ |b(ŷ(t),√t − t0v(t),A
√
t − t0v(t))| + |b(√t − t0v(t), v(t),A

√
t − t0v(t))|

+ (
√
t − t0f(t),A

√
t − t0v(t))H .

(7.6)

Using (2.3), we have the following estimate

|b(√t − t0v(t), ŷ(t),A
√
t − t0v(t))| + |b(√t − t0ŷ(t), v(t),A

√
t − t0v(t))|

≤ c
(
‖∇ŷ(t)‖L3(Ω;R9) + ‖ŷ‖Wt0,δ

)
‖√t − t0v(t)‖V ‖A√

t − t0v(t)‖H ,
(7.7)

for the linear term B(ŷ)v, and the estimate

|b(√t − t0v(t), v(t),A
√
t − t0v(t))|

≤ c‖√t − t0v(t)‖L4‖v(t)‖W1,4
0

‖A√
t − t0v(t)‖H

≤ c‖√t − t0v(t)‖V ‖v(t)‖D(A)‖A
√
t − t0v(t)‖H ,

(7.8)

for the nonlinear term. Further, using (7.6)–(7.8), and Young’s inequality, we obtain

d

dt
‖√t − t0v(t)‖2V + ν‖A√

t − t0v(t)‖2H ≤
(
‖v(t)‖2V + T ‖f(t)‖2H

)

+ c
(
‖ŷ‖2Wt0,δ

+ ‖v(t)‖2D(A) + ‖∇ŷ(t)‖2L3(Ω;R9)

)
‖√t − t0v(t)‖2V ,

(7.9)
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with c depending only on Ω and ν. Then, using (7.9) and Gronwall’s Lemma for the
interval Iδ(t0), we obtain

‖√· − t0v(t)‖2C(I δ(t0);V )

≤ ce

∫ t0+δ
t0

(

‖ŷ‖2Wt0,δ
+‖v(t)‖2D(A)

+‖∇ŷ(t)‖2
L3(Ω;R9)

)

dt (‖v‖2L2(Iδ(t0);V )
+ ‖f‖2L2(Iδ(t0);H)

)
,

where c depends also on T . Moreover, due to (2.12) and (2.13), we have

e

∫ t0+δ
t0

(

‖ŷ‖2Wt0,δ
+‖v(t)‖2D(A)

+‖∇ŷ(t)‖2
L3(Ω;R9)

)

dt ≤ e

(

max{δ,1}‖ŷ‖2Vt0,δ
+c4r2

)

≤ e
(
max{δ,1}ĉ+c4r2

)

,

where in the last inequality we have use the fact that ‖ŷ‖2Vt0,δ
≤ ĉ for a con-

stant ĉ = ĉ(δ, R, ε̂) independent of t0 (see Remark 1). Hence, by setting c5 :=
1
δ
ce
(
max{δ,1}ĉ+c4r2

)

, we are finished with the verification of (2.15). ��

Appendix A.3: Proof of Proposition 2

Proof Due to the definition of θ1 > 0 and θ2 > 0 in Lemma 4, we can write

1 − θ2(T , δ)(θ1(T , δ) − 1) =
(

1 − γ 2(T )

α2

 δ(T − δ)

)

→ 1 as T → ∞. (7.10)

Therefore, there exist T ∗ > δ and α ∈ (0, 1) such that 1−θ2(T , δ) (θ1(T , δ) − 1) ≥ α

for all T ≥ T ∗. Then, using (3.13) and (3.14), we have for every T ≥ T ∗ and
(t0, v0) ∈ R+ × Bd1(0) that

VT (t0 + δ, v∗
T (t0 + δ; t0, v0)) − VT (t0, v0)

= VT (t0 + δ, v∗
T (t0 + δ; t0, v0)) −

t0+T∫

t0


∗
T (t; t0, v0)dt

≤ (θ1 − 1)

t0+T∫

t0+δ


∗
T (t; t0, v0)dt −

t0+δ∫

t0


∗
T (t; t0, v0)dt

≤ (θ2(θ1 − 1) − 1)

t0+δ∫

t0


∗
T (t; t0, v0)dt ≤ −α

t0+δ∫

t0


∗
T (t; t0, v0)dt,

and, as a consequence, (3.15) holds
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Now, we turn to verification of (3.16). Using (3.13) and (3.14) we have

VT (t0 + δ, v∗
T (t0 + δ; t0, v0)) ≤ θ1

t0+T∫

t0+δ


∗
T (t; t0, v0)dt ≤ θ1θ2

t0+δ∫

t0


∗
T (t; t0, v0)dt .

(7.11)

Further, using (3.15) and (7.11) we can write

VT (t0 + δ, v∗
T (t0 + δ; t0, v0)) − VT (t0, v0) ≤ −α

θ1θ2
VT (t0 + δ, v∗

T (t0 + δ; t0, v0)).

Therefore, by defining η := (1 + α
θ1θ2

)−1, we have

VT (t0 + δ, v∗
T (t0 + δ; t0, v0)) ≤ ηVT (t0, v0).

Now by defining ζ := |ln η|
δ

, we obtain the inequality (3.16). ��

Appendix A.4: Proof of Proposition 3

Proof The proof is divided into two parts. We first prove the results for the case ν = 1.
Then these results are extended to include any ν > 0.

The case ν = 1: To verify the inequality (4.8) for given λ > 0 and (t0, v0) ∈
R+ × H , it is sufficient to show that vλ(t) := e

λ
2 (t−t0)v(t) is uniformly bounded for

t ≥ t0 and a control qλ. Clearly, vλ can be expressed as the solution to the following
shifted system

{
∂tvλ(t) + Avλ(t) − λ

2vλ(t) + B(ŷ(t))vλ(t) + Π�PNqλ(t) = 0 t ∈ I∞(t0),

vλ(t0) = v0,

(7.12)

for qλ(v0) ∈ L2(I∞(t0),L2). To find a control qλ(v0) generating a uniformly bounded
vλ, we first decompose the interval I∞(t0) for fixed T > 0 to a sequence of intervals
defined by Ii := (t0 + iT , t0 + (i + 1)T ) with i = 0, 1, 2, . . . . Then, for any i ≥ 0,
we use repeatedly the null controllability control for the following auxiliary system

{
∂tbi (t) + Abi (t) − λ

2b
i (t) + B(ŷ(t))bi (t) = Π1ω1η(t) t ∈ Ii ,

bi (t0 + iT ) = v̂i0,
(7.13)

where the initial functions v̂i0 is specified from the previous null controllability prob-
lem, i.e., for i − 1. Due to Lemma 5, for any given v̂i0 ∈ H , there exists a control
η̂i (v̂i0) ∈ L2(Ii ;L2(ω1)) which drives the system to zero at t0 + (i + 1)T , and it
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satisfies

‖1ω1 η̂
i‖2L2(Ii ;L2)

= ‖η̂i‖2L2(Ii ;L2(ω1))
≤ cob‖v̂i0‖2H , (7.14)

with cob = cob(T ) > 0.
For every i ≥ 0 and the control ηi := 1ω1 η̂

i , we also consider the following
controlled system

{
∂tvλ(t) + Avλ(t) − λ

2vλ(t) + B(ŷ(t))vλ(t) − Π�PNηi (t) = 0 t ∈ Ii ,

vλ(t0 + iT ) = v̂i0.
(7.15)

Now, using the fact that ηi = �ηi� = ηi� due to �|ω1 = 1, subtracting (7.15) from
(7.13) with η = η̂i , and setting di := bi − vλ, we have

{
∂tdi (t) + Adi (t) − λ

2d
i (t) + B(ŷ(t))di (t) = Π�(id − PN )�ηi (t) t ∈ Ii ,

di (t0 + iT ) = 0.
(7.16)

Further, using (2.9) for (7.16) and (7.14), we obtain

‖vλ(t0 + (i + 1)T )‖2H = ‖di (t0 + (i + 1)T )‖2H ≤ c1‖Π�(id − PN )�ηi‖2L2(Ii ;V ′)

≤ c1‖Π�(id − PN )�‖2L(L2,V ′)‖ηi (v̂i0)‖2L2(Ii ;L2(ω1))

≤ cobc1‖Π�(id − PN )�‖2L(L2,V ′)‖v̂i0‖2H .

Now, setting Υ (T ) := cob(T )c1(T , λ, ŷ) and defining ρ := ‖Π�(id−PN )�‖2L(L2,V ′)
Υ (T ), we have ρ < 1 due to (COAC). Hence, we can conclude that

‖vλ(t0 + (i + 1)T )‖2H ≤ ρ‖v̂i0‖2H for i ≥ 0. (7.17)

The control qλ(v0) ∈ L2(I∞(t0);L2) is constructed by concatenation of the controls
ηi ∈ L2(Ii ;L2) for initial functions v̂i0 := vλ(t0 + iT ) for i ≥ 1 and v̂00 := v0 for
i = 0. Thus, using (7.17), we can write

‖vλ(t0 + (i + 1)T )‖2H ≤ ρ‖vλ(t0 + iT )‖2H ≤ ρi+1‖v0‖2H . (7.18)

For every t ≥ t0, the exists j ∈ N0 such that t ∈ [t0 + jT , t0 + ( j + 1)T ). Using
estimate (2.9) for (7.15), (7.14), and (7.18), we can write

‖e λ
2 (t−t0)v(t)‖2H = ‖vλ(t)‖2H ≤ ĉ1

(
‖vλ(t0 + jT )‖2H + ‖Π�PMη j (vλ(t0 + jT ))‖2L2(I j ;H)

)

≤ ĉ1
(
‖vλ(t0 + jT )‖2H + ‖�‖2L∞(Ω)‖η j (vλ(t0 + jT ))‖2L2(I j ;L2(ω1))

)

≤ Θ1ρ
j‖v0‖2H ≤ Θ1‖v0‖2H ,
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where Θ1 := ĉ1(1+ ‖�‖2L∞(Ω)cob(T )) and ĉ1 depends on c1(T , λ, ŷ) and the contin-
uous embedding H ↪→ V ′. Thus, we can conclude (4.8).

Now we turn to the verification of (4.9). Setting q(t) := e
−λ
2 (t−t0)qλ(t) and using

(7.14) and the fact that

qλ|Ii = ηi ∈ L2(Ii ;L2) for i ≥ 0,

we have

‖e λ
2 (·−t0)q‖2L2(I∞(t0);L2)

= ‖qλ‖2L2(I∞(t0);L2)
≤

∞∑

i=0

‖η̂i (vλ(t0 + iT ))‖2L2(Ii ;L2)

≤
∞∑

i=0

ρi cob‖v0‖2H ≤ Θ2‖v0‖2H ,

where Θ2 := cob
1−ρ

. Hence, (4.9) holds.
The case ν > 0: Let ν > 0 be given. By setting v(τ ) := v( τ

ν
+ t0) for τ ∈ I∞(0),

(4.3) can be transformed to the following controlled system

{
∂τv(τ ) + Av(τ ) + B(y(τ ))v(τ ) + Π�PNq(τ ) = 0 τ ∈ I∞(0),

v(0) = v0,
(7.19)

where y(τ ) := 1
ν
ŷ( τ

ν
+t0) for τ ∈ I∞(t0). In this case, (RA) holds for ywith R

ν
in place

of R. Due to the first part of the proof, for any given λ > 0, there exists a constantΥ :=
Υ (λ, y, �) > 0 such that: If for Û and �, the condition ‖Π�(id − PN )�‖2L(L2,V ′) <

Υ
−1

holds. Then, for every v0 ∈ H , there exists a control q(v0, λ) ∈ L2(I∞(0);L2)

such that

‖v(τ )‖2H ≤ Θ1e
−λτ‖v0‖2H for τ ≥ 0, and ‖e λ

2 (·−0)q‖2L2(I∞(0);L2)
≤ Θ2‖v0‖2H ,

(7.20)

where Θ1 = Θ1(λ, y) and Θ2 = Θ2(λ, y). Now, choosing λ := λ
ν
and putting

q(t) := νq(ν(t − t0)) for t ∈ I∞(t0) in (4.3), we obtain that

‖v(t)‖2H = ‖v(ν(t − t0))‖2H ≤ Θ1(
λ

ν
, y)e

λ
ν
(ν(t−t0))‖v0‖2H for t ≥ t0, (7.21)

and

‖e λ
2 (·−t0)q‖2L2(I∞(t0);L2)

= ν‖e λ
2ν (·−0)q‖2L2(I∞(0);L2)

≤ νΘ2(
λ

ν
, y)‖v0‖2H , (7.22)

provided that (COAC) holds for Υ := Υ (λ
ν
, y, �). Thus, (4.8) and (4.9) hold for

Θ1(λ, ŷ, ν) = Θ1(
λ
ν
, y) and Θ2 = νΘ2(

λ
ν
, y), and the proof is complete. ��
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Appendix A.5: Proof of Theorem 2

Proof We use the Banach fixed point theorem. For given κ > 0, we define the set

Vλ,κ
t0,∞ :=

{

φ ∈ Vλ
t0,∞ : ‖φ‖2Vλ

t0,∞
≤ κ‖v0‖2V

}

,

where the Banach space Vλ
t0,∞ is endowed with the norm

‖v‖2Vλ
t0,∞

:= sup
t∈I∞(t0)

‖e λ
2 (t−t0)v(t)‖2V +

∞∫

t0

‖e λ
2 (t−t0)v(t)‖2D(A) dt .

Further, we consider the mapping Ψ : Vλ,κ
t0,∞ → Vλ

t0,∞, which maps a given function

z ∈ Vλ,κ
t0,∞ to the solution of the following problem

{
∂tw(t) + νAw(t) + B(ŷ(t))w(t) − ΠK̃λ(t)w(t) = −N (z(t)) t ∈ I∞(t0),

w(t0) = v0,

(7.23)

where K̃λ(t) := Kλ̄(t) with Kλ̄(t) given in Proposition 4, and λ̄ ∈ (λ, 2λ]. Clearly,
for this choice of operator K̃λ, the first part of the theorem follows from Proposition 4
with cK̃(λ) := cK(λ̄).

We show that the unique solution to (4.20) is the fixed point ofΨ withΨ (z) = w. To
do this, we choose κ and rs such that the mappingΨ : Vλ,κ

t0,∞ → Vλ,κ
t0,∞ is a contraction.

Throughout the proof c is a positive constant which does not depend on v0, rs , and κ .
First step: we show that Ψ : Vλ,κ

t0,∞ → Vλ,κ
t0,∞. We fix z ∈ Vλ,κ

t0,∞. For t ≥ s ≥ t0,
we denote byW(s, t) the evolution operator of the linear problem (4.18), which takes
an initial function v0 ∈ H at initial time t0 to v(t) at time t . In other words, we have

v(t) = W(s, t)v(s) = W(t0, t)v0.

Then, for (7.23) we can write

w(t) = W(t0, t)v0 −
t∫

t0

W(s, t)N (z(s)) ds.
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Hence, using estimate (4.19) for λ̄ with 2λ ≥ λ̄ > λ, we have for t ≥ t0 that

‖w(t)‖2H ≤ 2‖W(t0, t)v0‖2H + 2

t∫

t0

‖W(s, t)N (z(s))‖2H ds

≤ 2Θ3e
−λ̄(t−t0)‖v0‖2H + 2Θ3

t∫

t0

e−λ̄(t−s)‖N (z(s))‖2H ds

≤ 2Θ3e
−λ̄(t−t0)‖v0‖2H + 2Θ3e

−λ̄(t−t0)

t∫

t0

eλ̄(s−t0)‖z(s)‖2V ‖z(s)‖2D(A) ds

≤ 2Θ3e
−λ̄(t−t0)‖v0‖2H + 2Θ3e

−λ̄(t−t0)

t∫

t0

‖e λ
2 (s−t0)z(s)‖2V ‖e λ

2 (s−t0)z(s)‖2D(A) ds

≤ 2Θ3e
−λ̄(t−t0)‖v0‖2H + 2Θ3e

−λ̄(t−t0)‖z‖4Vλ
t0,∞

≤ ce−λ̄(t−t0)
(
‖v0‖2V + κ2‖v0‖4V

)
,

(7.24)

where we have used the fact that ‖N (z(s))‖H ≤ ‖z(s)‖V ‖z(s)‖D(A).

Further, by multiplying (7.23) by e
λ̄
2 (·−t0) and setting wλ̄ := e

λ̄
2 (·−t0)w, we have

⎧
⎪⎨

⎪⎩

∂twλ̄(t) + νAwλ̄(t) − λ̄
2wλ̄(t) + B(ŷ(t))wλ̄(t) − ΠK̃λ(t)wλ̄(t)

= −e
λ̄
2 (t−t0)N (z(t)) t ∈ I∞(t0),

wλ̄(t0) = v0.

(7.25)

By deriving a similar estimate as (2.11) in Lemma 2 for (7.25), it can be shown for
arbitrarily given T > 0 and initial pair (t0,w0) ∈ R+ × V (w0 in place of v0) that

‖wλ̄(t0 + T )‖2V ≤ c6(T )

⎛

⎝‖w0‖2H +
t0+T∫

t0

eλ̄(s−t0)‖N (z(s))‖2H ds

⎞

⎠ , (7.26)

where c6 depends on T , λ̄, K̃, and ŷ, and is independent of (t0,w0). Using (7.26)
together with (7.24), we can write for ε̂ > 0 and k ≥ 1 that

‖wλ̄(t0 + kε̂)‖2V

≤ c6(ε̂)

⎛

⎜
⎝‖wλ̄(t0 + (k − 1)ε̂)‖2H +

t0+kε̂∫

t0+(k−1)ε̂

eλ̄(s−t0)‖N (z(s))‖2H ds

⎞

⎟
⎠
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≤ c6(ε̂)

⎛

⎝c
(
‖v0‖2V + κ2‖v0‖4V

)
+

∞∫

t0

eλ̄(s−t0)‖N (z(s))‖2H ds

⎞

⎠

≤ c6(ε̂)

⎛

⎝c
(
‖v0‖2V + κ2‖v0‖4V

)
+

∞∫

t0

e2λ(s−t0)‖z(s)‖2V ‖z(s)‖2D(A) ds

⎞

⎠

≤ c
(
‖v0‖2V + κ2‖v0‖4V

)
. (7.27)

Therefore, due to the definition of wλ̄, using a similar argument as in the proof of
Proposition 3, and (7.27), we conclude that

‖w(t)‖2V ≤ ce−λ̄(t−t0)
(
‖v0‖2V + κ2‖v0‖4V

)
. (7.28)

Moreover, reconsidering (7.25) with λ in place of λ̄ and multiplying it by Awλ, we
obtain

d

2dt
‖wλ(t)‖2V + ν‖Awλ(t)‖2H

≤ |(−B(ŷ(t))wλ(t) + λ

2
wλ(t) + ΠK̃λ(t)wλ(t) − e

λ
2 (t−t0)N (z(t)),Awλ(t))H |

≤ c
(
‖ŷ‖L∞

div(I∞(0)×Ω;R3) + ‖∇ŷ(t)‖L3(Ω;R9)

)
‖wλ(t)‖V ‖Awλ(t)‖H

+
(

λ

2
+ cK̃

)

‖wλ(t)‖H‖Awλ(t)‖H + e
λ
2 (t−t0)‖N (z(t))‖H‖Awλ(t)‖H .

(7.29)

By integrating (7.29) from t0 to t and using Young’s inequality, we obtain for t ≥ t0
that

‖wλ(t)‖2V + ν

t∫

t0

‖Awλ(t)‖2H dt ≤ ‖v0‖2V + c

⎛

⎝

∞∫

t0

‖wλ(t)‖2Hdt +
∞∫

t0

‖wλ(t)‖2V dt
⎞

⎠

+ c

∞∫

t0

‖∇ŷ(t)‖2L3(Ω;R9)
‖wλ(t)‖2V dt + c

∞∫

t0

eλ(t−t0)‖N (z(t))‖2Hdt .

Using (7.24), (7.28), and the fact that

∞∫

t0

‖∇ŷ(t)‖2L3(Ω;R9)
‖wλ(t)‖2V dt ≤

∞∑

k=1

t0+kε̂∫

t0+(k−1)ε̂

‖∇ŷ(t)‖2L3(Ω;R9)
eλ(t−t0)‖w(t)‖2V dt

≤ c
(‖v0‖2V + κ2‖v0‖4V

)
∞∑

k=1

t0+kε̂∫

t0+(k−1)ε̂

‖∇ŷ(t)‖2L3(Ω;R9)
e−(λ̄−λ)(t−t0)
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≤ c
(‖v0‖2V + κ2‖v0‖4V

)
R

∞∑

k=1

t0+kε̂∫

t0+(k−1)ε̂

e−(λ̄−λ)(k−1)ε̂ ≤ c
(‖v0‖2V + κ2‖v0‖4V

)
,

with R and ε̂ defined in (RA), we obtain for every t ≥ t0 that

‖wλ(t)‖2V + ν

t∫

t0

‖Awλ(t)‖2H dt ≤ c
(
‖v0‖2V + κ2‖v0‖4V

)
. (7.30)

Now by choosing κ := 2c and rs ≤ 1
2c , we have c(1 + κ2r2s ) ≤ κ and, thus, we can

conclude that Ψ : Vλ,κ
t0,∞ → Vλ,κ

t0,∞ and this finishes the verification of the first step.
Second step: we show that Ψ is contraction for a radius rs . In a similar manner

as in (7.2), it can be shown that

‖Ψ (z1) − Ψ (z2)‖2Vλ
t0,∞

≤ c̃rs‖z1 − z2‖2Vλ
t0,∞

,

for a constant c̃ independent of rs . It is sufficient to choose rs < min{ 1c̃ , 1
2c }, then

clearly Ψ is a contraction mapping.
Similarly to the proof of Proposition 1, it can be shown that ‖∂tv‖L2(I∞(t0);H) is

bounded.Therefore (4.20) iswell-posed, and estimate (4.21) follows from(7.30).Next,
we show that the solution of (4.20) is unique in L∞(I∞(t0); V ) ∩ L2(I∞(t0); D(A)).
Let an another solution p be given, then the difference of these solutions z := v − p
satisfies

{
∂tz(t) + νAz(t) + B(ŷ(t))z(t) + B(z, v) + B(p, z) = ΠK̃λ(t)z(t) t ∈ I∞(t0),

z(t0) = 0.

(7.31)

Taking the scalar product of (7.31) with z in H , proceeding with some standard energy
estimates (see, e.g., [33]), anddue to the uniformboundedness of the feedbackoperator,
we will obtain that z = 0. Thus, the proof is complete. ��
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