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Abstract

Local exponential stabilization of the three-dimensional Navier—Stokes system to a
given reference trajectory via receding horizon control (RHC) is investigated. The
RHC enters as the linear combinations of a finite number of actuators. The actuators
are spatial functions and can be chosen in particular as indicator functions whose
supports cover only a part of the spatial domain.
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1 Introduction

In this paper, we are concerned with the following controlled Navier—Stokes system

8,y—vAy+(y-V)y+Vp=Z,N:luﬂbi+f' in (0, 0) x £2,

divy =0 in (0, 00) x 2, (1.1
y=0 on (0, 00) x 982, '
y(0) =yo in 2,

where 2 < R3 is a bounded domain with smooth boundary 042, the vector
valued function y(z, x) = (y1(¢, x), y2(¢, x), y3(¢, x)) stands for the fluid veloc-
ities, the real valued function p(z, x) indicates the pressure field, and f (t,x) =
(fl (t, x), fz(t, x), f3(t, x)) is a source field. Moreover, v > 0 is the viscosity con-
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stant, y - V denotes the differential operator y|dy, + Y20y, + ¥30x;, and for N € N
the vector valued functions ®;(x) = (®;;(x), ®;r(x), P;3(x)) withi = 1,..., N
are specified and defined as actuators. These actuators can be chosen as the indicator
functions whose supports are contained in an open subset @ of the domain £2.

The control objective here is to find a control vector u(¢) := [uy(¢), ..., un(t)] €
L2((0, 00); RM) by the receding horizon framework that steers system (1.1) to a
reference trajectory y satisfying

9§ —vAY+F-VF+Vp=F in(0,00) x 2,

divy =0 on (0, 00) x 052, (12)
y=0 on (0, 00) x 962, '
¥y(0) = Yo on £2,

for any given yg in a neighbourhood of yo. Here, y (¢, x) = (31(¢, x), y2(¢, x), y3(¢, x))
and P(z, x) denote the associated fluid velocities and the pressure field, respectively.
To be more precise, we show that there exists an r > 0 such that for every initial
function yq satisfying ||yo — Yol Hl(@R) =T and the receding horizon state y,j,

corresponding to the RHC u,(yo) € L2((0, 00); RY), it holds
1y (0 = FOI3 .3y < cve ™ 1¥0 = Foll 31 a5, Y2 >0,

where the positive constants cy and ¢ are independent of yj.

One efficient approach for the stabilization of a class of continuous-time infinite-
dimensional controlled systems is receding horizon framework, see e.g., [1-5] and the
references therein. In this approach, a stabilizing RHC is constructed through the con-
catenation of a sequence of finite horizon open-loop optimal controls on overlapping
temporal intervals covering [0, c0). These optimal control problems are computed
according to a performance index function which enhances the desirable properties
and structures of the control. Here, for every T € (0, co], we consider the following
performance index function

to+T to+T
I 10, y0) = / 1¥() = 9021 gy 1 + B [ uBde  (1.3)
to 0]

for B > 0 and initial pair (%, yo) € Ry X H'(§2; R3), where | - | stands for the ¢5-
norm. The receding horizon framework bridges to a certain degree the gap between
closed-loop control and open-loop control. The main issue is then to justify the stability
of RHC. Depending on the structure of the underlying problem, this is usually done,
by techniques involving the design of appropriate sequences of temporal intervals,
using an adequate concatenation scheme, or adding terminal costs and\or constraints
to the finite horizon problems. Due to the structure of the receding horizon framework,
the resulting control acts as a feedback mechanism.
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Considering the performance index function defined in (1.3), the stabilization of
the control system (1.1) towards the trajectory ¥ of (1.2) can be also reformulated as
the following infinite horizon optimal control problem

inf {J%,(u; 0, y0) s.t. (1.1) and (1.2)}. (O PZ (y0))
ueL2((0,00);RN)

In connection to the infinite horizon problem O PZ, (yo), the receding horizon frame-

work delivers approximations to the solution of this problem which are considered
suboptimal solutions.

We continue our investigations on the receding horizon framework for infinite
horizon optimal control problems governed by partial differential equations, that we
initiated in [2] for autonomous systems and, recently extended in [3] for time-varying
infinite-dimensional linear systems. In this framework, the exponential stability and
suboptimality of RHC are obtained by generating an appropriate sequence of over-
lapping temporal intervals and applying a suitable concatenation scheme. There is
no need for terminal costs or terminal constraints imposed on the open-loop prob-
lems. Previously, this framework was investigated for finite-dimensional autonomous
systems in e.g, [6, 7] and for discrete-time autonomous systems in e.g, [8, 9].

In the receding horizon approach, we choose a sampling time § > 0 and an appro-
priate prediction horizon 7" > §. Then, we define sampling instances f; := k§ for
k = 0.... At every sampling instance #, an open-loop optimal control problem is
solved over a finite prediction horizon (#, # + 7). Then the optimal control is applied
to steer the system from time #; with the initial state y,, (#x) until time #1 1=t + 8
at which point, a new measurement of state is assumed to be available. The process is
repeated starting from the new measured state: we obtain a new optimal control and a
new predicted state trajectory by shifting the prediction horizon forward in time. The
sampling time § is the time period between two sample instances. Throughout, we
denote the receding horizon state- and control variables by y,, (-) and u,j(-), respec-
tively. Also, (y’} (; 10, ¥0), u? (; 1, Yo)) stands for the optimal state and control of the
optimal control problem with finite time horizon 7', and initial function yq at initial
time #9. The receding horizon framework is summarized in Algorithm 1.

1.1 Related Work

Optimal control and feedback stabilization of the Navier—Stokes equations are still
active research topics and a considerable amount of research has been devoted to
these fields. Among them we can mention [10-17] for feedback stabilization, [18—
24] for open-loop optimal control problems, and [25-28] for controllability results.
We also quote the works [11, 19], where instantaneous control is employed for the
Navier—Stokes system. In this approach, which is somehow related to RHC, discrete-
in-time feedback control is computed by solving sequences of stationary optimal
control problems at selected time instances.

While most of the literature on feedback stabilization is concerned with the stabi-
lization of the Navier—Stokes equations to the steady-state, similarly to [14], we are
interested in the stabilization towards a given reference trajectory by means of finite-
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Algorithm 1 Receding Horizon Algorithm
Require: Let the prediction horizon 7', the sampling time § < 7', and the initial
function y( be given. Then we proceed through the following steps:

ck:=0, 1 :=0,and Yrn(f0) = Yo.
2 Find the optimal tr1p1e (7 G tes Yrn (), w3 (55 1, Yrn (1)) over the time interval

(tx, tr + T) by solving the finite horizon open-loop problem

t+T
i JO (u; 1y, 1 ::/ t t + 0%)dt
vz TP = [ YO = 5O g 5o, + AOD)
by —vAY + (v VY + Vp =2 w4 +F in (i, 15 + ) x 2, (1.4)
o Jdivy=0 in(tg, t +T) x £2,
“ly=0 on (ix, tr + T) x 882,
Y() = Yrn(tr) in £2,
3: Set
(7)) =03 (75 1, Y () forall T € [, tx + 9),
Yru(T) = Y7 (75 tk, Yrn (1)) forall T € [#, t + 8],
kg1 =t + 0,
k:=k+1.

4: Go to step 2.

dimensional controls. In this case, it is needed to derive the stabilizability results for
a nonautonomous system, which requires different techniques compared to the case
of autonomous systems, see e.g, [14, Introduction] for more details. We also refer
the readers to [29-31] for more recent results concerning the stabilizability of the
nonautonomous parabolic-like differential equations by finite-dimensional controls.

1.2 Contributions

This manuscript deals with the analysis of the RHC for the Navier—Stokes equations.
Besides the fact that RHC has not been investigated for these equations before, the
present paper also contains novelties compared to our recent investigations [1-3] on
the analysis of RHC for infinite-dimensional systems: (i) Here our objective is to
stabilize the system around a given reference trajectory. In this case, depending on the
regularity of the given reference trajectory, in order to study the stability and well-
posedness of RHC, we consider the translated controlled system. This system, obtained
by subtracting (1.1) from (1.2), is a system of nonlinear time-varying equations and,
thus, we are concerned with the local stabilizability of a nonautonomous system. (ii)
For the three-dimensional Navier—Stokes equations, in order to ensure the uniqueness,
we need to work with the so-called strong variational solutions. For this purpose, the
stabilizability of the controlled system is investigated with respect to the H'-norm.
In this matter, in order to establish the exponential stability of RHC, we need to
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derive an observability type inequality with respect to the H '-norm. (iii) For the three-
dimensional Navier—Stokes equations, the existence of the global strong solution is
only guaranteed for small initial data and forcing terms. Therefore, an extra effort
needs to be made to guarantee both well-posedness of the open-loop subproblems
and the smallness of the H'-norm of the states at sampling instances #; during the
concatenation process within the receding horizon framework.

Furthermore, compared to the work [14] dealing with the stabilization of Navier—
Stokes equations to reference trajectories, the present work differs not only in the fact
that we employ and investigate the receding horizon framework for stabilization, but
also that our theory allows the stabilization to less regular reference trajectories, and as
actuators, we can use the indicator functions which are more practical in applications
in comparison to the eigenfunctions of the Stokes operator.

1.3 Organization of the Paper

The rest of the paper is organized as follows: In Sect. 2, we introduce the notions and
functional spaces used in the theory of the three-dimensional Navier—Stokes equations.
Then, we review some preliminaries about the well-posedness and regularity of the
solution to the translated system, which is obtained by subtracting (1.1) from (1.2).
Based on four key properties, Sect. 3 deals with the stability and suboptimality of RHC.
In Sect. 4, we investigate the local stabilizability of (1.1) around a given trajectory
y by finitely many controllers. Further, sufficient conditions on the set of actuators
are given, for which the stabilizability results hold. Then in Sect. 5, first the validity
of the four properties given in Sect. 3 is established. Then the main results i.e., the
local exponential stabilizability of the receding horizon state towards a given target
trajectory and the suboptimality of RHC are proven. Finally, to improve the readability
of the paper, we provide proofs to some of results from Sects. 2—4 only in the appendix.

2 Notation and Preliminaries
2.1 Functional Spaces and Translated Systems

We write R, for the set of non-negative real numbers. For a Banach space X, we
denote by || - || x the associated norm, by X' the associated dual space, and by (-, -) x’ x
the dual paring between X’ and X. In the case that X is a Hilbert space, we use
the scalar product (-, -)x. Further, £(X, Y) denotes the space of continuous linear
operators from X to Y with the usual operator norm || - ||z(x,y). Incase X =Y, we
write £(X) := L(X, X) instead. Let X and Y be Banach spaces, then for any open
interval (o, t1) C R4 we define

W(lt0, 1); X, ¥) i= |y € L2((0, 13 X) : dhy € L2((0, 0 V)]

where the derivative 0; is taken in the sense of distributions. This space is endowed
with the norm
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1
_ 2 2 2
”yllW((l‘(),l]);X,Y) = (||Y||L2((,O,,1);X) + ||3tY||L2((,O,,1);y)) .

We frequently use open intervals of the form 17 (#g) := (t9, to+7) C R4 withrg € R4
and T € R, U {oo}. Then, we denote [fo, o + T] and [, o0), by I 7(t9) and 1 (t9),
respectively.

Let 2 C R3 be an open, bounded, and connected set with smooth boundary
052. Throughout, for simplicity, we use the notations L” := L?(2; R3), WP4 =
Wra(2; R for p,g > 0, H) := HJ(£2;R%), and H™! := (H})'. Similarly,
for every open subset ® C £2, we denote L”(w) := L?(w; R3) for p > 0, and
H(l) (w) = HO1 (w; R3). We shall use the standard spaces of divergence-free vector
fields

D:={y e C(2;R?) : divy = 0in 2},
H:={yeL?:divy=0in22andn-y =0 on 3£},
V:={y € H} :divy = 0in 2},
DA :=H’NV,
where n is the unit outward normal vector on 952. The spaces H and V are the closure
of the space D with respect to the L?- and Hé—norms, respectively. It is wellknown
that

DA — V< H=H < V' < D(A),

with a densely compact embedding, and as a consequence, we recall from e.g., [32]
that for an open interval (g, t;) C R it holds

W((to,11); V, V') = C(lto, n1]; H) and W ((t0, 11); D(A), H) = C([to, 111; V).
(2.1)

Moreover, if we denote the Leray projection on H by IT : L> — H,we have IT(Vp) =
0 and can define the Stokes operator A : D(A) — H by

A:=—I1A.
The spaces H, V, and D(A) are endowed with the scalar products
¥.Vr = V2, . Vv = (Ay,v)y vy, and (y, V) p4) = (Ay, AV) 4.

In order to define the weak variational form of the Navier—Stokes equations, we intro-
duce the continuous bilinear form B : V x V — V’ defined by

3
B(y,v) =I(y-V)v with (B(y,v),wW)yy = Z /yiaxivjwjdx,
ij=lg
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and trilinear form b : V x V x V — R defined by
by, V. W) = (B(y. V). W)y
It is wellknown from e.g., [33, Lemma 1.3.], that for b it holds that
b(y,v,v) =0 and b(y,v,w) = —b(y,w,V). 2.2)
Moreover, using standard Sobolev’s embeddings, we can obtain that

0@y, v. W)I = cllylliallvllys Wl

= clyliviivipea Iwlia forye V.ve D(A).,weH, 2.3)
1b(y, v, W)| < cllyll=lIVIiv Wiz forye L®,veV,weH,

b(y. v.W)| < cllyles I VI3 orny Wl fory e L ve W we H,

where c is a generic constant depending on £2.
We denote the nonlinear term in the Navier—Stokes equations by

N(y) = B(y.y).
For any given y € V, we define the linear operator B(y) : V — V’ by
By)v := B(y,v) + B(v., ).

For specifying the regularity of the reference trajectory, we need to introduce the
following Banach space
L3, (I(0) x 2: R?)
- {y € L®(I(0) x 2:R3) : divy(t) = 0in 2, forae. s e 100(0)},

endowed with the norm ||y || LS, (1o (0)x 2:R3) *= Y1 200 (1, (0) x 2:R3)- Note that due the
fact that L™ (150 (0) x £2; R?) is dual of L!(15,(0) x §2; R?), we obtain that

L™ (1o (0) x £2; R?) = L3 (Ioo(0); L®) D L™ (I(0); L),

where the subscript w stands for the weak measureability, see e.g., [34, Sects. 5.0 and
9.1].

For any given o € Ry, T € Ry U {00}, and a fix 0 > g, we consider the spaces
20;,,7 and Uy, r for the measurable vector functions y = (yi, y1, y3) defined in

I7(tp) x £2 satisfying

1
o 2 2 2
1¥has,.r = (I oz + 1091320y yary) - < 0

09—

. 2 2
¥l = (19130, 7 + 1991220, 03005y ) . < O
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where LE, :={y € L : divy = 0in 2}.
Further, for given typ € Ry, T € R4 U {00}, and A > 0, we will use the Banach
space V%,T c L®7(1p); V) N LIz (to); D(A)) endowed with the norm

to+T

Ao A
IVIS; == sup 2"y + / le2 v (@)1 4 1.
10.T telr (1) ;
0

These spaces will be used within the contraction mapping theorem for the existence
results for the nonlinear system of equations.

Using the Leray projection and the notations introduced above, (1.1) and (1.2) can
equivalently be written as

N A
ay(®) +vAy(®) + N(y(1)) = IT (Z u; (1) ®; +f(t)> t € Ix(0), 2.4)
i=1 .
y(0) = yo,
and
WO + VA + NF@®) = TE@) 1 € 10(0), 2.5)

¥(0) = Yo,

respectively. Setting v :=y — ¥, Vo := yo — Yo, and subtracting (2.4) from (2.5), we
come up with the following system of time-varying nonlinear differential equations

N
V(1) + vAV() + BEFW)IVE) + N(v(t) = T3 ui()®;) t € Ioo(0), 2.6)
i=1 :

v(0) = vp.

This system is called the translated system. Our control objective can now be expressed,
equivalently, as the local exponential stabilization of the nonlinear time-varying system
(2.6) to zero with respect to V-norm by means of RHC.

2.2 Local Existence and Estimates

In this section, we are concerned with the well-posedness and regularity of the system
of nonlinear time-varying Eq. (2.6). Let y be the solution to (2.5) for a pair (¥, f). Then
for every initial function vy and forcing term f, we consider the auxiliary nonlinear
system

2.7)

,v(t) +vAvV(E) + By®)v(t) + N(v(t)) =) t € Ir(tp),
v(tp) = vo,
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and for A > 0 the auxiliary linear system

V() + vAV(E) — 5v(1) + BEO))V@) =£@) ¢ € Ir(1),

2.8
v(ty) = vp. (2.8)

Throughout the paper, we impose the following regularity condition for the reference
trajectory §.

Assumption 1 Let (¥, p) be a global smooth solution to (1.2), for which it holds with
constants € > 0,0 > g, and R > 0, that

9025 o x2:r3) + sUP - 0¥l L2 (2 0 +0):L7)
7€[0,+00)

+ sup [IV¥llL2(erey i@y < R-
7€[0,+00)

(RA)

Our stabilizability result is based on the concatenation of exact controllability controls
on a family of finite intervals covering [0, c0). Here we used the exact controllability
result given in [25, Proposition 1.] and, thus, the regularity condition (RA) is motivated
by the one given in [25, p. 3].

Remark 1 Due to regularity condition (RA), for every (o, T) € Ri the quantities
||§’||Qnt0‘T and ||§’||QT¢0,T are bounded by constants depending only on €, T, and R.

Lemma1 Letv > 0 and ) > 0 be given. Then, for every (ty, T, vy, f) € R%r x H x
L2(I7(t9); V'), (2.8) admits a unique weak solution v € W (Ir(to); V, V') satisfying

2 2 2 2
VI o m V20 oy = €1 (”V"”H + "f”LZ(IT(m);V/))‘ 29)

Moreover, for every (to, T, yo,f) € Ri x V x L2(Ir(1y); H), Eq. (2.8) admits a
unique strong solution v € W (I (ty); D(A), H) satisfying

2 2 2 2
IVI2 7 oy V20 cpemeay = €2 (V013 + 18122 o) - 210)

Finally, for every (to, T, vo,f) € Rﬁ x H x L*(I7(ty); H), we have /- —tov €
W (I (ty); D(A), H), and the corresponding estimate

— 2 . —_ 2
v = 20¥ 1 7 oy vy T IV = 1012217y Dy

, ) 2.11)
< 5 (M0l + 1603y ) -

The positive constants ¢y, ¢y, and ¢3 depend on 'y, A, T, and v.

Proof The proof follows by using the standard arguments given in e.g. [33, Chapter
3] and estimates (2.3). Thus, we omit the proof here. O
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In the next proposition, we investigate the existence of the nonlinear system (2.7) for
small pairs of initial functions vo and forcing functions f.

Proposition 1 For every given T > 0, there exists r = r(T) > 0 such that for every
(to,vo,f) e Ry x V x L2(I7(t9); H) satisfying

IVol% + 11721, ey < 77 (2.12)

eq. (2.7) admits a unique strong solutionv € W (It (ty); D(A), H). Moreover, for this
solution we have the following estimates

2 2 2 2
VI @ vy T IV oy peay = €4 (”V(’”V * ||f”L2<1r<zo>;H>) - @19

and

IVllwrao):pay.my < K(T, ¥, vo, 1), (2.14)
where the constant c4 depends on y and T, and the constant K depends on T, §, vy,
and f.

Proof The proof is given in Appendix 1. O

In the next Lemma, we establish an observability inequality which is essential for the
exponential stability of RHC.

Lemma 2 Assume that for T > 0, r(T) > 0, and arbitrary given (ty, vo, f) € Ry x
V x L2(IT (t0); H) satisfying (2.12), system of equations (2.7) admits a solution v €
W (It (ty); D(A), H). Then, for every § with0 < § < T, we have
to+36
Iv(to + D) < cs / (VO + IE@13, ) dr. (2.15)

fo

where the constants c5 depends on 8, T, v, and y.

Proof The proof follows by energy estimates and it is given in Appendix 2. O

3 Stability of RHC

This section is devoted to investigating the stability of RHC. For simplicity in pre-
sentation, we use the notations B := [[T®q, ..., [T®y] for the set of actuators
Uy :={®; e L?:i=1,..., N} withcy, :== N maxj<<n | ®:]?.

Forany T € Ry U{oo}, 9 > 0,vp € V,andu € L2(IT(10); RN), we consider the
following nonlinear time-varying controlled system

v() +vAv(E) + BF@®)v(t) + N(v(t)) =Bu@t) t € Iy (1),
v(tg) = vo.
(CS(T, 19, v0))
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Then, foru = [uy, ..., uy]" we obtain
N
Bu = Zu,«pi € L*(Ir(tp); H) and ||B||2£(RN,H) <cy,- (3.1
i=1

Further, due to Proposition 1, for every given T > 0, there exists a radius r, :=
mr(T) such that for given triple (#p, vo,u) € R%r x V x L2(IT(t0); RN)
satisfying

2 2 2
”VO”V + ”u”Lz(IT(tQ);RN) S rca

equation CS(T, tg, vo) admits a unique solution y* € W(I7(tg); D(A), H).

For the sake of convenience in presentation, we proceed the stability analysis of
RHC with a general class of incremental functions which contains the one associated
to (1.3) as a spacial case (See Remark 2). In this matter, for defining the optimal control
problems associated to the receding horizon framework, we consider an incremental
functions £ : Ry x V x RY — R, satisfying

0, v,u) > (v} + [ul})  forae.r > 0andevery (v,u) € V x RY

" (3.2)
£(t,0,0) =0 fora.e.t > 0,

where the number oy > 0 is independent of (¢, v, u).
For every interval length 7 > 0, initial state vo € V, and initial time #y, we use
frequently the finite horizon optimal control problems of the form

to+T

Lz(rIni(?)RN)JT(u;to,Vo) = f 2, v(t),u(r)dr  st. CS(T, 19, Vo).
ue T(10);

(O Pr(t0, Vo))

The solution of O Pr (to, vo) is denoted by the pair (v} (-; to, Vo), u7.(; o, Vo). Then,
the reeding horizon algorithm for dealing with the infinite horizon problem

inf {Joo(u; 0, vp) s.t. CS(00, 0, vp)}, (O P (v0))
ueL? (I (0);RN)

is given in Algorithm 2.

Remark 2 Tt is easy to check that by setting

Vo := Yo — Yo, and £(7, v, u) := ||v||%, + ,BIuI% for (1, v,u) e Ry x V x RV, (3.3)
in O Pr (1o, vo), (3.2) holds for oy := min{1, 8} and Algorithm 1 can be equivalently

expressed by Algorithm 2. To be more precise, due to (3.3) and using the fact that
v =y — ¥, it can be easily verified that the finite horizon optimal control problems
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defined on the same temporal interval in both of Algorithms 1 and 2 are equivalent.
Thus, both of these algorithms deliver the same RHC u,;, and approximations for
the value functions. Hence, we restrict ourselves here to investigate the stability and
suboptimality of RHCs obtained by Algorithm 2.

Algorithm 2 Receding Horizon Algorithm for the Translated Equation
Require: Let the prediction horizon T, the sampling time § < T, and the initial point
vo € V be given. Then we proceed through the following steps:
1: k:=0, ty:=0,and v,;(t) := vp.
2: Find (v} (3 t, Ven (06)), w3y (3 t, Ven (1)) over the interval Ir(#) by solving
O Py (tr, vrp(1)).
3: Settyy) =t +38,k:=k+1,and

W, (7) i= U7 (T b, Vrn (1)) forall 7 € [1, 1 +9),
Ve (T) = V3(T5 tey Ven (1) forall T € [, tx + §].

4: Go to step 2.

Definition 1 For any vy € V the infinite horizon value function Vo : V. — R, is
defined by

Voo (Vo) = inf {Jo(u; 0, vp) s.t. CS(o0, 0, vp)}.
uel?(I(0);RN)

Similarly, for every (T, to, Vo) € Ri x V, the finite horizon value function V7 :
R4+ x V — Ry is defined by

Vr(to, vo) == inf {Jr(u; 10, vo) s.t. CS(T, 1o, vo)}.
ueL2(I7 (19);RV)

In order to show the exponential stability and suboptimality of RHC obtained by
Algorithm 2, we need to verify the following properties for CS(7T, o, Vo), the finite
horizon value function Vr, and open-loop problems O Pr(fy, Vo). Throughout, B, (V)
denotes a ball in V centred at v with radius r > 0.

P1: There exists a radius ry such that for every positive number 7, Vr is globally
decrescent on B, (0) with respect to the V-norm. That is, there exists a continuous,
non-decreasing, and bounded function y : Ry — Ry such that

Vr (10, ¥o) < y(D)|Ivolly,  for every (10, vo) € Ry x B, (0). (34
Since, in Algorithm 2, the solution of O P, (Vo) is approximated by solving a sequence

of the finite horizon open-loop optimal controls, we need a priori to guarantee that any
of these optimal control problems in Step 2 of Algorithm 2 is well-posed.
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For any given T > 0, there exists a radius r, = r.(T') such that for every (ty, vo) €
R, x B,,(0) and u satisfying

lall 2217 1) rNy < VY () /e Ivollv, (3.5)

we have the following properties:
P2: CS(T, tg, vp) is well-posed and its associated solution satisfies
to+T

a | Ivolly + / la()3dr |, (3.6)

fo

2
_ <
VIe @ aoyivy =

with a positive constant ¢; = ¢1(7T).

P3: Every finite horizon optimal control problem of the form O Pr(to, vo), over the
set of all control u satisfying (3.5), admits a solution.

P4: For every § with 0 < § < T, there exists a constant ¢; = ¢2(5, T) > 0 such that

to+6 to+6
Iv(to +8)I3 < & / Iv() I3 dt + / la()[3dr | . (3.7)
fo

4]

The estimate (3.7) will be used to derive the exponential stability of RHC.

The validity of Properties P1-P4 will be addressed in Sect. 5. In particular, the
justification of Property P1 is based on the stabilizability of (2.6) by finitely many
controllers. This result will be investigated in Sect. 4.

For the sake of simplicity, throughout this section, we use the notation

0515 0, Vo) = £(t, V3 (t; 19, Vo), Wy (15 to, Vo))  forevery t € I7(19).

Remark 3 Let Properties P1-P3 hold and vo € B,,(0) N B, (0) be given. Then,
for every optimal control of O Pr(to, Vo), the control constraint [[ullz2(z, ). mV) =<
V(M) ]ag ||volly is automatically satisfied and it is not needed to be imposed to
O Pr (19, Vo). In fact, due to (3.2) and (3.4) for every optimal control u"}(~; to, Vo) €
L2(I7(to); RN) of O Pr(to, vo), we obtain that

to+T t0+T
ay / Wi (t; 10, Vo) |5 dt < / 05(t;5 1o, vo)dt = Vr(to, Vo) (3.8)
o fo
<y(Mlvolly-

Therefore, O Pr(ty, Vo) can be considered as an unconstrained problem.
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Lemma3 If PI-P3 holdand T > § > 0, then there exists a neighbourhood B4, (0) C
V with di = d\(T) > 0 such that for every (ty, vo) € Ry x By, (0) the following
inequalities hold

fo+t*
Vr(to + 8,v7(to + 8; 10, Vo)) < / 0515 o, Vo)dt
t0+36
+ Y (T 48— t|Vi(to + 1% 10, Vo) |3 forall t* € [8, T],

3.9)

and

to+T
/ Ci(t; 10, vo)dt < y(T — t%)||Vi(to + t*; 10, Vo) I3, forall t* € [0, T]. (3.10)

to+t*

Proof First observe that due to (3.8) in Remark 3, we have for every vo € B, (0) N
B, (0) that

y(T)

* 0L 2 2
”uT('a fo, VO)”LZ(IT(t());lRN) = _”VO”V'

Thus, using (3.4) and (3.6), we have for every 7 € [0, T'] that

to+T
. 2 = 2 . 2
V7 (to + 15 to, Vo) ly < c1(T) | IIvolly + / lu7(t; to, Vo) |5 dt

fo

T
<ca(Md+ M)Ilvoll%w
oy

-1
Choosing di := min{(S],\/(El(T)(l + %T))) 82} with 8 := minfry, r.}, we
obtain that

Vi (to + 15 10, vo) € B, (0)NB,,(0)  forall (7, vp) € [0, T] x By (0). (3.11)

Now, we come to the verification of (3.9) for vo € By, (0). Due to Bellman’s optimality
principle, we have for every * € [§, T] that

Vr(to + 8, vy (2o + 8; 10, Vo))

[0+t*
_ min / CG V(@) W)t + Vi s (0 + 15V + 1)
uel?((to+38,to+1*);RN)
to+6
to+t*
< / O3 (t; 10, Vo)dt + Vrps_p (1o + 1%, V3 (to + 175 19, Vo))
to+35

@ Springer



Applied Mathematics & Optimization (2022) 86:38 Page 150f44 38

to+1*
< / C51: 10, Vo)t + y (T + 8 — )V (to + 1 10, o) 2. (3.12)

to+4

where v" in the above equality is the solution to CS(t* — 8, 1o + 8, v} (to + &; to, Vo))
for any u € L2((t0 +38, 1o+ t*); RY) and in the last inequality, (3.4) and (3.11) were
used.

To show (3.10), suppose that t* € [0, T] is given. Using Bellman’s principle and
(3.4) and (3.11), we have

to+T
(15 10, Vo)dt = Vp_px(to + 1%, V7 (to + 175 10, Vo))
to+1*

< y(T — ") |V5(t0 + 1*; 10, VO) I3,

as desired. O

Lemma 4 Suppose that P1-P3 hold, and for given (T, 8, ty, Vo) € Ri x B, (0) with
T > §, properties (3.9) and (3.10) of Lemma 3 are satisfied. Then for the choice of

y(T) y(T)
o(Tr,s) =1+——, 6,(T,8) .= ——,
1(T, 8) +O[g(T—8) (T, 8) "
we have the following estimates
to+T
Vr(io + 5. ¥ (o + 5: 10, v0)) < 6) / 502 10, Vo), (3.13)
to+6
and
to+T to+4
/eﬁ(t;to,vo)dtgez'/ Tt to, vo)dt. (3.14)
to+§ to

Proof The proof is similar to the one given in [3, Lemma 2.4]. The only difference lies
on the fact that here the estimates are with respect to the V-norm instead of H-norm.
This requires that v;('; vo, t9) € C(I1(tp); V) which is true according to Property
P2. O

Proposition 2 Suppose that P1-P3 hold and let § > 0 be given. Then there exist
T* > § and o € (0, 1) such that for every T > T* and (to, vo) € Ry x Bg, (0) with
di(T) defined in Lemma 3, the inequalities
to+35
Vr(to + 8, vi(to + 8; fo, Vo)) < Vr(fo, Vo) — & / (15 1, vo)dt,  (3.15)

to
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and
Vr(to + 8, Vi (to + 8; to, Vo)) < e 5V (to, Vo), (3.16)

hold, where ¢ is a positive number depending on «, §, and T, but it is independent of
(10, Vo).

Proof The proof is given in Appendix 3. O

Theorem 1 (Suboptimality and exponential stability) Suppose that P1-P4 hold and
let a sampling time § > 0 be given. Then there exist numbers 7* > § and « € (0, 1),
such that for every fixed prediction horizon T > T* and every vo € Bg,(0) with
d(T) > 0, the receding horizon control u,;, obtained from Algorithm 2 satisfies the
suboptimality inequality

o Voo (Vo) < adoo(Urp; 0, v0) = V7 (0, Vo) < Vo (Vo), (3.17)
and the exponential stability inequality
Ven @1y < eve ' IIvolly,  fors =0, (3.18)

where the positive numbers ¢ and cy depend on «, §, and T, but are independent of
v0.

Proof First we deal with (3.17). The right and left inequalities are obvious, thus we
only need to verify the middle one. For fixed § > 0 we choose T* and « according to

otgd2 . )
52),(17),611}, where T > T*, d; is defined as in

Lemma 3, and ¢y = ¢2(6, T) is given in Property P4. For the moment, we will show
by induction that for every integer k > 1, the following conditions hold:

Proposition 2 and define d, := min{

vin(te) € By, (0), (3.19)
Tk
Vr (e, ven (1)) < Vr(0, vo) — 06/5(1, Ven (1), upp (2))dt, (3.20)
0
and
Vr (tk, Ve (t)) < eV (0, vo). (3.21)

Induction base (k = 1): Since d» < di, the assumptions of Proposition 2 are
applicable and we have

141
Vr (1, ven(t1)) < Vr (0, vo) —a/O £, Ve (1), upp (2))dt,
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and
Vr(t1, von (1)) < e 42V (0, vo),

where o and ¢ have been defined in Proposition 2.

Induction step: We assume that (3.19)—(3.21) hold for k = k’ with k' € N, we will
show that (3.19)—(3.21) are also satisfied for k = k" + 1. Since v,;,(#x') € Bg, (0), by
Proposition 2 we have

K/ 41
Vit 1, Ven (1)) < Vit Ve (t0) — o / £, v (1), upp(1))dt, (3.22)
Ik/
and
Vr (g1, Ven (1)) < €S0V (1, Vou (). (3.23)

Combining (3.22) and (3.23) with (3.20) and (3.21) for k = k/, respectively, we can
infer that

Ii/ 41
Vi (1, Vena1) < Vr(0,v0) — @ /O v (0), wn(O)dr,  (3.24)
and

Vit Ven (1) < e SEFD3VL 0, vo) = e W +1Vr (0, v9).  (3.25)

Moreover, due to the induction hypothesis ((3.19) for k = k'), P1 is applicable and by
using (3.8) in Remark 3, we can write

”“rh||L2((tk/,tk/+1);RN) < [z (s ter, Vrn (fk’)||L2(1T(,k,);RN)

Vv /e IVen @) v

Hence, for initial pair (¢, v, (tx/)), Property P4 is also applicable and we can write
that

(3.26)

3.7 _ [+
W3 2 & / (VeI + [ () D)ds
lk/

T +1

32) ¢ C
22 et v, 0)dt < Ve, v () (3.27)
o

1y
3.25) ¢
( 2 ) c_ze_ak/

2 _
Ivolly = dj.
" v =dj

B4 (T
Vr (0, vg) < L()e—ffk/
oy
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Hence v, (fx'+1) € By, (0). From this together with (3.24) and (3.25), we can conclude
the induction step and, thus, (3.19)—(3.21) hold for any k£ € Ny.
Now, taking the limit k — oo in (3.20), we find

o
o Joo (U, Vo) = a/ v (), upp (1))dr < Vr (0, vo),
0

which concludes (3.17). )
Now we turn to inequality (3.18). Using (3.27) and setting c¢|, = %g) with
n = e %, we have

c T
e 12 < 26D otz = o4 w2 forany k = 0. (3.28)
oy

Moreover, for every t > 0 there exists a k € N such that ¢ € [#, fx+1]. Using (3.6),
(3.26), and (3.28), we have for ¢ € [fx, tx+1] that

36) _
V@1 = én (9 13+ 105 G5t Ve 0014, v )

(326) _ y(T) (29 y(T)\ _
<1+—e)nvrh(rk)||2v < <1+ . et Hvoll3

_ T o 1 -
<aicy (14 702) e ﬁfkﬂnvonvmcv(lﬂ( Hte vl
4

and therefore, by setting cy := ¢ c’v 1+ %Z) n- 1 we are finished with the verification

of (3.18) and the proof is complete. O

Remark 4 if wehada = 1, theinequality (3.17) would imply the optimality of the RHC
u,;,. Since y (T) is bounded and § is fixed, it follows from (7.10) that lim7 _, oo ¢(T) =
1. This means that, RHC is asymptotically optimal.

4 Stabilizability

In this section, we are concerned with the stabilizability results for (2.6) by finitely
many controllers. The possibility of stabilization by a control associated with finitely
many actuators has been studied in several papers, see e.g., [10, 11, 15, 29-31, 35].
Here, we follow the similar arguments as in [29-31].

We introduce a set of actuators U, := {®; : i = 1, ..., N} supported in an open
set w C $£2. For this set of actuators, we prove, under some suitable conditions, the
local stabilizability of the nonlinear system. This result is the key condition for the
verification of Property P1. To provide U, with w C §2, we use frequently a function
0 = o(w) € L>®(£2) satisfying

supp(o) € w and g|,, = | with an nonempty opensetw; Cw C £2. (4.1)
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Then, for a given set U = {<i>,- i =1,...,N} C L2 and o satisfying (4.1), we
define

Uy ={® :i=1,...,Ni=oU:={o®i :i=1,...,N}. 4.2)

Further, without loss of generality, we assume that 4, is linearly independent.

To prove the local stabilizability of C S (o0, fg, Vo), first, we study the stabilizability

of this controlled system without the nonlinear term A/. Then using the perturbation

theory, we extend the result to the local stabilizability for the original controlled system
with the nonlinearity. In this matter, we consider the following linear system

V(@) +vAV(E) + BE@)v(t) + ToPnq(t) =0 t € Io(t0), @.3)

V(1) = Vo, '

where q € L?(I(fo); L?) stands for the control input and Py : L? > span?) cL?
is the orthogonal projection onto the span of U. A stabilizing control q for (4.3) is
constructed through concatenation of a sequence of controls on equidistant finite hori-
zon intervals covering [#y, 00). These controls are associated to the null controllability
problems introduced in the next lemma.

Lemma5 Suppose that A > 0, and a nonempty open set w C S2 be given. Further,
assume that for the reference trajectory y regularity condition (RA) holds. Then for
every T > 0, and (t9, vo) € Ry x H, the following system

Wv(t) + AV(E) — 5v(0) + BEO)IV() = M0 () 1 € Ix(t),

44
v(to) = vo, @)

is null controllable with a constant cop = cop(T, A, ¥). That is, there exists a control
n* € L*(Iz(ty), L?(0)) satisfying

113210y 1200y = Cob VOl 4.5)

whose associated state at time to + T is equal to zero.

Proof By setting v(t) := e_%rv(r +19) for T € (0, T), we can transform (4.4) to the
following controlled system

9:(1) + AV(T) + B(0)V(r) = T1,7(1) T € I7(0),

0) = vo. (4.6)

where y(t) := y(r + o) for T > 0. Due to (RA), it follows for y that the terms
||y||L3?V(,T(O)XQ;R3) and ||8,Y||Lz(1T(0);Lo) with o > g are bounded by a constant

¢ = ¢(é, R, T) which is independent of 7). We are now in the position to apply the
null controllability result from [25, Proposition 1] for (4.6). According to this result,
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for a given vo € H, there exists a control 7(vg) € LZ(IT(O); L2(w)) which drives the
system to zero at T and satisfies

“ﬁ”iZ([T(O);LZ(w)) S E()b”VO”%—Ia (47)

where the constant ¢, = ¢, (T, y) > 0 is related to the Carleman inequality given
in [25, Lemma 1]. For the choice of *(r) := e "~07(r — 10) with € I7(to), the
control n* € L2(17(to), L2(w)) steers (4.4) at time 7o + T to zero and (4.5) holds for
Cob = the%T. O
In the next proposition, we show that for every (7, vo) € Ry x H, there exists a
control q(vg) € L?(Is(fo); L?) which steers exponentially system (4.3) to zero.

Proposition 3 (Uniform exponential stabilizability of (4.3)) Let A > 0 and o €
L>®(£2) satisfyingA(4. 1) be given. Then there exists a constant Y := T (A, v,¥,0) > 0
such that: If, for U, o, and the identity mapping id € L(L?), the following holds

IToGd = PwelZ o vy < T (COAC)

then the control system (4.3) is exponentially stabilizable. That is, for every (to, Vo) €
R4 x H, there exists a control q(vo, A) € L?(Iso(t0); L?) such that

V()13 < @1 |Ivg |13, fort > 1, (4.8)
and
Ao
1e2C7ql5 o2y < O2lVoly, 4.9)

where the constants ©1 and ©, depend on Yy, LA{, o, and v, but are independent of
(to, Vo).

Proof The proof is inspired by those given in [29, Theorem 2.10] and [31] with the
deferences that here we deal with a system of equations and for the Navier-Stokes
system, we need to deal with the Leray projection. For the sake of completeness, we
give the proof in Appendix 4. O

In the following, we present two examples of U , for which the condition (COAC) is
satisfied. These examples are inspired by those given in [29, Examples 2.11, 2.12] for
parabolic equations. For simplicity, we assume that w is an open nonempty rectangle
defined by

3
w:=[]@.b) c . (4.10)
i=1

Due to [13, Definition A.1.2, Page 98], the Leray projection IT : L> — H can be
naturally extended to a continuous operator from H™! to V. In this case, there exists
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a constant ¢y7 > 0 such that | [T{|zg-1 vy < ¢ and, as a consequence, condition
(COAC) holds provided that

clloGd =Pyl zga g1y < T (4.11)

For both the examples, we investigate the actuators component-wise. In this matter,
for the sequence of scalar valued spatial functions {¢; }M: 1 C L2%(£2), we consider the

J
functions ¥; € L? defined by

Vi = ($ji, b i) forji= (i, ja, j3) €{1,..., M} . (4.12)

Then we can define

A~

U={& :i=1. N :={¥:jell,... M} (4.13)

where N = M?3. For this setting, the orthogonal projection Py : L? — spanZ:l will
have the form

Pyw = (Pywi, Pywa, Pyws) forevery w := (wy, wa, w3) € L2, (4.14)

where Py @ L2(2) — span({¢ j}?”:l) stands for the orthogonal projection from

L2(£2) onto span({q)j}?’[:l). Therefore, due to (4.11) and (4.14), condition (COAC)
holds provided that

1ToGd = Px)elZ o vy < chle( = Pulelz oy m1@y < T - 415

This means that, we only need to verify condition (COAC) component-wise. In each
example, we choose {¢j}j@4:1 in (4.12), and o in such a way that (4.15) holds. In this

case, for the corresponding U defined in (4.13) and the chosen o, Proposition 3 is
applicable and U/, defined in (4.2) is the desirable set of actuators.

Example 1 (Laplacian Eigenfunctions) Suppose that {dA),- eC®%w):i=1,2,3,...}
is a complete system of eigenfunctions associated to the negative of Laplacian —A,
which is defined on the domain @ with homogeneous Dirichlet boundary conditions.
We may also assume that these eigenfunctions are ordered with respect to the increasing
sequence of the eigenvalues 0 < A} < Ay < --- with lim;_, o A; = 00. Moreover,
let o € C?(2) satisfying (4.1) be given. For instance, o can be chosen to be a bump
function.

By defining the orthonormal projection Pg : L%(w) — span({¢;},) and setting
¢ = 50¢§j for j = 1,..., M with the extension-to-zero operator & : L%*(w) —
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L?(£2), we obtain for every w € L*(£2)and v € HO1 (£2) that

(Q(l — PM)QU), U)H—l(g)’HOl(_Q) = (QU), (1 - PAa;)Qv)Lz(w)

_1
= loewll 2 11 = Pipeviizaw) = Ay lowl 2wl = Pipevllg) )
(4.16)

_1
=< 2)‘M2 llo - ||[1(L2(.Q),L2(w))||w||L2(.Q)||Q : ||£(H(;(Q)’H01(a)))”U”]-[Ol(_Q)

1
-2 2
= 2)LMZ ”Q”Cl@)”w”LZ(Q)“U”HOl(Q)~

Therefore, for these choices of U defined by (4.12)—(4.13) and g, condition (COAC)
holds due to (4.15) if for a large enough N = M? the following inequality holds

ey ol < T

For w of the form (4.10), due to the asymptotic behaviour Ay > DM 3 from [36,
Corollary 1] with

1272 ]
D: il and |o|:= l—[(bi —aj),

342003183 i

and | B| denoting the volume of the unit ball in R3, we obtain the following estimate
on the number of required actuators

1 =3 3
N3 =M= D7 (4efllolig g )2

Example 2 (Piecewise constant functions) Here we set o := x,, for (4.10), where
Xo - §2 — {0, 1} is the characteristic function defined on w. Then we consider the
uniform partitioning of  to a family of sub-rectangles. For every i € {1, 2, 3}, the

interval (a;, b;) is divided into d; € N intervals defined by /; , = (a; + kig, a; +
(k; + 1)%) with k; € {0,1,...,d; — 1} and I; := b; — a;. In this case, o is divided
into M := [];_, d; sub-rectangles defined by

3
{&neuw”Mn:{thmewJW”¢—u}

i=1

Then the set of actuators is defined by setting ¢; := ml g Withi =1,..., M
i "L
in (4.12), where 1g, stands for the indicator function of R;. Then by following the

arguments given in [29, Example 2.12] we can infer that

1

lo(l = PaellZ 120y -1ey < M)~ 2, (4.17)
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where ), is the smallest positive eigenvalue of the Laplace operator with homogeneous
Neumann boundary conditions on the rectangle R;. Thatis, —A®; = A; P; in R; and

2
0, ®; = 0 on 0R;. Further we have A; = MMTL’Z with = {% 11 € {1,2,3}},since

the partitions are uniform on any intervals (a;, b;).

Since iy — 0 (equivalently uy — 0) as d; — 0 foreachi € {1, 2, 3}, due to
(4.15) it can be shown that for this choice of I/ defined in (4.12)—(4.13), condition
(COACQC) is satisfied provided that the partitions are fine enough so that

chpytH <L

2
Consequently, condition (COAC) is satisfied provided that d"‘Ti" > L’;—zr, where dpin 1=
3

. - = . . 2 o3 . .
minj<;<3d; and / := maxj<;<3 I;. Then the inequality Al’l—ﬁ > C’ZT +— 1s sufficient for

(COAC) and we have the following lower bound on the number of actuators

Due to Proposition 3, system (4.3) is globally stabilizable and the control q(vo) €
L2(Ioo (t0); L2) can be taken as a bounded function of an initial function vy € H.
Relying on this, in the following Proposition, we derive a stabilizing feedback law of
the form

K, (t)v(t) € spanl,, fora.e. t > 1y.

This feedback law enters the linear system (4.3) in the place of oPyq(?).

Proposition4 Let y, . > 0, and ¢ € L°°(2) satisfying (4.1) be given. Moreover,
assume thatfor?;{ and ¢, condition (COAC) holds with ¥ = T (A, v, ¥, 0) > 0. Then
depending on (¥, Q,Z/A{ , A, V), there exist a family of continuous operators K, (t) :
H — spanl,, and constants ck = ck (¥, o, U, xr, V) and @3 = O3(y, Q,Z;{, A, V)
such the following conditions are satisfied:

1. The mapping t +— K, (¢t) is continuous in the weak operator topology, and its
operator norm is bounded by ck.
2. For every pair (19, vo) € Ry x H, the following system

9 v(t) + vAV(E) + BF)v(E) = K, (1)v(t) t € Ix(1p),

(4.18)
v(fo) = vo,
in the interval I (ty) is well-defined and its solution satisfies
VN7 < @3¢ \Iwol3; forall t = 1. (4.19)
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Proof Due to Proposition 3, there exists at least a stabilizing control, namely oPnq €
L?(I(t9); spanU,,). Using standard techniques based on the dynamical programming
principle, one can construct a feedback operator satisfying the properties 1 and 2. The
proof is given in [14, Sect. 3.2]. O

In the next theorem, we show the local exponential stabilizability of the nonlinear
system relying on the results of Proposition 4.

Theorem 2 Let the assumptions of Proposition 4 hold. Then there exist a family of
continuous operators I~(;L (t) : H — spanl,, and a constant R = Ck ¥,0, U, A, v),
for which the first statement in Proposition 4 holds. Further, there exists a radius r
such that for every pair (ty, vo) € Ry x B, (0) withB,_(0) C V, the nonlinear system

v (1) + vAV(D) + BEO)V(@) + N (v(©) = TKL()v(1) 1 € (1),

V(o) = Vo, (4.20)
is well-posed and its solution satisfies
VI < Ose™™ O Ivolly,  fort = 10, (4.21)
where ©4 = O4(¥, o, U, xr, V).
Proof The proof is provided in Appendix 5. O

5 Main Result

In this section, we present the main result of the paper, i.e, the local exponential
stability of the RHC obtained by Algorithm 1, or equivalently, by Algorithm 2 for
the setting (3.3). Beforehand, we need to verify Properties P1-P4 for the incremental
function ¢ defined in (3.3). Clearly, in this case ¢ satisfies (3.2) with «y := min{l, 8}.

Proposition5 Let T > 0 be given. Suppose that for chosen set of actuators Uc
H, » > 0, and o € L°(82) satisfying (4.1), condition (COAC) holds with T =
T (A, v,¥,0) > 0. Then there exist a radius ry > 0 and a nondecreasing, continuous,
and bounded function y : Ry — Ry such that (3.4) holds for V. Thus P1 holds.

Proof Due to Theorem 2, there exist a uniformly bounded family of continuous oper-
ators IN(;L(I) : H — spanl, and a radius r; such that for every pair (¢y, vo) €
R x B, (0) the feedback law K,vis exponentially stabilizing. By defining the linear
isomorphism Z : spanl{,, — R, and setting @i(vo) = (@i, ..., iy)" := ZK;v, we
obtain that

N
IR, (Ov() = T (1) ®; = Ba(1). (5.1)
i=1
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Using (4.21) and (5.1), we can infer that

to+T

IZKxvl7,

~ 2 2.2 2
122 ¢y ey = (royBY) = CI% f vl at

I
ot T ! (5.2)
2 2 2 ' A—t0) C%CIZZ@“ AT 2
< czcg O4llvolly / e Ydt = —>— (1 —e")lvolly,

fo

where constant c7 is related to Z. Due to the definition of V7 and using (4.21) and
(5.2), we can write for any given (9, vo) € Ry x B, (0) that

to+T
Vi (to, Vo) < Jr (i; to, Vo) = / (IvO113 + Bla()3)dr
0]

O4(1 + ﬁc%c%{) o ,
———E (1= ) Ivoll

O4(1+pczcl)
A

Hence, by setting y(T) := (1 — e_}‘T), we are finished with the verifi-
cation of Property PI. O

In the next proposition, we investigate Properties P2-P4.

Proposition 6 (Verification of P2-P4) Suppose that the incremental function £ is
defined as in (3.3) and let T > 0 be given. Then there exists a ball B,,(0) C V
with radius r, = r(T), such that for every (to, vo) € Ry x B,,(0) and u satisfying

all 227, ) rY) < VY (D) /e Ivollv, (5.3)

Properties P2-P4 hold. Here, y is defined as in Proposition 5 and oy = min{1, B}.

Proof First we deal with the verification of P2. Due to Proposition 1, for every given
T > 0, there exists a radius » = r(T) such that for every (7, vo,u) € Ry x V x
L2(I7(to); RY) satisfying

2 2
“VO”V + “Bu”Lz(lr(to);H) =r, 5.4
there is unique solution v € W (I (tp); D(A), H) to CS(T, tg, Vo) satisfying
2 2 2 2
||v||C(7T(l‘());V) + ||V||L2(1T(l());D(.A)) S Cc7 (HVOHV + ”u”Lz(IT(to);]RN)) ) (55)
with ¢7 depending on §, 7', and ¢z, .
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Setting 7. (T) := (1 + W”’ﬂ—M)”r(T) we obtain for every (79, vo) € R x B,,(0)
and u satisfying (5.3) that

2 2 2 2
”VO”V + ||Bu||L2(1T(l());H) S ”VO”V + cuw”u”Lz(IT(l());RN)

(5.6)
< (1 + M) Vol < .
oy

Hence, CS(T, ty, vo) is well-posed and (_3.6) fgllows from (5.5). Further, due to (2.14),
(5.3), and (5.6), there exists a constant K = K (T, r.,y) > 0 such that

IVIlw 7 o) DAY, ) < K- (5.7

This completes the verification of P2.

Now we turn to verification of P3. We show that for (7o, vo) € R4 x B,, (0) and the
set of admissible controls u satisfying (5.3), O Pr(to, vo) with incremental function
£ defined in (3.3) admits a solution. The proof is based on the direct method in the
calculus of variations. Due to the fact that J7 (¢, vo; u) is nonnegative and the set of
admissible controls is bounded, there exists a weakly convergent minimizing sequence
(u"}, C L?>(Ir(to); RN) satisfying

lim Jr(u"; 19, vo) = o,
n—>0oo

with o > 0 and u"—u* for u* satisfying (5.3). Using (5.5) and (5.7), we find that the
sequence of solutions {v"}, € W(Ir(ty); D(A), H) to CS(T, ty, vp) corresponding
to {u"},, are bounded in W (I (ty); D(A), H) and it holds

v'—v* in L2 (I7(t0); D(A)) N H'(I7(10); H). (5.8)

We will next show that v* is the solution corresponding to u*. Using (2.3) we can
write for every w € W (I7(ty); D(A), H) that

IBOWI L2170y 1y = WBE W L2017 10): 11y + 1B D 217111
<c (IIVI?IIL2<1T<t0>;L3(9;R9)) + |I§'||zm,0,r> IWllw (17-0): DAY ) (-9)
< celWllw iz o): DCA). H)

where ¢ depends only on £2,and ¢ = ¢(€, T, R) due to Remark 1. Therefore, B(y) is a
continuous linear operator from L2(I7(19); D(A)YNH (I (19); H) to L>(I7(tg); H).
Using this fact together with (5.8), we find that

@:V", AV", BE)V", Bu")—(3,v*, Av*, BE)V*, Bu*) in (L>(I7(10); H))*
(5.10)

Therefore, in order show that the solution v* € W (I (ty); D(A), H) is corresponding
to the control u*, it remains only to prove that N’ (v ) =N (v*) in L>(I7(to); H). We
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can write

IN ") — N(V*)”Lz(lr(m);H)
=BGV = v ¥") + BO V" = V) L2017 (0): 1) (5.11)

< |IB(v" —v*, Vn)||L2(1T(ZO);H) + 1BV, v" — V*)||L2(1T(10);H)~

Further, for the terms in the last line of (5.11), we obtain

to+T
/ V') = VO o IV O3 dt
10
0+ T (5.12)
< eIV Boe i ety f IV = v Olly IV (1) = v Ol paydr

o

n Ky 2
IBOS = VI VO 2 oy iy =€

2
= V' oo (o)) IV = VL2017 Gy IV = V207100 DAY
and

to+T
¢ / V@) — VO3 IV () sodt

o

* N *y 112
IBOS N =VOUL (17 gy =
04T (5.13)
< V" =Vl oo (1 1) W IV L oo (17 19): v / IV (@) = v lly IV ) paydt
fo

< elv" = Vo llLoo(ap o) IV Lo () ) IV = Y L2 vy IV U 22 17 19): DAY

where ¢ > 0 is a generic constant depending on 2, and in both of (5.12) and (5.13)
we have used Agmon’s inequality [37, Lemma 13.2]

1 1
2l < cagllzll g llzl  forz e D(A),

with ¢, depending on §2. Due to the fact that the embedding LZ(IT (t0); D(A)) N
H'(I7(to); HY < L*(I7(t9); V) is compact (see e.g., [38]) and the terms
IV oo crr oy vys IV = V¥ 227 o) DeAyys V" = VEILLo (o) v IV N0 (rp (10): v
and ||v* ||L2(17(z0);D(A)) are bounded, we can conclude that

[N — N(V*)||L2(Ir(t0);H) — 0,

and, thus, v* € W(Ir(t9); D(A), H) is the solution corresponding to the control u*.
Since v — v* strongly in L2(I7(tg); V) and u"—u* in LZ(I7(fp); RY) we have

0 < Jr(u*;tg, vo) < liminf Jy(u"; 19, vo) = o,
n—0o0

and, as a consequence, the pair (v*, u*) is optimal. We are finished with the justification
of P3.
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Finally, due to (5.3) and (5.6), Lemma 2 is applicable. Using estimate (2.15) for
any § with 0 < § < T, we obtain

t0+95
v+ 813 <es@) [ (IVOIR + IBu) 13, ) ar

0]
to+6

= [ (MO + 0B dr.

10
where ¢;(8) := max{cy,, 1}c5(5) and, thus, we complete the justification of P4. O

Now we are in the position that we can present the main result. Beforehand, we denote
the value function associated to O PZ,(yo) by Vo (yo). That is

Voo (Y0) = inf  {J2(u;0,y0) s.t. (1.1) and (1.2)}.
ueL? (I (0);RN)

Theorem 3 Suppose that for a given regular enough (f', Yo) € L2(I5(0); L2) x V, the
reference trajectories (¥, p), as the solution to (1.2), satisfies (RA). Further, assume
that for given Uc H, . > 0, and o € L*°(82) satisfying (4.1), condition (COAC)
holdswithY =T (A, v, ¥, 0) > 0. Then, for any given 8, and the fixed set of actuators
U, = QL?, there exist numbers T* = T*(8,U,) > & and a = o (5, U,) < 1
such that: For every fixed prediction horizon T > T*, and every yo € Bg, (Jo) with
dy = dr(T) > 0, the RHC wu,j, obtained by Algorithm 1 satisfies the suboptimality
inequalities

Voo (¥0) < a5, (a3 0, ¥0) < Voo (Yo), (5.14)
and the exponentially stable estimate
lyrn () = O3 < eve *llyo — ol fort >0, (5.15)

where ¢ and cy depend on U, 8, and T, but are independent of y.

Proof The proof is based on using Theorem 1. First due to Remark 2, for the setting
(3.3) the both of Algorithms 1 and 2 are equivalent and yield the same RHC u,;.
Thus, it is sufficient to consider Algorithm 2 for the setting (3.3). Further, due to
Propositions 5 and 6 , Properties P1-P4 hold. Therefore, Theorem 1 is applicable, and,
as a consequence, there exist numbers 7% = T*(§,U,) > S and @ = (8, U,) < 1
such that: For every fixed prediction horizon T > T*, and every vy € Bg, (0) with
d» = dr(T) > 0, the receding horizon u,; obtained by Algorithm 2 satisfies (3.17)
and (3.18) for vo = yo — §o. Therefore, using the fact that v, =y, — ¥, Voo (o) =
Voo (V0) = Voo (Yo—J0), and JZ (u,1; 0, yo) = Joo (U3 0, vo) we can infer that (5.14)
and (5.15) hold and the proof is complete. O
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Remark 5 Due to Theorem 3, condition (COAC) is the essential condition for the
set of actuators for which the stabilizability of RHC holds. In view of Example 2,
indicator functions supported on a fixed open subset of the domain can be chosen as
the actuators.

In the next proposition, we derive an estimate for the pressure corresponding to the
receding horizon control u,,.

Proposition 7 (Estimate for the pressure) Suppose that the assumptions of Theorem 3
hold and for given T > & > 0, the receding horizon control u,) obtained by Algo-
rithm 1 is stabilizing i.e., (5.14) and (5.15) are satisfied for a given'yo € By, (Jo) with
dy = dr(T) > 0. Then for the pressure p,j, associated to y,;, as the solution of (1.1)
foru = u,,, we have pyy € L*(I15(0); H'(2)) and

IPrn — Pl 0): Y (2))
. A 3
< ¢pllyo — Yollv (1 + llyo — Jollv) ™, (5.16)

where ¢, is independent of yo.

Proof The proof of the well-posedness of the pressure p,;, € L2 (15 (0); H'(£2)) for
the strong solution follows with the same argument as in the proof of [39, Theorem
V.2.1]. Therefore, we restrict ourselves here to derive the estimate (5.16).

Throughout the proof c is a generic constant and does not depends on yq. Similarly
to the proof of Theorem 3, we consider the translated equation obtained by subtracting
(1.1) with u = u,;, from (1.2)

atvrh - VAVrh + (5’ . V)Vrh + (Vrh : V)f’
FVen - VIV + VP = 30 ()i (0®;  in (0, 00) x £2,

divv,, =0 in (0, 00) x £2, (5.17)
Vop =0 on (0, c0) x 052,
vrn(0) = vo in 2,

where v, = ¥, — ¥, Vo = Yo — Yo, and the pressure p is defined by p := p,», — p. We
will show that p € L?(15(0); H'(£2)) and (5.16) holds. Beforehand we derive some
auxiliary estimates. Projecting (5.17) to the divergence-free spaces, multiplying with
Av,,, integrating over £2, and using (2.3), we obtain

d
ﬁuvrhmu% + LAV (D%

<c (llf’”mo (Uso(O)x2:R3) T ||V§(f)||L3(.Q;R9)) 1ven O v AV (0] 5 5-18)

div
3 3
+ cllVer O 1AV Ol + IBurn Ol 2 1AV-R ()1 11
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Using Young’s inequality and (3.18), we can write

d 2 Y 2
2TItIIVrh ®lly + E”Avrh Oy
A2 2 DN 2 2
f c (“yHLﬁv(IOO(O)X.Q;]Rg)”Vrh(t)”V + ”Vy(t)||L3(Q;R9)”Vrh(t)”V)
¢ (Va1 + cug, 1o O (5.19)

< ceye™ (nynim,oo(o)m;m + ||V9<t>||ig(9;Rg)) Ivoll

+c (c%,e_x’ IvollS, + Cl/lw|urh(t)|%> .
Integrating (5.19) over (0, 00), using (3.17) and (3.18), together with the fact that

17, oyny < B~ Joo (s 0,v0) < B!V (0, vo) < cllvolly, (5.20)

foru,;, = ((urn)1, ..., (Urp)N) and
00 00 ké
/ eV 5 gm0l di < Ivolly ) / IVI O3 g.poye " di
0 k=g "1e
e (5.21)
o
< Rvoly Y / et dt < cllvol.
k:l(k71)€
with R and € defined in (RA), we infer that
1AV 122 ey = € (V0 + Ivoll ) (522)

Further, similarly to (7.4), using (3.18), (5.21), and (5.22), it can be shown that

19 Vrnll L2100 0): )
= || = vAVy = N(Vri) = BAOIVe + B2, 0): 1)

= C<||Avrh||L2(loo(());H) + Ve ||L°°(100(0);V)||Vrh||L2(1&(0);D(_A))

1

o0 2
F 190 20 (1o @< 2:85) 1Vrnll L2 1o o) + / e VIO qgupo, VOl di
0

+ ”Burh”Lz(lm(O);H))f clivolly (1 + IIvollv)?*

(5.23)
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and, as a consequence, by using [39, Theorem IV.5.11], we conclude that
Vi € C(Tss(0): V)N L2(Ino(0); V NH?)  with 9,V € L?(Ino(0); L?). (5.24)

Moreover, using the fact that ||V, [lg2 < ¢[|Vrnll p(4)y With a constant ¢ > 0 (see e.g.,
[39, Proposition IV.5.9]), we can write

IS V)Vrh”LZ(Ioc(());LZ) (5.25)

< clVVenllipoo (1)L 1Vrnll 221y 0):12) = cllvollv (1 + Ivollv)?,

and

1§ - V)Ven + (Ve - V))A’||L2(100(0);L2) = C<||)A’||Lc>o (IOO(O)X_Q;R3)”erh ||L2(100(0);L2)

div
00 3 (5.26)
+ /e*“||vy<z>||ig(Q;R9)||vo||2Vdr )SCIIVOIIV-
0

Now, due to (5.20), (5.23), (5.25), and (5.26), we know that 9;v,,, (V;y - V)V,
F - VIV + (Vi - V)F, and SN ()i ®; are in L2(1o0(0); L?). Thus, we have

VP =—0Vrn + VAV — (3’ V)V
N
. (5.27)
— V- V5 = Ven - VOV + Y ()i @i € L7 (1o (0); L),
i=1

with
VPl 21, 0):L2) =< cllVollv (1 + Ivollv)? . (5.28)

Choosing, as usual, p having a zero mean and using the Poincaré-Wirtinger inequality
[39, Proposition I11.2.39], we can conclude that p € L? (15 (0); H'(£2)) with

1Bl 2201 0y: 122y < clvollv (1 +IIvollv)? (5.29)

and this completes the proof. O

6 Conclusions

To sum up, we have established the local stabilizability of the three-dimensional
Navier—Stokes system towards a given trajectory satisfying suitable regularity con-
ditions via finite-dimensional RHC. This RHC enters as time depending linear
combinations of a finite number of actuators. Our theory allows us to employ the
indicator functions whose supports cover a part of the domain as actuators.
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In this paper, we confined ourselves to the three-dimensional Navier—Stokes
equations. Obviously, all the results remain also valid for the two-dimensional Navier—
Stokes equations. We believe that for the two-dimensional case the local exponential
stabilizability of the RHC can even be proven for the weakly variational solution, as
a consequence, with respect to the H-norm.
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Appendix A: Proofs
Appendix A.1: Proof of Proposition 1

Proof We use the Banach fixed point theorem. For given « > 0, we define the set
0.6 . 0 . 2 2 2
Vt(),T L {¢ € Vt(),T . ”d)”Vt(())T S K <”V0”V + ||f||L2(IT(t0);H)>} )

and the mapping ¥ : Vg KT — Vt(()) _r» Which maps a given function z € V,% KT to the
solution of the following problem

Hw(t) + vAW() + BFO)w(t) = £(t) = N(z(@®) t € Ir (1),

7.1
w(tg) = vop. .1

That is, ¥ (z) = w. Then, we show that the unique solution to (2.7) is the fixed point
of . First, using (2.3), we have for every z € Vg KT that

2 2 2
”N(Z)”Lz(lr(t());H) f c”Z”Lz(IT(t());D(.A)) ”Z”LOC(IT(Z());V)'

Therefore, using Lemma 1 for A = 0, the linear system (7.1) has a strong solution for
any z € Vt(()) KT and we can use the estimate (2.10).
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Next we choose « and r(T') such that the mapping ¥ : Vt?) T V T is a contrac-
tion. Using (2.3) and (2.10) with A = 0, we can write for every z € V o T that

I @I < e (N0l + 161221, ey + IV @121, 00))

2 2 2 2
=@ (”VOHV N2y gy ) T NN 217000 DAY ”Z||L°°<1T<ro>;v>)

2,2 2 2
< a1+ ) (Vo + 181225, )
where c is a generic constant which depends only on £2. Setting « := 2¢, and choosing
r? < 4CC , we obtain ¢ (1 + ck?r?) < k and, as a consequence, ¥ maps the set Vt(()) KT
into 1tself Now it remains to show that the mapping ¥ is a contraction for a small
enough r. Let two functions z;,z; € V o T be given. Then using (2.3), (2.10), and

(7.1), we obtain that

19@) =¥ @)l < alN@) - N@)l,
10,

(I7(t0); H)

2 2
= 2 (”B(Zl y 21 — Z2) ||L2(1T(l‘());H) + ”B(Zl — 17, 12) ||L2(IT(1‘());H))
2 2
=< C2C(||Zl ||L°°(IT(t0);V) llz1 — z2||L2(IT(to);D(A))
7.2)
2 2 (
+ ”Zl - ZZHLOO([T(tO);V) ”ZZHLZ(IT(I‘Q);D(A)))

2 2 2 2 2
< e (”Zl 1o+ 12211550 > lz1 — 2230 = 2cackr||zr — 221750
0.7 10.T 10.T 1.7

2.2 2
=dcyertllz =zl
10,T

where in the last inequality we set k = 2c¢». Thus, for given y < 1, by choosing

2 _ . 1 4 . . . . -
r< = min{ T &l }, the mapping ¥ is a contraction with rate y and we can use the

Banach fixed point theorem. Therefore, there exists a unique solution v € V o T with
Kk =2cp to (2.7).

Now we turn to the verification of (2.13) and (2.14). Due to the definition of Vg ”KT,
for ¢4 := k we obtain that

2 2 2 2
||V||LOO(1T([0);V) + ”V”Lz(lr(t());D(.A)) S C4 (”VOHV + ”f”Lz(IT(t());H)> . (73)

Further, due to (2.7), we can write

10Vl 21y (tg): ) = € (V + 1Vl Lo rr o)L + ||V||L°°(IT(tO);V)) V1l 2227 10): DAY

+ C”vy||L2(IT([0);L3(Q;R9))||V||L°°(Ir(to);V) + ”f”LZ(IT(to);H)’
(7.4)

where the terms (¥l oo (o)) and IVYIz2(rp )23k = ¥l are
bounded due to Remark 1 and (RA). Thus, using (2.1), (7.3), and (7.4), the ver-
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ification of (2.13) and (2.14) is complete. To show the uniqueness in the space
L®(I7(tg); V) N L*>(I7(t); D(A)), we suppose that an another solution p is given,
then the difference of these solutions z := v — p satisfies

9,z(t) + vAz(t) + B(y(1)z(t) + B(z,v) + B(p,z) =0 t € It (1),

z(tp) = 0. (7.5)

Taking the scalar product of (7.5) with z in H and proceeding some standard energy
estimates (see, e.g., [33]), we will obtain that z = 0. Thus, the proof is complete. O

Appendix A.2: Proof of Lemma 2
Proof Throughout the proof, c is a generic constant independent of (¢, vo, ). Mul-

tiplying (2.7) by (t — fp).Av(z) and integrating over §2 we obtain for almost every
t € I5(ty) that

d
Tﬁnw — vl + vIAVE —tov(D 1%

1
< EIIV(t)II%/ + b(Vt —1v(0), Y1), AV — 1ov(1))] (7.6)

+ |b(§ (), V1t — togv(t), At — 1gv(D))| + |b(Vt — 1yv(), v(2), AVt — 19V (D))
+ (Wt — tof (1), AVt — 10v(1))H.

Using (2.3), we have the following estimate

[b(t —1ov (1), (1), At —tov(1))| + |b(Vt — 1Y (1), v(1), AVt — toV(t))|(7 0
<c <||Vy(t)”L3(.Q;R9) + ||5’||Qn,0‘5) IVt = tov(®)llv I AVt — tov() . '

for the linear term 3(y)v, and the estimate

|b(t — tgv(t), v(), AVt — 1oV (1))|
<cllvt —=tov(®) |4 IIV(t)IIW(l)A AVt —tov(D) | u (7.8)

= clVi = v llv IVl pay I AVE = 10v(D I,

for the nonlinear term. Further, using (7.6)—(7.8), and Young’s inequality, we obtain

d
ZINT= VO +VIAVT= vl < (VO + TIFO1)

(7.9)
+c (||y||%m,0ﬁ + IV I D) + ||vy<t>||§3(g;Rg)) IVE=10v()17,
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with ¢ depending only on £2 and v. Then, using (7.9) and Gronwall’s Lemma for the
interval I5(g), we obtain

IV~ tov(D) |2

C(Is(t0); V)

10+ (110112 2 SN2
ffo (IYImtO.S-HIV(t)ID(A)+|VY(Z)||L3(9:R9)>‘”<”V”2

2
= ce L2y v) T ”f”ﬂ(lmo);H)) ’

where ¢ depends also on 7. Moreover, due to (2.12) and (2.13), we have

to+3

112 2 S 2 112 2
o (HYII%M+HV(t)HD(A)+HVy(t)\|L3(9;R9))dt _ e(max{ﬁ,l}uynmt&ﬁcu )

max{s, 1}¢+cqr?)

’

<l

where in the last inequality we have use the fact that ||§'||2mt ; = ¢ for a con-
0-

stant ¢ = ¢(8, R, €) independent of 7y (see Remark 1). Hence, by setting ¢s :=

%ce(ma"{‘s’l}é*"“’z), we are finished with the verification of (2.15). O

Appendix A.3: Proof of Proposition 2

Proof Due to the definition of §; > 0 and 6, > 0 in Lemma 4, we can write

y2(T)

1= 62T, 8)@1(T.8) — 1) = (1 ofs(T - 3)

>—>1 as T — oo. (7.10)

Therefore, there exist T* > § and o € (0, 1) suchthat 1 —6,(T, 8) (01(T,8) — 1) > «
for all T > T*. Then, using (3.13) and (3.14), we have for every T > T* and
(to, vo) € Ry x By, (0) that

Vr(to + 8, vi(to + 8; to, Vo)) — Vr(to, Vo)
to+T

Vr(to + 8, vy (to + 8; 10, Vo)) — / 03 (15 10, Vo)dt

fo

to+T to+6
5(91—1)/ ’;(t;to,VO)dt—/ 7(t: 10, vo)dt
to+4 fo
to+8 10+6
<@ -1 -1 / 03 (t: 10, vo)dt < —a / 07 (t: 1o, vo)dt,
1o 1o

and, as a consequence, (3.15) holds
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Now, we turn to verification of (3.16). Using (3.13) and (3.14) we have

to+T to+6
Vr(to + 8, v (to + 8; to, Vo)) < 61 f 055 19, Vo)dt < 016 f 05t 1o, Vo)dt.
to+95 0]

(7.11)

Further, using (3.15) and (7.11) we can write
Vr(io +38, Vi (io +8: 10, ¥0)) = Vi (i, %o) = -V lio 43, Vi o +5: 1o, o)),
Therefore, by defining n := (1 + 01‘)‘—92)_1, we have
Vr(to + 8, Vi (to + 8; to, Vo)) < nVr(to, Vo).

Now by defining ¢ := “’:5'”, we obtain the inequality (3.16). i

Appendix A.4: Proof of Proposition 3

Proof The proof is divided into two parts. We first prove the results for the case v = 1.
Then these results are extended to include any v > 0.

The case v = 1: To verify the inequality (4.8) for given A > 0 and (%, vo) €
R4+ x H, it is sufficient to show that v, (¢) := 3t ~)y (1) is uniformly bounded for
t > 1y and a control q, . Clearly, v, can be expressed as the solution to the following
shifted system

9 va(t) + Avy(t) — %Vx(t) + BE@))vi(t) + HoPnqy(t) =0 1 € Io(10),
v (t0) = Vo,
(7.12)

for qy (vp) € L? (Iso(t0), L2). To find a control q;, (Vo)_generating auniformly bounded
v, we first decompose tEe interval Iw@) for fixed T > 0 to a sequence of intervals
defined by I; := (to +iT,t0+ (i + 1)T) withi =0, 1,2, .... Then, for any i > O,
we use repeatedly the null controllability control for the following auxiliary system
OB (1) + AB' () = 5b'() + B () = Mlon®) 1€l oo
bi(tg +iT) = V), '
where the initial functions % is specified from the previous null controllability prob-
lem, i.e., for i — 1. Due to Lemma 5, for any given % € H, there exists a control

7' (V) € L?(I;; L*(w1)) which drives the system to zero at 7o + (i + 1)T, and it

@ Springer



Applied Mathematics & Optimization (2022) 86:38 Page37of44 38

satisfies
A7 12 AP 2 oi 2
”1601 77[ ”LZ(I,-;LZ) = ||Ul ||L2(I,-;L2(w1)) f C0b||V6||Ha (714)

with cop = cop (T) > 0. _ .
For every i > 0 and the control ' := 1,,7', we also consider the following
controlled system

{&Vx(t) + AVL(1) = Vi (1) + BE@)Va(t) — MoPyn' (1) =0 ¢ € I;, (7.15)

vty +iT) = V).

Now, using the fact that ' = on'0 = 1’0 due to |, = 1, subtracting (7.15) from
(7.13) with n = 7, and setting d’ := b’ — v,, we have

(7.16)

ad! (1) + Ad' (1) — 5d' (1) + BE(@)d' (1) = Mo(id — Py)on' (1) 1 € I;,
di(to+iT) =0.

Further, using (2.9) for (7.16) and (7.14), we obtain

Vito + G + DD = I (to + (i + DD < erllTold — Pw)en' 172, .y,
< ctllToGd = Pa)ol g yo In G720 12w

< copctlToGd = Pr)ol 7. 19117

Now, setting T'(T) := cop(T)c1(T, 2, §) and defining p := |[[To(id —Py)oll7. v
Y (T), we have p < 1 due to (COAC). Hence, we can conclude that
Ivi.(t0 + (i + D)% < pll¥yI13  fori > 0. (7.17)

The control qy (vo) € L*(Is(19); L?) is constructed by concatenation of the controls
n' € L?(I;; L?) for initial functions V), := v, (t9 +iT) fori > 1 and ¥) := vy for
i = 0. Thus, using (7.17), we can write

Ivi.(to + (i + D% < plvato +iT)HII% < p T HIvoll%. (7.18)

For every t > 19, the exists j € Ny such that r € [rp + jT, to+ (j+ DT). Using
estimate (2.9) for (7.15), (7.14), and (7.18), we can write

leZ w3 = Va3 < & (IIVA(to + DIy + TPy’ (vilto +ﬁ)>||22(,j;m)

< &1 (o + T + ol i I/ VG0 + TN 120n0)

j 2 2
< Op’ Ivollzr < @1lvolly,
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where @ := &1 (1 + IIQIILOC(_Q)CU;,(T)) and ¢; depends on ¢ (T, A, §) and the contin-
uous embedding H < V’. Thus, we can conclude (4.8).

Now we turn to the verification of (4.9). Setting q(¢) := e%(t”O)qA (t) and using
(7.14) and the fact that

Qly =n € L*(I; L% fori >0,

we have
) o0
Ae_ 2 2 h iT))|?
127l iy = 1901720 ranzy = D10 o +iTHIE2( )
i=0

00
i 2 2
< E ,OlCobHV()”H =< @2||V0||1-1,
i=0

where @, := l‘ﬁbp
The case v > 0: Let v > 0 be given. By setting V(7) := v({ + o) for 7 € 15(0),
(4.3) can be transformed to the following controlled system

V(7)) + AV(7) + B(Y(1))V(r) + ToPNnq(t) =0 7 € I(0),

0) = vo. (7.19)

wherey(7) := 137( L +19) for T € I (tp). Inthis case, (RA) holds fory with = R in place
of R. Due to the first part of the proof, for any given X > 0, there exists a constant T

T(A Y, 0) > 0 such that: If for U and 0, the condition |[[To(id — PN)QH[:(L2 yy <

T holds. Then, for every vo € H, there exists a control q(vo, A) € L2(Ioo (0); L2)
such that

_ — _7 A_0)—
N7 < @1e™* Vol for T = 0, and e ~Vql72,_ o).12) < @2lIVollG,
(7.20)

where @1 = @1(1,y) and @ = (%, y). Now, choosing A := % and putting
q() == vq(v(t — 1p)) for t € I5(#p) in (4.3), we obtain that

_ — A hp—
IV = IV — o)]|F; < @1(;,y>ev<“<f Wvollf; fort =19, (7.21)
and
le3 (=0 g2 = v]le 02 < v, Dlvolly, (722)
U221 to)12) = Wergeosrr) = V&2L0 YIVolz, ¢

provided that (COAC) holds for 7" := T(%, Y, 0). Thus, (4.8) and (4.9) hold for
O1(A,y,v) = O (%, y) and ®, = v@z(%, Y), and the proof is complete. ]
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Appendix A.5: Proof of Theorem 2

Proof We use the Banach fixed point theorem. For given « > 0, we define the set
Ak A 2 2
M$w={¢emmmwwn¢ sxwka
O.DO

where the Banach space V,ﬁ’oo is endowed with the norm

o0

Ar— Ap—

VIS, = wpnw“mwm&+/ﬂw“mwm%Mwn
000 relso(t) "

Further, we consider the mapping ¥ : V;})’,'go — V*

fo.00» Which maps a given function

YRS V,)("):';O to the solution of the following problem

dw(t) + vAW() + BF))W(t) — TK, (HW(t) = —N(z(1)) t € I (10),
w(tp) = Vo,
(7.23)

where K; (1) := Kj (¢) with Kj (¢) given in Proposition 4, and A € (A, 21]. Clearly,
for this choice of operator K, the first part of the theorem follows from Proposition 4
with cg (1) := ck (1).

We show that the unique solution to (4.20) is the fixed point of ¥ with ¥ (z) = w. To
do this, we choose k and r; such that the mapping ¥ : V,)(‘):'éo — V%z';o is a contraction.
Throughout the proof c is a positive constant which does not depend on vy, ry, and .

First step: we show that ¥ : V,ﬁ:'go — V,’})”';o. We fix z € V%i’éo. Fort > s > 19,
we denote by W(s, ) the evolution operator of the linear problem (4.18), which takes
an initial function vo € H at initial time (g to v(¢) at time 7. In other words, we have

v(t) = W(s, 1)v(s) = W(t, t)vo.
Then, for (7.23) we can write
t
w(t) = W(t, t)vo — /W(s, HN (z(s)) ds.
fo
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Hence, using estimate (4.19) for A with 24 > A > A, we have for ¢ > ¢, that

t
Iw() 113, < 21W(to, £)voll3 + 2 / IW(s, )N (2(s)) 13, ds
10

t
< 203¢ 770 |y 13, + 263 / M N (2(s)) 11 ds

fo
t

<2030 |lvg |13 + 2030 / TNz [l gy ds  (7.24)

fo

t
(— L (- kg kg
< 203¢ M0 vg |3 + 2030 / le> =z (s) 7 lle 20 n(s)11 4, ds
0]

< 20377 vo |3y +203¢ 7T 2],
0,00

—(t— 2 2 4
< ce70) (w1} + 2 Ivoll} )

where we have used the fact that IIN(@(S))HH < |lz(s)|lvz(s) ||Q(A)~
Further, by multiplying (7.23) by ¢3(=10) and setting w; = e%<"’0)w, we have
3rw5 (1) + vAW; (1) — Sw; (1) + B 0))w; (1) — ITK, (1)W; (1)
— 3TN (2(1)) 1 € Iso(to), (7.25)
W;L(t()) =Vp.

By deriving a similar estimate as (2.11) in Lemma 2 for (7.25), it can be shown for
arbitrarily given 7 > 0 and initial pair (f, wp) € Ry x V (wp in place of vq) that

to+T
lws (to + T3 < e6(T) | Iwoll3; + [ HOTONN ()13, ds |, (7.26)

fo

where c¢ depends on T, A, K, and §, and is independent of (7y, wo). Using (7.26)
together with (7.24), we can write for € > 0 and k > 1 that

lw; (10 + k&) 1>
to+ké
< 6@ | Iws (o + k = DO + / FOO YN (s I ds

to+(k—1)é
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o
< co(@) [ (Il + hval}) + [ O IN @I, ds

0]
o0
< co(®) | (Il + 2ol )+ [ 67 1a(5) 1 1200 4, s

fo
= c(Ivoll} +lvolly ) - (7.27)

Therefore, due to the definition of w;, using a similar argument as in the proof of
Proposition 3, and (7.27), we conclude that

I < ce = (vl + klvol}) (7.28)

Moreover, reconsidering (7.25) with A in place of A and multiplying it by Aw;, we
obtain

d
ﬁnwm)n% + vl AW (O 11%
. A . A
< I=BE@OIWL0) + S Wi (0) + TR (O wa (1) = 2N (@(1)), Awr (D)) |
<c (||5’||Lgfv(loc(0)x9;R3) + ||V5’(t)||L3(_Q;R9)> WO lv AW () [ 5

A A
+ (5 + clz) Wi, () 1 AW () | 1+ €297 [N @) || 1 | AW ()| 11

(7.29)

By integrating (7.29) from #( to ¢ and using Young’s inequality, we obtain for ¢ > #g
that

t o0 o0
||wk(t)||2V+v/||AwA<r)||%,dr < Ivoll} +¢ /||Wk(f)||%.1dl+/||Wk(f)||%/dt
) ) 1

0
o0

o0
+c/ IVIOI73 0.0, W2 D15 d1 +cfe“"’o)||/\/(z(z))||i,d¢.
0]

10
Using (7.24), (7.28), and the fact that

o0 00 to+ké

/ IV O35 .z, WO 17dt < ) IVI D175 gupsye™ " IWOI di
k=l pk—1)e

to+ké

o0
<c(Ivolly +«*Ivoll}) IVFO)125, 0.0, e~ FE10)
L3(2;R9)
k

to

=l -1e
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0 to+ké
2 2 4 — (=) (k—1)é 2 2 4
<c(Ivolly +&2lIvolly) R e FTPEDE < e (Ivollf, + €2 lIvolly) »
k=1

to+(k—1)é

with R and € defined in (RA), we obtain for every ¢ > £y that
t
a1, +v [ 1AW dr < e (ol +Cvl). 730
0]

Now by choosing « := 2c and ry < %, we have c(1 + Kzrsz) < k and, thus, we can
conclude that ¥ : V"% — V', and this finishes the verification of the first step.
Second step: we show that ¥ is contraction for a radius r;. In a similar manner

as in (7.2), it can be shown that

2 - 2
¥ (z1) =¥ @)y, =<crglz — 2l
10,00 10,00

, %}, then

Sl —

for a constant ¢ independent of ry. It is sufficient to choose ry < min{
clearly ¥ is a contraction mapping.

Similarly to the proof of Proposition 1, it can be shown that [|0; V127 (): ) 1S
bounded. Therefore (4.20) is well-posed, and estimate (4.21) follows from (7.30). Next,
we show that the solution of (4.20) is unique in L (I (f9); V) N L% (I (); D(A)).
Let an another solution p be given, then the difference of these solutions z := v — p
satisfies

d2(t) + vAZ(1) + BF(0)z(t) + B(z,v) + B(p, 2) = MK, (Dz(t) 1 € Iso(to),
z(fp) = 0.
(7.31)

Taking the scalar product of (7.31) with z in H, proceeding with some standard energy
estimates (see, e.g., [33]), and due to the uniform boundedness of the feedback operator,
we will obtain that z = 0. Thus, the proof is complete. O
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