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Abstract
It is well known that the optimal transportation plan between two probability measures
μ and ν is induced by a transportation map whenever μ is an absolutely continuous
measure supported over a compact set in the Euclidean space and the cost function is
a strictly convex function of the Euclidean distance. However, when μ and ν are both
discrete, this result is generally false. In this paper, we prove that, given any pair of
discrete probabilitymeasures and a cost function, there exists an optimal transportation
plan that can be expressed as the sum of two deterministic plans, i.e., plans induced by
transportation maps. As an application, we estimate the infinity-Wasserstein distance
between two discrete probability measures μ and ν with the p-Wasserstein distance,
times a constant depending on μ, on ν, and on the fixed cost function.

Keywords Wasserstein distance · Discrete optimal transport · Uniform estimates ·
Structure of solutions · Monge–Kantorovich problem

Mathematics Subject Classification 49Q22 · 05C70 · 39B62

1 Introduction

The Optimal Transport (OT) problem is a classical minimization problem dating back
to the work of Monge [24] and Kantorovich [20,21]. In this problem, we are given
two probability measures, namely μ and ν, and we search for the cheapest way to
reshape μ into ν. The effort needed in order to perform this transformation depends
on a cost function, which describes the underlying geometry of the product space of
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the support of the two measures. In the right setting, this effort induces a distance
between probability measures.

During the last century, the OT problem has been fruitfully used in many applied
fields such as the study of systems of particles by Dobrushin [13], the Boltzmann
equation by Tanaka in [17–19], and the field of fluidodynamics by Yann Brenier [9].
All these results pointed out that , by a qualitative description of optimal transport, it
was possible to gain insightful information on many open problems. For this reason,
the Optimal Transport problem has become a topic of major interest for analysts, prob-
abilists and statisticians [3,29,31]. In particular, a plethora of results concerning the
uniqueness [10,14,16], the structure [1,2,28], and the regularity [8,23] of the optimal
transportation plan in the continuous framework has been proved.

In recent years, it has also become a crucial sub-problem in several applications
in Computer Vision [7,25–27], Computational Statistics [22], Probability [5,6], and
Machine Learning [4,11,15,30]. However, in these fields, the measures μ and ν are
discrete, and therefore the optimal transportation plans lackmost of the good properties
their continuous counterparts enjoy.

In this paper, we study the structure of optimal transportation plans between discrete
probability measures. After introducing the notion of trim plan between the measures
μ and ν, we prove that such plans are the sum of two deterministic plans, i.e., plans
that are induced by the action of two suitable push-forward maps. The first map acts
on a portion μ(d) of μ, while the other one acts on a portion ν(d) of ν (Theorem 3).
Thanks to this formula, we recover an extension of the estimate given in [8]. Namely,
we estimate the infinity-Wasserstein distance between a pair of discrete measures
(μ, ν) (see Definition 4 below) by the c-Wasserstein distance between μ and ν, times
a quantity that only depends on μ and ν (Theorem 7).

2 Basic Notions on Optimal Transport

In this section, following [31], we recall the main definitions regarding optimal trans-
portation and we examine the continuous counterpart [8] to our W∞ estimate.

Given a polish space (X , d), we denotewithB(X) the set of Borel sets over X , while
with P(X) we denote the set of Borel measures over X . Given a Borel measurable
function T : X → Y , we denote with T# : P(X) → P(Y ) the push-forward operator
induced by T , defined by: (T#μ)[A] = μ[T−1(A)]. The projection maps are pX :
X × Y → X , pX (x, y) = x and pY : X × Y → Y , pY (x, y) = y.

Definition 1 Let μ and ν be two measures over two polish spaces X and Y . The
probability measure π ∈ P(X × Y ) is a transportation plan between μ and ν if

(pX )#π = μ and (pY )#π = ν.

We denote with �(μ, ν) the set of all the transportation plans between μ and ν.

Given A ∈ B(X) and B ∈ B(Y ), the quantity π(A × B) is the amount of mass that
travels from the set A to the set B. By assigning a cost function c on X ×Y we specify
a way to measure the cost of every transportation plan.
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Definition 2 Let μ ∈ P(X), ν ∈ P(Y ), and let c : X × Y → [0,+∞) be a lower
semicontinuous (l.s.c.) symmetric cost function. The transportation functional Tc :
�(μ, ν) → [0,+∞) is defined as

Tc(π) :=
∫
X×Y

c dπ. (1)

Given two measures μ ∈ P(X), ν ∈ P(Y ), and a cost function c, the optimal trans-
portation problem consists in finding the infimum of Tc over �(μ, ν), i.e.

inf
π∈�(μ,ν)

Tc(π). (2)

By making further assumptions on c, it is possible to prove that the infimum in (2) is
actually a minimum. In particular, when the cost function is nonnegative, the solution
exists. For a complete discussion on the existence of the solution, we refer to [31,
Chapter 4].
We can use the optimal transportation problem to define a distance over the space
P(X). In particular, since X is a polish space, we can lift the distance d from X to
P(X), by choosing d as a cost function in (1).

Definition 3 Let (X , d) be a polish space and p ∈ [1,∞). The Wasserstein distance
of order p between the probability measures μ and ν on X is defined as

Wp(μ, ν) :=
(

inf
π∈�(μ,ν)

Td p (π)
) 1

p =
(

inf
π∈�(μ,ν)

∫
X×Y

d p(x, y)dπ(x, y)
) 1

p
. (3)

When p = 1, the 1-Wasserstein distance is also known as Kantorovich-Rubinstein
distance.

When the cost function is not the space distance d, we denote the infimum in (2)
with Wc(μ, ν).

Remark 1 The infimum in (3) could actually be +∞, it is thus customary to restrict
Wp to the space of probability measures with finite p-moments.

Definition 4 Given a cost function c, theW (∞)
c distance between two measures μ and

ν is defined as

W (∞)
c (μ, ν) = inf

π∈�(μ,ν)
||c||L∞

π

where || · ||L∞
π
is the L∞ norm with respect to the measure π . When c is the Euclidean

distance, we use the notation: W (∞).

Let μ and ν be two probability measures on a Lipschitz regular and bounded subset
� ⊂ R

n . We define the cost function

cp(x, y) :=
⎛
⎝

√√√√ n∑
i=1

|xi − yi |2
⎞
⎠

p

, p > 1.
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When μ is absolutely continuous with respect to the Lebesgue measure, it is well
known (Theorem 6.3 and Theorem 6.4, [16]) that the optimal transportation plan π

between μ and ν is unique and it is induced by a transportation map Tp, i.e.

π = (I d, Tp)#μ.

In [8], Bouchitté et al. established an L∞
μ -bound on the displacement map I d − Tp,

which only depends on the shape of �, on p, and on the density of μ. This estimate
allowed the authors to give the following upper bound on the W (∞) distance between
μ and ν.

Theorem 1 (Theorem 1.2, [8]) Let � be a bounded connected open subset of Rn

with Lipschitz boundary and denote by P(�) (resp. Pac(�)) the set of Borel (resp.
absolutely continuous) probability measures on �. Then, for every p > 1 and every
pair (μ, ν) ∈ Pac(�) × P(�) there holds

(W (∞)(μ, ν))p+n ≤ Cp,n(�)|| f −1||L∞(�)W
p
p (μ, ν), (4)

where f is the density of μ with respect to the Lebesgue measure and Cp,n(�) is a
positive constant depending only on p, n, and �.

The proof of this result heavily relies on the regularity of μ, hence, when μ and ν are
both discrete, this result does not apply. In particular, we are no longer able to find a
constant depending only on μ and the geometry of the support of μ, as the following
example shows.

Example 1 Let μ, νε ∈ P(R) be defined as

μ = 1

2
δ0 + 1

2
δ1, νε = 1 − ε

2
δ0 + 1 + ε

2
δ1,

for ε ∈ (0, 1), and let c2(x, y) = |x − y|2. By a simple computation we have that

W (∞)
2 (μ, νε) = 1, W 2

2 (μ, νε) = ε

2
.

Hence, estimate (4) does not hold true, as for every constant C(p, n,�,μ) > 0
(possibly depending on p, n,�,μ), there exists ε > 0 such that

(W (∞)(μ, νε))
2+1 = 1 > C(p, n,�,μ)W 2

2 (μ, ν) = εC(p, n,�,μ).

3 Structure of Discrete Optimal Transportation Plans

In what follows, we prove the existence of an optimal transportation plan between two
discrete measures that is induced by the action of two push-forward functions, one
going from X to Y and one going from Y to X . This allows us to establish a bound on
W (∞)(μ, ν), similar to the one proved in [8].We always assume#X = #Y = n ∈ N. In
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this case, we can identify the sets X and Y with {1, . . . , n}. Without loss of generality,
we therefore assume X = Y . In this setting, a measure μ ∈ P(X) has the form∑

x∈X μxδx , we thus use the notation μx to denote the coefficient of μ in x and,
likewise, cx,y (resp. πx,y) stands for the value of c : X ×Y → R (resp. the coefficient
of π ∈ P(X × Y )) in the point (x, y) ∈ X × Y .

Definition 5 Letμ, ν ∈ P(X) be twomeasures on a discrete set X and let c : X×X →
R be a cost function. A minimal solution π∗ of the transportation problem is said to
be trim if

#spt(π∗) ≤ #spt(π)

for each optimal solution π .

Lemma 2 Let π ∈ �(μ, ν) be a trim solution. Then each restriction of π is a trim
solution for its marginals. In particular, if π(1) and π(2) are such that

π = π(1) + π(2)

and spt(π(1))∩spt(π(2)) = ∅, thenπ(1) andπ(2) are trim solutions for theirmarginals.

Proof Let π∗ be a restriction of π . By Theorem 4.6 (Chapter 4, [31]), we know that
π∗ is optimal between its marginals, hence we only need to prove that its support has
minimal cardinality.

Arguing by contradiction, let us assume that π∗ is not trim, hence there exists
another optimal plan η between the marginals of π∗ such that

#spt(η) < #spt(π∗).

We can define the measure π̂ as

π̂ = π − π∗ + η,

since π ≥ π∗ and η ≥ 0, we have π̂ ≥ 0. Moreover, since π∗ and η have the same
marginals, π̂ has the same marginals of π , therefore π̂ ∈ �(μ, ν). Moreover, since
π∗ and η are optimal between their marginals, we have

∑
(x,y)∈X×X

cx,yπ
∗
x,y =

∑
(x,y)∈X×X

cx,yηx,y,

thus
∑

(x,y)∈X×X

cx,y π̂x,y =
∑

(x,y)∈X×X

cx,yπx,y −
∑

(x,y)∈X×X

cx,yπ
∗
x,y

+
∑

(x,y)∈X×X

cx,yηx,y

=
∑

(x,y)∈X×X

cx,yπx,y .
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In particular, π and π̂ have the same cost, therefore π̂ is an optimal transportation
plan between μ and ν.

To conclude, we notice that, since π∗ is a restriction of π , we have

#spt(π) = #spt(π − π∗) + #spt(π∗) > #spt(π − π∗) + #spt(η) ≥ #spt(π̂),

which concludes the contradiction, since π is trim by hypothesis. ��
Theorem 6.3 in [16] states that, whenever μ is an absolutely continuous measure

supported over a compact set � ⊂ R
n and the cost function c is a strictly convex

function of the Euclidean distance, the optimal transportation plan is induced by a
transportation map, regardless of the regularity of ν. When μ and ν are both discrete,
this result is generally false. However, in the next Theorem 3, we show that there exists
at least one optimal transportation plan between two measures that can be recreated
as the action of two functions, one acting from a subset X̃ ⊂ spt(μ) to spt(ν) and one
acting from a subset Ỹ ⊂ spt(ν) to spt(μ).

Theorem 3 Let X be a discrete polish space and let μ and ν be two positive measures
over the set X such that

μa > 0 ∀a ∈ X ,

νb > 0 ∀b ∈ X ,

and

∑
a∈X

μa =
∑
b∈X

νb.

Given a cost function c : X × X → R, let π be a trim solution of the transportation
problem. We can then find two couples of measures (μ(d), μ(c)) and (ν(d), ν(c)) and a
couple of functions h(1) and h(2) such that

μ = μ(d) + μ(c) and ν = ν(d) + ν(c), (5)

π = (I d, h(1))#μ
(d) + (h(2), I d)#ν

(d). (6)

We say that the decomposition ensured by Theorem 3 is a diffusivemodel associated
with the given (trim) solution π . We call μ(d) and ν(d) the diffusive part of μ and ν,
respectively. Similarly, we denote with μ(c) and ν(c) the concentrating part of μ and
ν, respectively. Finally, we call h(1) the diffusive scheme of μ and h(2) the diffusive
scheme of ν.

Proof We proceed by induction on the cardinality of X . If #X = 1, the thesis follows
trivially.

Let us now assume that the statement holds for each couple of measures whose
support has cardinality (n − 1) and let μ and ν be two measures supported on a set
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with cardinality n, namely Xn . Given a trim solution π , it is well known (Chapter 7,
[12]) that

#spt(π) ≤ 2n − 1.

Since μ and ν have n points in their support, we can find ā ∈ X such that there exists
a unique b̄ ∈ spt(ν) for which

πā,b̄ > 0,

hence μā = πā,b̄ ≤ νb̄. Similarly, we can find b ∈ X such that there exists a unique
a ∈ spt(μ) for which

πa,b > 0,

so that νb = πa,b ≤ μa .
If μā = πā,b̄ = νb̄, we can restrict the plan π to the set spt(π)\{(ā, b̄)}. We denote

this restriction with π∗. By definition, the marginals of π∗ are

μ∗ = μ − μāδā

and

ν∗ = ν − νb̄δb̄.

In particular, the supports of μ∗ and ν∗ contain (n − 1) points each. By induction we
can find (μ

(d)∗ , μ
(c)∗ ), (ν(d)∗ , ν

(c)∗ ), and (h(1)∗ , h(2)∗ ) such that

μ∗ = μ(d)∗ + μ(c)∗ ,

ν∗ = ν(d)∗ + ν(c)∗ ,

and

π∗ = (I d, h(1)∗ )#μ
(d)∗ + (h(2)∗ , I d)#ν

(d)∗ .

We can then define

μ(d) = μ(d)∗ + μāδā, μ(c) = μ(c)∗ ,

ν(d) = ν(d)∗ , ν(c) = ν(c)∗ + νb̄δb̄,

and

h(1)(a) =
{
h(1)∗ (a) if a �= ā,

b̄ otherwise,
, h(2)(b) = h(2)∗ (b).
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Fig. 1 (Example 2) Visual comparison between the optimal plan π , which is not trim (right) and a trim
plan (left). The support of μ is indicated by light gray dots, the support of ν by dark gray dots, points i and
j are connected by a solid edge if (i, j) belongs to the support of the plan

It easy to see that

μ = μ(d) + μ(c), ν = ν(d) + ν(c)

and, since h(1)
# δā = δb̄, we have

π = (I d, h(1))#μ
(d) + (h(2), I d)#ν

(d), (7)

which concludes the proof in the case μā = πā,b̄ = νb̄. We proceed similarly if
νb = πa,b = μa . See Fig. 1 for a visual representation of this process in the case
n = 3.

To conclude, consider the case in which μā = πā,b̄ < νb̄ and νb = πa,b < μa . In
this case, we restrict π to the set spt(π)\{(ā, b̄), (a, b)}. Let us denote again with π∗
the restriction and with μ∗ and ν∗ its marginals. Since both μ∗ and ν∗ have (n − 1)
points in their supports, we can again decompose them as

μ∗ = μ(d)∗ + μ(c)∗ , ν∗ = ν(d)∗ + ν(c)∗

and find a couple of functions h(1)∗ , h(2)∗ for which

π∗ = (I d, h(1)∗ )#μ
(d)∗ + (h(2)∗ , I d)#ν

(d)∗ .

We can then define

μ(d) = μ(d)∗ + μāδā, μ(c) = μ(c)∗ + μaδa,

ν(d) = ν(d)∗ (c) + νbδb, ν(c) = ν(c)∗ + νb̄δb̄,
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and

h(1)(a) =
{
h(1)∗ (a) if a �= ā,

b̄ otherwise.
h(2)(b) =

{
h(2)∗ (b) if b �= b,

a otherwise,

which concludes the thesis. ��

Remark 2 Given two measures as in the hypothesis of Theorem 3, let μ(d) and ν(d) be
their diffusive parts. Since spt(μ(d)) ⊂ spt(μ) and spt(ν(d)) ⊂ spt(ν), the support of
the transportation plan defined by formula (7) has, at most, 2n points. Thus the trim
condition on the optimal transportation plan is necessary, as we are going to show in
the next example.

Example 2 Let us take

μ = 1

4

(
δ(0,0,0) + δ(1,1,0) + δ(1,0,1) + δ(0,1,1)

)

and

ν = 1

4

(
δ(1,1,1) + δ(0,0,1) + δ(0,1,0) + δ(1,0,0)

)
,

(see Fig. 2) and, as a cost function, we choose the Euclidean distance in R3, i.e.

|x − y| :=
√√√√ 3∑

i=1

(xi − yi )2.

x1 x1

y1

y
1

x2 x2

y2

y
2

x3 = x3

y3 = y
3

Fig. 2 Visual description of the decomposition process used in the proof of Theorem 3. Here, the measures
μ and ν are one-dimensional and have 3 points each in their supports

123



   42 Page 10 of 17 Applied Mathematics & Optimization            (2022) 85:42 

It is easy to see that the plan

π := 1

12
δ(0,0,0) ⊗

(
δ(1,0,0) + δ(0,1,0) + δ(0,0,1)

)

+ 1

12
δ(1,1,0) ⊗

(
δ(0,1,0) + δ(1,0,0) + δ(1,1,1)

)

+ 1

12
δ(1,0,1) ⊗

(
δ(1,0,0) + δ(0,0,1) + δ(1,1,1)

)

+ 1

12
δ(0,1,1) ⊗

(
δ(0,1,0) + δ(0,0,1) + δ(1,1,1)

)

is optimal. However, according to Remark 2, it cannot be decomposed as in formula
(7), since

#spt(π) = 12 > 2#spt(μ) = 8.

Remark 3 Given a trim solution, there might be more than one diffusive model asso-
ciated with it. For example, let

μ = 1

2
δ(0,0) + 1

2
δ(1,1) and ν = 1

4
δ(−1,1) + 3

4
δ(1,0)

be twodiscretemeasures overR2.As a cost function,we choose theEuclidean distance

c(x, y) :=
√

(x1 − y1)2 + (x2 − y2)2.

Then, the probability measure

π = 1

4
δ(0,0) ⊗ δ(−1,1) + 1

4
δ(0,0) ⊗ δ(1,0) + 1

2
δ(1,1) ⊗ δ(1,0)

is a trim plan between μ and ν. It easy to check that

μ(d) = 1

4
δ(0,0) + 1

2
δ(1,1), μ(c) = 1

4
δ(0,0),

ν(c) = 1

4
δ(−1,1) + 1

2
δ(1,0), ν(d) = 1

4
δ(1,0),

and

h(1) :=

⎧⎪⎨
⎪⎩

(−1, 1) i f x = (0, 0),

(+1, 0) i f x = (1, 1),

(0, 0) otherwise,

h(2)(y) = (0, 0) ∀y ∈ R
2,
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is a decomposition of the trim plan. However, we can also decompose ν as

ν̃(d) = 1

4
δ(−1,1), ν̃(c) = 3

4
δ(1,0),

define the functions as

h(1)(x) = (1, 0) ∀x ∈ R
2, h(2)(y) = (0, 0) ∀y ∈ R

2,

and still obtain an admissible decomposition of π .

4 An Upper Bound for the InfinityWasserstein Distance in the
Discrete Setting

As an immediate consequence of the diffusive model decomposition (5)–(6) given in
Theorem 3, we can decompose the Wasserstein distance associated to a cost function
c and use it to estimate the infinity-Wasserstein distance.

Corollary 4 Let μ, ν ∈ P(X) be two discrete measures, c : X × X → R be a cost
function, and π be a trim solution of the transportation problem. Given a diffusive
model for π , we have

Wc(μ, ν) =
∑
x∈X

c(x, h(1)(x))μ(d)
x +

∑
y∈X

c(h(2)(y), y)ν(d)
y

and

T
(∞)
c (π) = max

{
||c(x, h(1)(x))||L∞

μ(d)
, ||c(h(2)(y), y)||L∞

ν(d)

}
.

In particular, we have

Wc(μ, ν) ≥ αW (∞)
c (μ, ν), (8)

where

α = min
a∈spt(μ(d)),b∈spt(ν(d))

{ν(d)
b , μ(d)

a }. (9)

The value α defined in (9) depends on the particular diffusive model we choose.
However, since Wc(μ, ν) and W (∞)

c do not depend on the choice of the diffusive
model, if we can give a lower bound on α for a particular diffusive model, we can
generalize the estimate (8).
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Corollary 5 Let μ, ν ∈ P(X) be two discrete measures and c : X × X → R+ be a
cost function. For any trim plan π , there exists a diffusive model for which

α ≥ min
(A,B)∈K (μ,ν)

{∣∣∣∣
∑
x∈A

μx −
∑
y∈B

νy

∣∣∣∣
}
, (10)

where α is defined in relation (9) and

K (μ, ν) :=
{
(A, B) ⊂ X × X s.t.

∣∣∣∣
∑
x∈A

μx −
∑
y∈B

νy

∣∣∣∣ > 0

}
.

Proof Let n be the cardinality of X . Since π is trim between μ and ν, we have
#spt(π) ≤ 2n − 1, hence we can find x̄1 such that

∃! ȳ1 s.t . πx̄1,ȳ1 �= 0

and y
1
such that

∃! x1 s.t . πx1,y1
�= 0.

If x1 = x̄1 (and hence y
1

= ȳ1), we have μx̄1 = νȳ1 and we define

μ
(d)
x̄1

= μx̄1, ν
(c)
ȳ1

= μx̄1 ,

and

μ(1) := μ − μx̄1δx̄1, ν(1) := ν − νȳ1δȳ1 , π(1) = π − πx̄1,ȳ1δx̄1,ȳ1 .

Otherwise, if x1 �= x̄1 (and hence y
1

�= ȳ1), we set

μ
(d)
x̄1

= μx̄1, μ(c)
x1

= νy
1
,

ν(d)
y
1

= νy
1
, ν

(c)
ȳ1

= μx̄1 ,

and

μ(1) = μ − μx̄1δx̄1 − νy
1
δx1 ,

ν(1) = ν − νy
1
δy

1
− μx̄1δȳ1

π(1) = π − πx̄1,ȳ1δx̄1,ȳ1 − πx1,y1
δx1,y1

.

In both cases we find two measures, μ(1) and ν(1), whose support has at most n − 1
points. Since π(1) is a restriction of a trim plan, by Lemma 2, also π(1) is trim between
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its marginals μ(1) and ν(1). Therefore, we can repeat the process, finding two points
x̄2 and y

2
for which

∃! ȳ2 s.t . πx̄2,ȳ2 �= 0

and

∃! x2 s.t . πx2,y2
�= 0.

We can then extend the definition of the measures μ(d), μ(c), ν(d), and ν(c), define the
measures μ(2), ν(2), and π(2) and start all over again.

At each step, we define two measures μ(i) and ν(i) and increase the cardinality of
the supports of μ(d), μ(c), ν(d), and ν(c). Given any x ∈ spt(μ(d)), we can then find
i ∈ {0, 1, . . . , n − 1} such that

μ(d)
x = μ(i)

x , (11)

and, similarly, for any y ∈ spt(ν(d)), we can find a j ∈ {0, 1, . . . , n − 1} such that

ν(d)
y = ν

( j)
y ,

with the convention μ(0) = μ and ν(0) = ν. The relation between μ(i) and μ(i+1) is
either

μ(i+1) = μ(i) − μ
(i)
x̄i+1

δx̄i+1

or

μ(i+1) = μ(i) − μ
(i)
x̄i+1

δx̄i+1 − ν(i)
y
i+1

δxi+1
.

Similarly, we have

ν(i+1) = ν(i) − ν(i)
y
i+1

δy
i+1

or

ν(i+1) = ν(i) − ν(i)
y
i+1

δy
i+1

− μ
(i)
x̄i+1

δȳi+1 .

Similarly, we canwriteμ(i) and ν(i) as a function ofμ(i−1) and ν(i−1), and then express
μ(i+1) through μ(i−1) and ν(i−1) as

μ(i+1)
x =

∑
a∈ Ã2

μ(i−1)
a −

∑
b∈B̃2

ν
(i−1)
b , (12)
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where Ã2 and B̃2 are two subsets of X whose cardinality is at most two. By iterating
this process, we are able to find

μ(i+1)
x =

∑
a∈ Ãn−(i+1)

μa −
∑

b∈B̃n−(i+1)

νb, (13)

where Ãn−(i+1) and B̃n−(i+1) are subsets of X , whose cardinality is n− (i +1). Since
the left side of (12) is positive, we can rewrite (13) as

μ(i+1)
x =

∣∣∣∣
∑
a∈ Ã2

μ(i−1)
a −

∑
b∈B̃2

ν
(i−1)
b

∣∣∣∣. (14)

By taking the minimum over K (μ, ν) of the right side in (14), we find

μ(i)
x ≥ min

(A,B)∈K (μ,ν)

{∣∣∣∣
∑
x∈A

μx −
∑
y∈B

νy

∣∣∣∣
}
,

for any i ∈ {0, 1, . . . , n − 1} and each x ∈ spt(μ(i)), therefore, from relation (11), we
get

μ(d) ≥ min
(A,B)∈K (μ,ν)

{∣∣∣∣
∑
x∈A

μx −
∑
y∈B

νy

∣∣∣∣
}
.

Similarly, one can prove

ν(d)
y ≥ min

(A,B)∈K (μ,ν)

{∣∣∣∣
∑
x∈A

μx −
∑
y∈B

νy

∣∣∣∣
}
,

for each y ∈ spt(ν(d)), hence relation (10) is proven. ��

In Corollary 4, we boundW (∞)
c from abovewithWc. However, due to the properties

of W (∞)
c , it is possible to relate this distance to the Wasserstein cost induced by any

p−power of the same cost function.

Lemma 6 Let μ, ν ∈ P(X) and let c : X × X → R+ be a cost function. Given any
p > 0, it holds true

W (∞)
cp (μ, ν) = (

W (∞)
c (μ, ν)

)p
.

Proof Let π ∈ �(μ, ν) be a plan such that

Tc(π) = W (∞)
c (μ, ν),
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then

W (∞)
cp (μ, ν) ≤ Tcp (π) = Tc(π)p = (

W (∞)
c (μ, ν)

)p
.

Similarly, one can prove
(
W (∞)

c (μ, ν)
)p ≤ W (∞)

cp (μ, ν) and conclude the thesis. ��
Thanks to Lemma 6, we are able to prove the following result.

Theorem 7 Given a cost function c : X × X → [0,∞), let μ, ν ∈ P(X) be two
discrete measures. For any p ≥ 1,

W (∞)
c (μ, ν) ≤ Wcp (μ, ν)

(αp)
1
p

, (15)

where αp is the constant defined in (9).

Proof Given a p ≥ 1, let us denote with π(p) the trim optimal transportation plan
between μ and ν according to the cost function cp. Given a diffusive model for π(p),
we denote with αp the constant defined in (9). From Lemma 6 we have

W (∞)
cp (μ, ν) = (W (∞)

c (μ, ν))p,

hence, for any p, we have

(W (∞)
c (μ, ν))p = W (∞)

cp (μ, ν) ≤ W p
cp (μ, ν)

αp
,

i.e.,

W (∞)
c (μ, ν) ≤ Wcp (μ, ν)

(αp)
1
p

.

��
In particular, since the constant α from Corollary 5 bounds from below every αp and
does not depend on the cost function but only on the starting measures μ and ν, we
have

W (∞)
c (μ, ν) ≤ Wcp (μ, ν)

(α)
1
p

for any p ≥ 1. In particular, if we take

c(x, y) :=
√√√√ n∑

i=1

|xi − yi |2,

we recover the bound proposed in Theorem 1 for discrete measures.
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Remark 4 The estimate in (15) is sharp. To prove it, let us take

μ = δa and ν = δb

where a, b ∈ R
n . By definition (9), we have α = 1. Moreover, it is easy to see that

W (∞)(μ, ν) = |a − b| and Wp(μ, ν) = |a − b|,

which proves the sharpness of inequality (8).
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