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Abstract
In this paper we study a general optimal liquidation problem with a control-dependent
stopping time which is the first time the stock holding becomes zero or a fixed terminal
time, whichever comes first. We prove a stochastic maximum principle (SMP) which
is markedly different in its Hamiltonian condition from that of the standard SMP
with fixed terminal time. We present a simple example in which the optimal solution
satisfies the SMP in this paper but fails the standard SMP in the literature.

Keywords Stochastic maximum principle · Control-dependent terminal time ·
Optimal liquidation · Variational analysis · Backwards stochastic differential
equations
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1 Introduction

Two main approaches to solving stochastic optimal control problems are the partial
differential equation (PDE) method based on the dynamic programming principle
(DPP) and the backward stochastic differential equation (BSDE) method based on the
stochastic maximum principle (SMP), see Fleming and Soner [9], Yong and Zhou [19]
for expositions. Most literature is on fixed terminal time problems. When the under-
lying state process is a controlled diffusion process, one may find the optimal solution
with the Hamilton–Jacobi–Bellman (HJB) equation (a nonlinear PDE) or the BSDE (a
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coupled forward-backward system connected with the Hamiltonian condition). When
the underlying state process is a controlled jump-diffusion process, one may find the
optimal solution with the HJB partial differential difference equation or the BSDE,
see Oksental and Sulem [13] for model formulations and solution methodologies.
When the terminal time is not fixed but a random stopping time that is determined
directly by a decision-maker, one has an optimal stopping problem or a combined
optimal control/stopping problem and may find the optimal solution with the HJB
variational equation or the reflected BSDE, see Pham [14] for an excellent concise
introduction of this and other topics above, see also Barbu and Röckner [2], Cordoni
et al. [6], Diomande and Maticiuc [8], Popier and Zhou [16] for results on existence
and uniqueness of forward backward and delayed stochastic differential equations and
second order BSDEs and applications.

In this paper we investigate a stochastic optimal control problem with a random
terminal time. In contrast to optimal stopping problem, the terminal time is indirectly
determined by control strategies. Specifically,we consider an optimal liquidation prob-
lem inwhich the terminal time is determinedby thefirst time the stock holding becomes
zero or a fixed terminal time, whichever comes first. The objective is to maximize the
expected cash value of the liquidation at the terminal time subject to some other under-
lying state process (stock price, volatility, etc.) dynamics. Such a model cannot be cast
into the framework of the optimal stopping problem as stopping time is not directly
controlled nor the jump-diffusion model with the fixed terminal time as stopping time
is random. For a Markovian model, one can show that the value function satisfies the
HJB equation with the boundary condition when the stock holding is zero as well as
the terminal condition at the fixed terminal time, see for example Cartea et al. [4].
Since the HJB equation is a nonlinear PDE, one can find the closed-form solution or
show the existence of a classical solution only for some specific models and has to rely
on the viscosity solution concept for general models. For a non-Markovian model or
with control constraints, the HJB approach loses its tractability. On the other hand, the
SMP approach provides an alternative way of solving the problem for general, possi-
bly non-Markovian, models. However, the standard SMP only applies to the problem
with fixed terminal time. The first huddle we must overcome is to find the form of
the BSDE and the associated Hamiltonian condition for the problem with random
control-dependent terminal time.

There have been some efforts in the literature to address optimal trading.Ankirchner
et al. [1] use theBSDEapproach to solving the singular terminal state problem inwhich
the terminal inventory is forced to be zero at terminal time, differently from our setting
in which this constraint is weakened. Horst and Naujokat [10] state a version of the
SMP for optimal trading strategy with the spread driven by a jump diffusion process.
Pham [15] studies a model with multiple stopping times, a special form of the jump-
diffusion process, and characterizes the value function with a system of backward
recursive dynamic programming equations and the optimal control with progressive
enlargement of filtration.

Cordoni and Di Persio [5] study a similar model to [15] and derive a system of
backward recursive BSDEs that are similar to the standard SMPover adjacent stopping
times intervals. There is, however, a key difference in the stopping time definitions in
Pham [15] and Cordoni and Di Persio [5]. The former is independent of controls and
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is given by some driving jump processes whereas the latter depends on controls and is
given by the first time the underlying controlled state process hits some deterministic
boundaries. In the standard derivation of SMPwithfixed terminal time (c.f. Bensoussan
[3] and Pham [14]), one may use the optimality condition and the variation of the
optimal control to derive the BSDE and the Hamiltonian condition. When the terminal
time is a stopping timedepending on control, then variational analysis involves changes
in terminal time as well as underlying state variables, unlike that for the standard
SMP that only involves changes in underlying state variables. This aspect is the most
arduous difficulty that needs to be overcome in the proof of the SMP with control
dependent terminal time. Cordoni and Di Persio [5] prove the SMPwithout discussing
the possibility of changes of terminal stopping times due to changes of controls,
see for example [5,Eq. (15)] in the proof of necessary SMP and [5,Eq. (24)] in the
proof of sufficient SMP, which implies the SMP in [5] is only valid for a model with
stopping times independent of controls, same as that of [15], but invalid for control-
dependent stopping times, that is, the BSDE and the Hamiltonian condition in [5] are
not applicable to the stopping time definition there.

The main contribution of this paper is to give the SMP in the presence of random
control-dependent terminal time, the first in the literature to the best knowledge of
the authors. The main theorem (Theorem 2.2) states that the adjoint process satisfies
a standard BSDE [see (2.7)] with the terminal time the optimal stopping time, not
necessarily the fixed terminal time, and the Hamiltonian function is also a standard
one [see (2.9)], but the Hamiltonian condition is markedly different from that of the
standard SMP with fixed terminal time [see (2.13)], specifically, we need to add a
supplementary nonlinear term that is not additively separable between the optimal
control and any other controls. This additional term counts for the random control-
dependent terminal time. We give a simple example to show that the optimal solution
satisfies the SMP in Theorem 2.2 but not the standard SMP, e.g., the one in [14]. The
SMP in this paper only applies to the optimal liquidation problem, but the idea of the
variational analysis involving controlled stopping time may be explored further for
more general models with other applications, for example, the optimal path planning
problem that steers autonomous vehicles to navigate between any two points while
optimizes energy, time, etc., see Lee et al. [12] and Subramani et al [17].

The rest of the paper is organized as follows. In Sect. 2 we describe the model and
state the main result (Theorem 2.2) that is the SMP with random control-dependent
terminal time. In Sect. 3 we present an example to illustrate the main result and show
the standard SMPdoes not hold. In Sect. 4 we prove Theorem 2.2. Section 5 concludes.

2 Model Setup

Let (�,F , (Ft )t∈[0,T ],P) be a filtered probability space, where (Ft )t∈[0,T ] is the natu-
ral filtration generated by anm-dimensional standard BrownianmotionW, augmented
by all P-null sets. Let T be the fixed terminal time. Let (πt )t∈[0,T ] denote the rate of
selling the stock, which is a decision (control) variable selected by the agent and is
said admissible if it is a progressively measurable, non-negative, right-continuous and
square integrable process. Denote byA the set of all admissible control processes. We
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consider π to be the liquidation rate of the inventory Qt , defined as

Qπ
t = q0 −

∫ t

0
πr dr . (2.1)

Let (Xt )t∈[0,T ] be an Rn valued stochastic process satisfying the following stochastic
differential equation (SDE):

dXt = μ(t,Xt )dt + σ (t,Xt )dWt , (2.2)

with initial conditionX0 = x, whereμ : [0, T ]×R
n → R

n , σ : [0, T ]×R
n → R

n×m

are two continuous functions.X represents the market information such as stock price,
volatility, etc., and is not influenced by the control process π (liquidation without price
impact). The optimal liquidation problem is defined by

sup
π∈A

E

[
g(Xτπ , Qπ

τπ ) +
∫ τπ

0
f (r , πr ,Xr , Q

π
r ) dr

]
, (2.3)

where g : Rn ×R → R and f : [0, T ]× [0,∞)×R
n ×R → R are two continuously

differentiable functions representing the terminal and running payoffs, τπ is a stopping
time defined by

τπ = T ∧ min
{
r ≥ 0 | Qπ

r = 0
}
, (2.4)

the first time when all stock is liquidated or fixed terminal time T , whichever comes
first.

To simplify the notation we consider a one-dimensional process X , but all results
can be obtained in the multi-dimensional case. We denote the state space of the pair
(Xr , Qr ) as O := R × [0, q0]. In the following, with a slight abuse of notations,
we denote πr as πr1r≤τπ , which equals 0 after τπ . Similarly, Qπ

r = 0 for r > τπ .
Whenever we refer to a time interval [a, b), if a ≥ b, then we consider it to be an
empty set.

To state and prove a necessary SMP for problem (2.3), we follow the procedure in
Bensoussan [3].Assume that c is the optimal control and Q and τ are the corresponding
optimal inventory and stopping time, defined in (2.1) and (2.4) respectively. If Q0 = 0
then τ = 0 and there is nothing to discuss. We assume Q0 > 0 which implies τ > 0.
We next define the variation of the optimal control c. For fixed t ∈ [0, τ ) and c̄ ≥ 0,
we have q := Qt > 0. Choose θ ∈ (0, (T − t) ∧ q

c̄

)
, that is, t < t + θ < T and

q − c̄θ > 0, consider a variation of c as follows:

cθ,c̄,t
r := cr1r∈[0,t) + c̄1r∈[t,(t+θ)∧τ) + cr1r∈[t+θ,τ ) − γ

θ,c̄,t
t+θ

θ
1r∈[τ,+∞), (2.5)
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Fig. 1 Graphical examples of c (in blue) and cθ,c̄,t (in red)

where 1S is an indicator that equals 1 if S is true and 0 otherwise, and for r ≥ t ,

γ θ,c̄,t
r :=

∫ r∧τ

t
(c̄ − cs)ds. (2.6)

The control cθ,c̄,t in (2.5) is an admissible control, see Lemma 4.1. Let Qθ,c̄,t
r be the

corresponding inventory under the control cθ,c̄,t , given by (2.1), and τ θ,c̄,t be the first
hitting time r when the inventory Qθ,c̄,t

r gets to 0, given by (2.4).
Since cθ,c̄,t

r = cr for r ∈ [0, t), we have Qθ,c̄,t
r = Qr for r ∈ [0, t), in particular,

Qθ,c̄,t
t = Qt and τ θ,c̄,t > t . In fact, with the condition on θ , Qθ,c̄,t

(t+θ)∧τ = Qt − c̄((t +
θ) ∧ τ − t) ≥ q − c̄θ > 0, so τ θ,c̄,t > (t + θ) ∧ τ . The term γ

θ,c̄,t
t+θ represents the

difference of the total liquidation on the time interval [t, (t + θ)∧ τ ] with the constant
control c̄ and with the optimal control c, which determines the relation of τ and τ θ,c̄,t .
If γ

θ,c̄,t
t+θ > 0 then t + θ < τθ,c̄,t < τ when t + θ < τ < T , specifically, τ θ,c̄,t is the

time r when the optimal inventory Qr is equal to γ
θ,c̄,t
t+θ , see Fig. 1a. If γ

θ,c̄,t
t+θ < 0 then

τ θ,c̄,t > τ , see Fig. 1b. Note that we denote cθ,c̄,t
r as cθ,c̄,t

r 1r≤τ θ,c̄,t , which equals 0

after τ θ,c̄,t . We see that cθ,c̄,t
r is well defined in (2.5). Indeed, when τ ≥ τ θ,c̄,t , the last

term in (2.5) disappears, while if τ < τθ,c̄,t , the quantity γ
θ,c̄,t
t+θ is negative, making

the last term in (2.5) a non-negative term.
Let (Yr , Zr )r∈[0,τ ] be a solution of the following BSDE:

{
−dYr = ∂q f (r , cr , Xr , Qr )dr − ZrdWr

Yτ = ∂qg(Xτ , Qτ ).
(2.7)

The processes (Y , Z) are conventional in the usual SMP formulation (c.f. Bensoussan
[3] and Pham [14]). BSDE (2.7) has a random terminal time τ , in contrast to the
standard BSDE with fixed terminal time. This type of BSDEs has been studied in the
literature, c.f. Darling and Pardoux [7] and in Wu [18].

We assume μ, σ, f , g satisfy the following conditions for some positive constant
K .
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Assumption 2.1 For any t, t ′ ∈ [0, T ], π, π ′ ≥ 0, x, x ′ ∈ R, q, q ′ ≥ 0,

∣∣μ(t, x) − μ(t, x ′)
∣∣+ ∣∣σ(t, x) − σ(t, x ′)

∣∣ ≤ K
∣∣x − x ′∣∣ ,

|μ(t, x)| + |σ(t, x)| ≤ K (|x | + 1) ,∣∣g(x, q) − g(x, q ′)
∣∣ ≤ K (1 + |x |) ∣∣q − q ′∣∣ ,∣∣ f (t, π, x, q) − f (t ′, π, x, q ′)

∣∣ ≤ K
(∣∣q − q ′∣∣+ ∣∣t − t ′

∣∣) ,∣∣ f (t, π, x, q) − f (t, π ′, x ′, q)
∣∣ ≤ K

(∣∣x − x ′∣∣+ ∣∣π − π ′∣∣) (1 + |x | + |x ′| + |π | + |π ′|) ,∣∣∂q f (t, π, x, q) − ∂q f (t, π, x, q ′)
∣∣+ ∣∣∂q g(x, q) − ∂q g(x, q

′)
∣∣ ≤ K |q − q ′|.

(2.8)

Define the Hamiltonian as

H(t, π, x, q, y) := −π y + f (t, π, x, q). (2.9)

Denote by

τ
θ,c̄,t
min := min

(
τ, τ θ,c̄,t

)
, τ θ,c̄,t

max := max
(
τ, τ θ,c̄,t

)
,

Q̂θ,c̄,t
r := max

(
Qr , Q

θ,c̄,t
r

)
, ĉθ,c̄,t

r := max
(
cr , c

θ,c̄,t
r

)
.

We now state the stochastic maximum principle for problem (2.3).

Theorem 2.2 Let Assumption 2.1 be satisfied. Let (cr )r∈[0,T ] be the optimal control
for problem (2.3), satisfying

E

[
sup

r∈[0,T ]
c2r

]
< ∞. (2.10)

Let (Qr )r∈[0,T ] and (Xr )r∈[0,T ] be the corresponding solutions to SDEs (2.1) and (2.2)
with Q0 > 0, τ > 0 the corresponding stopping time in (2.4), and (Yr , Zr )r∈[0,τ ] the
solution to BSDE (2.7). Assume that there exist R-valued functions ḡ(t, c̄, x, q) and
f̄ (t, c̄, x, q) so that for any t ∈ [0, τ ), (x, q) ∈ O and c̄ ≥ 0,

ḡ(t, c̄, x, q) = lim
θ→0

E
t

[
g(Xτ , Q

θ,c̄,t
τ θ,c̄,t ) − g(Xτ θ,c̄,t , Qθ,c̄,t

τ θ,c̄,t )

θ

]
, (2.11)

f̄ (t, c̄, x, q) = lim
θ→0

E
t

[
sign(τ − τ θ,c̄,t )

θ

∫ τ
θ,c̄,t
max

τ
θ,c̄,t
min

f
(
r , ĉθ,c̄,t

r , Xr , Q̂
θ,c̄,t
r

)
dr

]
,

(2.12)

where Et [·] = E[·|Xt = x, Qt = q] is the conditional expectation at time t. Then, c
necessarily satisfies for t ∈ [0, τ ), c̄ ≥ 0,

H(t, c̄, Xt , Qt ,Yt ) − H(t, ct , Xt , Qt ,Yt ) + G(t, c̄, Xt , Qt ) ≤ 0 a.s., (2.13)
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where G(t, c̄, x, q) is defined as

G(t, c̄, x, q) := (c̄ − ct )E
t [∂qg(Xτ , Qτ )1	(t,c̄)

]− ḡ(t, c̄, x, q) − f̄ (t, c̄, x, q)

(2.14)

and 	(t, c̄) as

	(t, c̄) := ({QT = 0} ∩ {c̄ ≥ ct }) ∪ ({τ < T } ∩ {c̄ < ct }) .

Remark 2.3 The definition of ḡ in (2.11) is asymmetric in the arguments of functions
g. We may define ḡ in a symmetric way as

lim
θ→0

E
t

[
g(Xτ , Qτ ) − g(Xτ θ,c̄,t , Qθ,c̄,t

τ θ,c̄,t )

θ

]
.

To get an analogy of the Hamiltonian condition in Theorem 2.2, we have to define
ḡ as in (2.11). This point is illustrated in (4.33) in the proof of Theorem 2.2. Note
also that stopping time τ is determined by the optimal control c as in (2.4) and is
therefore given. The definitions of τ and τ θ,c̄,t are unrelated but τ θ,c̄,t converges
to τ in L1 and almost surely as θ → 0, see Lemma 4.5. One interesting question

raised by one of the reviewers is that if the limit limθ→0
τ θ,c̄,t−τ

θ
exists or not. The

answer in general is negative. This can be seen by the following simple example.
Assume t = 0 and q0 = T 2/2. Assume the optimal control is ct = T − t for
t ∈ [0, T ], which gives Qr = q0 − ∫ r0 csds = (1/2)(T − r)2 for r ∈ [0, T ] and
Qr = 0 if and only if r = τ := T . Now consider a perturbation with c̄ > T
and 0 < θ < T 2/(2c̄), which gives Qθ,c̄,t

r = q0 − c̄r > 0 for r ∈ [0, θ ] and
Qθ,c̄,t

r = q0 − ∫ r0 cθ,c̄,t
s ds = −c̄θ + T θ − θ2/2 + (T − r)2/2 for r ∈ [θ, T ] and

Qθ,c̄,t
r = 0 if and only if r = τ θ,c̄,t := T − √

θ2 − 2T θ + 2c̄θ . We have τ θ,c̄,t → τ

as θ → 0 but

lim
θ→0

τ θ,c̄,t − τ

θ
= − lim

θ→0

√
θ2 − 2T θ + 2c̄θ

θ
= − lim

θ→0

√
1 + 2

c̄ − T

θ
= −∞,

which shows the limit does not exist.

Remark 2.4 The standard SMP (c.f. Pham [14]) and Theorem 2.2 cannot be recovered
from each other as they solve different problems. However, their statements are similar
and only differ for the additional term G in (2.14).

Remark 2.5 The same result as Theorem 2.2 can be obtained in the case when the
admissible set is bounded by above as well, i.e. when π is required to be in π ∈ [0, b]
with 0 < b ≤ +∞. Although the proof does not change, the only remark we want to
point out is on the admissibility of control cθ,c̄,t . Since c̄ ∈ [0, b] and cr ∈ [0, b] for
every r ∈ [0, T ], then − γ

θ,c̄,t
t+θ

θ
= 1

θ

∫ (t+θ)∧τ

t (cr − c̄)dr ≤ (t+θ)∧τ−t
θ

b ≤ b.
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3 Example

In this section we describe an example to show that the usual SMP is not satisfied
whereas Theorem 2.2 is satisfied. We consider an optimal liquidation problem with
no market impact on trade and no terminal execution. In particular, let g = 0 and
f (π, x) = πx . Assume the admissible control can only take values in the interval
[0, c+]. Let t ∈ [0, T ] and Qt = q > 0 be fixed. The stock price X satisfies the SDE:
for r ∈ [t, T ] and Xt = x > 0,

dXr = XrdWr .

The agent aims tomaximise his final cash value that is the cumulated liquidationwealth
up to the stopping time at which the agent runs out the liquidating stocks and there is
no residual value for any remaining stocks at horizon time T . The value function to
this problem is defined by

v(t, x, q) = sup
π∈A

E
t

[∫ τπ

t
πr Xr dr

]
, (3.1)

where τπ = T ∧ min{r ≥ t | Qπ
r = 0} is the first hitting time of Qπ to zero or the

fixed terminal time T , whichever comes first. We define an admissible control strategy
c as follows: for any r ∈ [t, T ],

cr =
{

q
T−t if q ≤ c+(T − t),

c+ if q > c+(T − t).
(3.2)

The inventory Qr in (2.1) is given by

Qr =
{

q
T−t (T − r) if q ≤ c+(T − t),

q − (r − t)c+ if q > c+(T − t).

We also have that for any r ∈ [t, T ], Qr ≤ c+(T − r) ⇔ q ≤ c+(T − t). Using the
above expression for Qr , it is easy to check that the first hitting time of Qr = 0 is

τ = T a.s..

Since the stopping time τ is equal to the terminal time T , it may look like the control
in (3.2) is the same control we would have found in the usual setting without the
stopping time. However, the optimal control in the usual case without stopping time
would have been equal to c+. When q < c+(T − t), at time r = t + q

c+ < T , the
inventorywould have reached zero and from that timeonward the inventorywould have
become negative, making the control c+ not feasible for our problem, see Remark 3.2.
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Substituting (3.2) and τ = T into (3.1), we can easily show that the value function
associated with control (3.2) is equal to

vc(t, x, q) =
{
qx if q ≤ c+(T − t),

xc+(T − t) if q > c+(T − t).
(3.3)

Proposition 3.1 Function vc in (3.3) coincides with the value function v of problem
(3.1) and the strategy c in (3.2) is the optimal control.

Proof By definition of vc(t, x, q), we have that for any t ∈ [0, T ], x > 0 and q > 0

vc(t, x, q) = E
t
[∫ τ

t
cr Xrdr

]
≤ sup

π∈A
E
t

[∫ τπ

t
πr Xrdr

]
= v(t, x, q). (3.4)

We now show that vc ≥ v. Define

w(t, q) =
{
q if q ≤ c+(T − t),

c+(T − t) if q > c+(T − t).
(3.5)

Simple calculus shows that

∂qw(t, q) =
{
1 if q ≤ c+(T − t),

0 if q > c+(T − t),
∂tw(t, q) =

{
0 if q ≤ c+(T − t),

−c+ if q > c+(T − t).

It can be easily verified that w satisfies the following HJB equation, for t ∈ [0, T ] and
q > 0

∂tw + sup
π∈[0,c+]

[
π − π∂qw

] = 0. (3.6)

w satisfies the boundary condition w(t, 0) = 0 for any t ∈ [0, T ] and the terminal
condition w(T , q) = 0 for any q > 0.

Denote by c∗
r the optimal control for the value function v(t, x, q) in (3.1) and Q∗

r
and τ ∗ the corresponding inventory and stopping time respectively. Using (2.1), for
any r ∈ [t, T ], we have

dw(r , Q∗
r ) = ∂tw(r , Q∗

r )dr + ∂qw(r , Q∗
r )dQ

∗
r = [∂tw(r , Q∗

r ) − ∂qw(r , Q∗
r )c

∗
r

]
dr

≤ −c∗
r dr . (3.7)
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We have used (3.6) in the last inequality. Finally, from Xt = x , Q∗
t = q, vc(t, x, q) =

xw(t, q), using the stochastic integration by parts and (3.7), we have

vc(τ ∗, Xτ∗ , Q∗
τ∗) = vc(t, Xt , Q

∗
t ) +

∫ τ∗

t
Xrdw(r , Q∗

r ) +
∫ τ∗

t
w(r , Q∗

r )dXr

≤ vc(t, x, q) −
∫ τ∗

t
Xr c

∗
r dr +

∫ τ∗

t
w(r , Q∗

r )XrdWr .

(3.8)

However, using boundary and terminal condition vc(t, x, 0) = 0 for any t ∈ [0, T ]
and x > 0 and vc(T , x, q) = 0 for any x > 0 and q > 0, we conclude that
vc(τ ∗, Xτ∗ , Q∗

τ∗) = 0, as either τ ∗ = T or Q∗
τ∗ = 0. Therefore, taking conditional

expectations on both sides of (3.8) and using the optional sampling theorem, we have
that the expected value of the random variable

∫ τ∗
t w(r , Q∗

r )XrdWr is equal to 0 and
we get

vc(t, x, q) ≥ E
t

[∫ τ∗

t
c∗
r Xr dr

]
= v(t, x, q).

Combining (3.4) and the previous expression, we conclude the proof. ��
Remark 3.2 In the standard version of the SMP (cf. Pham [14]) there should be 2
adjoint processes in the BSDE, referring respectively to processes X and Q. However,
since the process X does not depend on control π , the terms regarding the adjoint
process referring to X can be removed from the Hamiltonian and, noting that g = 0
and f (π, x) = πx , those referring to Q are identically equal to 0. The necessary
condition of the standard SMP is equivalent to

f (π, Xt ) ≤ f (ct , Xt ), ∀t ∈ [0, T ], ∀π ∈ [0, c+]. (3.9)

However, from (3.1) we get that the maximal point of f (·, x) is π̄ = c+. We have
shown that if q < c+(T − t), then the optimal strategy is cr = q

T−t for t ≤ r ≤ T as
in (3.2), which is less than π̄ = c+, a contradiction to (3.9) and the standard SMP.

We next verify that optimal control in (3.2) satisfies Theorem 2.2. We need to show
that (2.13) holds true. Firstly, we observe that themodel setup satisfiesAssumption 2.1.
Using the fact that μ = 0 and g = 0, we show that (2.13) holds true by proving that
for any c̄ ∈ [0, c+], t ∈ [0, T ),

f (c̄, Xt ) − f (ct , Xt ) − f̄ (t, c̄, Xt , Qt ) ≤ 0. (3.10)

We first find the expression for f̄ (t, c̄, x, q) in the following proposition.

Proposition 3.3 Let t ∈ [0, T ) be fixed and (cr )r∈[t,T ] be the optimal control in (3.2).
Then, for any c̄ ∈ [0, c+], x > 0 and q > 0

f̄ (t, c̄, x, q) =
{

(c̄ − ct )x1c̄≥ct if q ≤ c+(T − t),

0 if q > c+(T − t).
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Proof We consider any θ ∈ (0, T − t), so that τ = T > t + θ . Using the fact that cr
in (3.2) is constant in time, we have for any r ∈ [t + θ, τ ]

Qθ,c̄,t
r = q − c̄θ −

∫ r

t+θ

csds = q − ct (r − t) + θ(ct − c̄). (3.11)

If q > c+(T − t), then (3.2) implies that ct = c+ and from (3.11),

Qθ,c̄,t
T > θ(c+ − c̄) ≥ 0.

Here we have used the fact that c̄ is an admissible control and so c̄ ∈ [0, c+]. The
above expression implies that τ θ,c̄,t = T a.s.. On the other hand, if q ≤ c+(T − t),
then ct = q

T−t and from (3.11), Qθ,c̄,t
T = −θ(c̄ − ct ). Hence, if c̄ ≤ ct , Q

θ,c̄,t
T ≥ 0

and so τ θ,c̄,t = T a.s.. If c̄ > ct , Q
θ,c̄,t
T < 0 and so τ θ,c̄,t < T a.s., so by setting

(3.11) equal to 0 we get that τ θ,c̄,t = T − θ
(

c̄
ct

− 1
)
a.s., where θ

(
c̄
ct

− 1
)

> 0,

since c̄ > ct .
In conclusion, if q > c+(T − t), then τ

θ,c̄,t
min = τ

θ,c̄,t
max = T and we have that f̄ = 0

from definition (2.12). If q ≤ c+(T − t), then we consider two sub-cases. If c̄ ≤ ct ,

then τ
θ,c̄,t
min = τ

θ,c̄,t
max = T , making f̄ = 0 again. If c̄ > ct , then τ

θ,c̄,t
min = T −θ

(
c̄
ct

− 1
)

and τ
θ,c̄,t
max = T and so

f̄ (t, c̄, x, q) = lim
θ→0

E
t

[
1

θ

∫ T

T−θ
(

c̄
ct

−1
) cr Xr dr

]
= lim

θ→0

θ
(

c̄
ct

− 1
)

θ
ct x = (c̄ − ct )x .

This concludes the proof of the proposition. ��
To prove (3.10), we split the proof of (3.10) in two parts. If q ≤ c+(T − t), then the left
side of (3.10) is equal to c̄Xt − ct Xt − (c̄− ct )Xt1c̄≥ct = Xt ·min (c̄ − ct , 0) ≤ 0. If
q > c+(T − t), then the left side of (3.10) is equal to c̄Xt − ct Xt = (c̄ − c+)Xt ≤ 0
as c̄ ≤ c+. Hence, (3.10) is satisfied for any c+ ≥ c̄ ≥ 0, and Theorem 2.2 holds.

Remark 3.4 Themain purpose of this example is to show that the standard SMP cannot
be applied when the terminal time is an indirectly controlled stopping time but our
necessary SMP can accommodate that. It is in general difficult to find the optimal
solution usingTheorem2.2 that has no particular advantage to theDPP for the example,
but this is the first step in addressing the indirectly controlled random terminal time
problem with the SMP which has the potential for solving the non-Markovian model,
see Sect. 5 for possible further research.

4 Proof of Theorem 2.2

In this section we consider all assumptions of Theorem 2.2 are satisfied. (2.10) implies
that E

[
supr∈[0,T ] cr

]
< ∞. As mentioned in the model setup, for any fixed time
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t ∈ [0, τ ), we have Qt = q > 0 and so τ > t a.s.. We consider a partition of the whole
event space {τ > t}, which helps us in stating and proving some preliminary results
that are needed in the proof of Theorem 2.2. As general hints for better understanding,
we remind that τ is defined so that Qτ = 0 if τ < T , Qτ ≥ 0 if τ = T , and Qr > 0
if r ∈ [t, τ ). Similarly, Qθ,c̄,t

τ θ,c̄,t = 0 if τ θ,c̄,t < T , Qθ,c̄,t
τ θ,c̄,t ≥ 0 if τ θ,c̄,t = T , and

Qθ,c̄,t
r > 0 if r ∈ [t, τ θ,c̄,t ). We first observe, using (2.5), that if θ ∈ (0, (T − t) ∧ q

c̄

)
,

then for any r ∈ [t, (t + θ) ∧ τ ],

Qθ,c̄,t
r = q −

∫ r

t
cθ,c̄,t
s ds = q − c̄ (r − t) ≥ q − c̄θ > 0.

Therefore, if θ ∈ (0, (T − t) ∧ q
c̄

)
, then

τ θ,c̄,t > (t + θ) ∧ τ (4.1)

Let t ∈ [0, τ ), 0 < θ < (T − t)∧ q
c̄ , c̄ ≥ 0 be fixed, we define the following partitions

of {τ > t}:

Eθ,c̄,t
1 :=

{
t < t + θ < τθ,c̄,t < τ

}
,

Eθ,c̄,t
2 :=

{
t < τ < τθ,c̄,t

}
,

Eθ,c̄,t
3 :=

{
t < t + θ < τ = τ θ,c̄,t

}
.

We now present the properties of the different cases Eθ,c̄,t
i , for any i ∈ {1, 2, 3}. In

particular, for each of the events we show a scheme for the different values of quantities
cθ,c̄,t and Qθ,c̄,t in each of the time spans. These schemes help in understanding some
steps in the proof of lemmas below.

(1) On the event Eθ,c̄,t
1 :

t t + θ τ θ,c̄,t τ
r ∈

cθ,c̄,t
r = c̄ cr 0

Qθ,c̄,t
r = Qr − γθ,c̄,t

r Qr − γθ,c̄,t
t+θ

0
cθ,c̄,t
r − cr = c̄ − cr 0 −cr

Qθ,c̄,t
r − Qr = −γθ,c̄,t

r −γθ,c̄,t
t+θ

−Qr

From previous scheme we conclude that on the event Eθ,c̄,t
1

0 = Qθ,c̄,t
τ θ,c̄,t = Qτ θ,c̄,t − γ

θ,c̄,t
t+θ ⇒ Qτ θ,c̄,t = γ

θ,c̄,t
t+θ , which also implies that γ θ,c̄,t

t+θ > 0,

(4.2)
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since by definition of τ , for any r ∈ [t, τ ), Qr > 0.

∣∣∣Qθ,c̄,t
r − Qr

∣∣∣ ≤ max

(
sup

r∈[t,t+θ]

∣∣∣γ θ,c̄,t
r

∣∣∣ , |Qτ θ,c̄,t |
)

= sup
r∈[t,t+θ]

∣∣∣γ θ,c̄,t
r

∣∣∣ ,
∀r ∈ [t, T ], (4.3)

Qτ θ,c̄,t − Qτ ≤ Qτ θ,c̄,t = γ
θ,c̄,t
t+θ . (4.4)

(2) On the event Eθ,c̄,t
2 : If τ > t + θ

t t + θ τ τ θ,c̄,t T
r ∈

cθ,c̄,t
r = c̄ cr −γθ,c̄,t

t+θ

θ
0

Qθ,c̄,t
r = Qr − γθ,c̄,t

r Qr − γθ,c̄,t
t+θ −γθ,c̄,t

t+θ 1 − r−τ
θ

)
0

cθ,c̄,t
r − cr = c̄ − cr 0 −γθ,c̄,t

t+θ

θ
0

Qθ,c̄,t
r − Qr = −γθ,c̄,t

r −γθ,c̄,t
t+θ −γθ,c̄,t

t+θ 1 − r−τ
θ

)
0

If τ ≤ t + θ , from (2.6), γ θ,c̄,t
τ = γ

θ,c̄,t
t+θ

t τ τ θ,c̄,t T
r ∈

cθ,c̄,t
r = c̄ −γθ,c̄,t

t+θ

θ
0

Qθ,c̄,t
r = Qr − γθ,c̄,t

r −γθ,c̄,t
t+θ 1 − r−τ

θ

)
0

cθ,c̄,t
r − cr = c̄ − cr −γθ,c̄,t

t+θ

θ
0

Qθ,c̄,t
r − Qr = −γθ,c̄,t

r −γθ,c̄,t
t+θ 1 − r−τ

θ

)
0

From previous scheme we conclude that on the event Eθ,c̄,t
2 ,

Qθ,c̄,t
τ = Qτ − γ

θ,c̄,t
t+θ = −γ

θ,c̄,t
t+θ , which implies γ

θ,c̄,t
t+θ < 0, (4.5)

since by definition of τ θ,c̄,t , for any r ∈ [t, τ θ,c̄,t ), Qθ,c̄,t
r > 0. Moreover,

if τ θ,c̄,t < T , 0 = Qθ,c̄,t
τ θ,c̄,t = −γ

θ,c̄,t
t+θ

(
1 − τ θ,c̄,t − τ

θ

)
⇒ τ θ,c̄,t = τ + θ,

if τ θ,c̄,t = T , 0 ≤ Qθ,c̄,t
τ θ,c̄,t = −γ

θ,c̄,t
t+θ

(
1 − τ θ,c̄,t − τ

θ

)
⇒ τ θ,c̄,t ≤ τ + θ,

(4.6)

∣∣∣Qθ,c̄,t
r − Qr

∣∣∣ ≤ sup
r∈[t,t+θ]

∣∣∣γ θ,c̄,t
r

∣∣∣ , ∀r ∈ [t, T ], (4.7)

if τ θ,c̄,t < T , Qθ,c̄,t
τ − Qθ,c̄,t

τ θ,c̄,t = −γ
θ,c̄,t
t+θ ,
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if τ θ,c̄,t = T , Qθ,c̄,t
τ − Qθ,c̄,t

τ θ,c̄,t ≤ −γ
θ,c̄,t
t+θ . (4.8)

(3) On the event Eθ,c̄,t
3 :

t t + θ τ θ,c̄,t = τ T
r ∈

cθ,c̄,t
r = c̄ cr 0

Qθ,c̄,t
r = Qr − γθ,c̄,t

r Qr − γθ,c̄,t
t+θ

0
cθ,c̄,t
r − cr = c̄ − cr 0 0

Qθ,c̄,t
r − Qr = −γθ,c̄,t

r −γθ,c̄,t
t+θ

0

From previous scheme we conclude that on the event Eθ,c̄,t
3

if QT = 0, 0 ≤ Qθ,c̄,t
τ θ,c̄,t = −γ

θ,c̄,t
t+θ ,

if τ = τ θ,c̄,t < T , 0 = Qθ,c̄,t
τ θ,c̄,t = −γ

θ,c̄,t
t+θ ,

if QT > 0, 0 ≤ Qθ,c̄,t
τ θ,c̄,t = QT − γ

θ,c̄,t
t+θ ,

(4.9)

∣∣∣Qθ,c̄,t
r − Qr

∣∣∣ ≤ sup
r∈[t,t+θ]

∣∣∣γ θ,c̄,t
r

∣∣∣ , ∀r ∈ [t, T ], (4.10)

Qτ − Qτ θ,c̄,t = 0. (4.11)

From previous schemes we derive the following Lemmas.

Lemma 4.1 Let t ∈ [0, τ ) be fixed, let c̄ ≥ 0 and let θ ∈ (0, (T − t) ∧ q
c̄

)
. Then the

control cθ,c̄,t in (2.5) is admissible.

Proof Firstly, we observe that control cθ,c̄,t
r is non-negative for any r ∈ [t, τ ). If

τ θ,c̄,t > τ , i.e. if we are in the event Eθ,c̄,t
2 , then using (4.5) we get that γ θ,c̄,t

t+θ < 0 and

so the control cθ,c̄,t
r is non-negative for any r ≥ τ as well. Progressive measurability,

right-continuity and square integrability of cθ,c̄,t immediately follow. ��

Lemma 4.2 Let t ∈ [0, τ ) be fixed, let c̄ ≥ 0 and let θ ∈ (0, (T − t) ∧ q
c̄

)
. Then

cθ,c̄,t
r − cr = 0, ∀r ∈

[
t + θ, τ

θ,c̄,t
min ∨ (t + θ)

]
,

Qθ,c̄,t
r − Qr = −γ

θ,c̄,t
t+θ , ∀r ∈

[
t + θ, τ

θ,c̄,t
min ∨ (t + θ)

]
.

Proof Looking at schemes on pages 9-10, it follows that on the event Eθ,c̄,t
1 , τ θ,c̄,t

min ∨
(t + θ) = τ θ,c̄,t , on the event Eθ,c̄,t

2 ∩ {τ > t + θ}, τ
θ,c̄,t
min ∨ (t + θ) = τ , on

the event Eθ,c̄,t
2 ∩ {τ ≤ t + θ}, τ

θ,c̄,t
min ∨ (t + θ) = t + θ and on the event Eθ,c̄,t

3 ,

τ
θ,c̄,t
min ∨ (t + θ) = τ θ,c̄,t = τ . Then, the result immediately follows.

��
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Lemma 4.3 Let t ∈ [0, τ ) and c̄ ≥ 0 be fixed. Then

lim
θ→0

E
t

[
sup

r∈[t,t+θ]

∣∣∣γ θ,c̄,t
r

∣∣∣
]

= 0, (4.12)

lim
θ→0

E
t

[
sup

r∈[t,T ]

∣∣∣Qθ,c̄,t
r − Qr

∣∣∣
]

= 0. (4.13)

Proof Let θ ∈ (0, (T − t) ∧ q
c̄

)
be fixed. From definition of γ

θ,c̄,t
r in (2.6) we imme-

diately see that

sup
r∈[t,t+θ]

∣∣∣γ θ,c̄,t
r

∣∣∣ ≤ θ

(
c̄ + sup

r∈[t,t+θ]
cr

)
a.s.. (4.14)

Merging (4.3), (4.7) and (4.10), we see that

∣∣∣Qθ,c̄,t
r − Qr

∣∣∣ ≤ sup
r∈[t,t+θ]

∣∣∣γ θ,c̄,t
r

∣∣∣ , ∀r ∈ [t, T ].

Therefore, merging (4.14) and previous expression we get that

E
t

[
sup

r∈[t,T ]

∣∣∣Qθ,c̄,t
r − Qr

∣∣∣
]

≤ θ

(
c̄ + E

t

[
sup

r∈[t,t+θ]
cr

])
.

We conclude the proof by using (2.10). ��
Lemma 4.4 Let c̄ ≥ 0 and t ∈ [0, τ ) be fixed. Then

lim
θ→0

P ({τ ≤ t + θ}) = 0, (4.15)

lim
θ→0

P

(
Eθ,c̄,t
1 ∩ {QT > 0}

)
= 0, (4.16)

lim
θ→0

P

(
Eθ,c̄,t
1 ∩ {c̄ < ct }

)
= 0, (4.17)

lim
θ→0

P

(
Eθ,c̄,t
2 ∩ {τ θ,c̄,t = T }

)
= 0, (4.18)

lim
θ→0

P

(
Eθ,c̄,t
3 ∩ {c̄ > ct } ∩ {QT = 0}

)
= 0, (4.19)

lim
θ→0

P

(
Eθ,c̄,t
3 ∩ {τ < T } ∩ {c̄ < ct }

)
= 0. (4.20)

Proof We firstly prove (4.15). We have that

lim
θ→0

P ({τ ≤ t + θ}) = lim
n→∞P

({
τ ≤ t + 1

n

})
= P

⎛
⎝⋂

n≥n̄

{
τ ≤ t + 1

n

}⎞
⎠

= P ({τ ≤ t}) = 0.
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In previous calculations we used that for any n ≥ n̄ :=
⌈

1
(T−t)∧ q

c̄

⌉
, the sequence of

events
{
τ ≤ t + 1

n

}
is decreasing. This concludes proof of (4.15).

We now prove (4.16). Using definition of Q, we have that under event Eθ,c̄,t
1 ,

Qτ = Qτ θ,c̄,t − ∫ τ

τ θ,c̄,t cr dr ≤ Qτ θ,c̄,t . Moreover, if QT > 0, then it necessarily
implies that τ = T . Using (4.2) we have that

lim
θ→0

P

(
Eθ,c̄,t
1 ∩ {QT > 0}

)
≤ lim

θ→0
P

(
{Qτ ≤ Qτ θ,c̄,t = γ

θ,c̄,t
t+θ } ∩ {Qτ > 0}

)

≤ lim
n→∞P

⎛
⎜⎝
⎧⎪⎨
⎪⎩Qτ ≤ sup

r∈
[
t,t+ 1

n

]
∣∣∣∣γ

1
n ,c̄,t
r

∣∣∣∣
⎫⎪⎬
⎪⎭ ∩ {Qτ > 0}

⎞
⎟⎠

= P

⎛
⎝⋂

n≥n̄

{
Qτ ≤

∫ t+ 1
n

t
|c̄ − cr | dr

}
∩ {Qτ > 0}

⎞
⎠

= P ({Qτ = 0} ∩ {Qτ > 0}) = 0.

In previous calculations we used that the sequence of events
({

Qτ ≤ ∫ t+ 1
n

t

∣∣∣c̄
− cr

∣∣∣dr
}
Big)n≥n̄ is decreasing and using right-continuity of c,

∫ t+ 1
n

t |c̄ − cr | dr con-
verges to 0 a.s., as n → ∞. This concludes proof of (4.16).

We now prove (4.17). Using (4.2), we get

lim
θ→0

P

(
Eθ,c̄,t
1 ∩ {c̄ < ct }

)
≤ lim

θ→0
P

({
θ c̄ −

∫ t+θ

t
csds > 0

}
∩ {c̄ < ct }

)

≤ lim
n→∞P

⎛
⎝
⎧⎨
⎩c̄ > inf

r∈
[
t,t+ 1

n

] cr

⎫⎬
⎭ ∩ {c̄ < ct }

⎞
⎠

= P

⎛
⎝⋂

n≥n̄

⎧⎨
⎩c̄ > inf

r∈
[
t,t+ 1

n

] cr

⎫⎬
⎭ ∩ {c̄ < ct }

⎞
⎠

= P ({c̄ ≥ ct } ∩ {c̄ < ct }) = 0.

In previous calculations we used right-continuity of process c and that the sequence

of events

{
ct > inf

r∈
[
t,t+ 1

n

] cr
}
n≥n̄

is decreasing. This concludes proof of (4.17).
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We now prove (4.18). Using (4.6), we get

lim
θ→0

P

(
Eθ,c̄,t
2 ∩ {τ θ,c̄,t = T }

)
≤ lim

θ→0
P

({
τ + θ ≥ τ θ,c̄,t

}
∩ {τ < T } ∩ {τ θ,c̄,t = T }

)

= lim
n→∞P

({
τ + 1

n
≥ T

}
∩ {τ < T }

)

= P

⎛
⎝⋂

n≥n̄

{
τ + 1

n
≥ T

}
∩ {τ < T }

⎞
⎠

= P ({τ ≥ T } ∩ {τ < T }) = 0.

In previous calculations we used that the sequence of events
{
τ + 1

n ≥ T
}
n≥n̄ is

decreasing. This concludes proof of (4.18).
We now prove (4.19). Using (4.9), we get

lim
θ→0

P

(
Eθ,c̄,t
3 ∩ {c̄ > ct } ∩ {QT = 0}

)
≤ lim

θ→0
P

(
{γ θ,c̄,t

t+θ ≤ 0} ∩ {c̄ > ct }
)

≤ lim
n→∞P

⎛
⎜⎝
⎧⎪⎨
⎪⎩c̄ ≤ sup

r∈
[
t,t+ 1

n

] cr

⎫⎪⎬
⎪⎭ ∩ {c̄ > ct }

⎞
⎟⎠

= P

⎛
⎜⎝⋂

n≥n̄

⎧⎪⎨
⎪⎩c̄ ≤ sup

r∈
[
t,t+ 1

n

] cr

⎫⎪⎬
⎪⎭ ∩ {c̄ > ct }

⎞
⎟⎠

= P ({c̄ ≤ ct } ∩ {c̄ > ct }) = 0.

In previous calculations we used right-continuity of process c and that the sequence of

events

{
ct ≤ sup

r∈
[
t,t+ 1

n

] cr
}
n≥n̄

is decreasing. This concludes the proof of (4.19).

(4.20) can be proved similarly. ��
Lemma 4.5 Let t ∈ [0, τ ) and c̄ ≥ 0 be fixed. Then

lim
θ→0

E
t
[∣∣∣τ θ,c̄,t − τ

∣∣∣
]

= 0. (4.21)

Proof We firstly prove that limθ→0 τ θ,c̄,t = τ pointwise P-almost everywhere. We
assume on the contrary there exists a non-null event E , so that limθ→0

∣∣τ θ,c̄,t − τ
∣∣ > 0

on E , which means that

∃γ > 0 s.t. ∀θ̄ ∈
(
0, (T − t) ∧ q

c̄
∧ γ
)

, ∃θ ∈ (0, θ̄ ) s.t.
∣∣∣τ − τ θ,c̄,t

∣∣∣ > γ on E .

(4.22)

Using that under event Eθ,c̄,t
1 , τ > τθ,c̄,t and so

∣∣τ − τ θ,c̄,t
∣∣ > γ implies that τ −

τ θ,c̄,t > γ , which implies Qτ−γ = Qτ θ,c̄,t −∫ τ−γ

τθ,c̄,t cr dr ≤ Qτ θ,c̄,t = γ
θ,c̄,t
t+θ . Moreover,
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using that under event Eθ,c̄,t
2 , τ θ,c̄,t = (τ + θ) ∧ T ,

∣∣τ − τ θ,c̄,t
∣∣ > γ implies that

θ ≥ (τ + θ) ∧ T − τ > γ , which is never verified, as θ < θ̄ < γ . Moreover,
under event Eθ,c̄,t

3 , we have that τ θ,c̄,t = τ , which never satisfies
∣∣τ − τ θ,c̄,t

∣∣ > γ .
Therefore, we have that (4.22) implies that

∃γ > 0 s.t. ∀θ̄ ∈
(
0, (T − t) ∧ q

c̄
∧ γ
)

, ∃θ ∈ (0, θ̄ ) s.t. Qτ−γ ≤ γ
θ,c̄,t
t+θ on E .

(4.23)

Reminding that γ θ,c̄,t
t+θ = ∫ (t+θ)∧τ

t (c̄− cr )dr ≤ ∫ (t+θ)∧τ

t c̄dr ≤ c̄θ , expression (4.23)
implies that Qτ−γ = 0 on E , which contradicts definition of τ , as τ should be the first
time in which Qr hits 0. Therefore, we conclude that E must be a set with 0 measure,
which implies Pt -almost everywhere pointwise convergence of τ θ,c̄,t to τ . To prove
(4.21) we observe that

∣∣τ θ,c̄,t − τ
∣∣ ≤ T , independently on θ . Applying the dominated

convergence theorem (DCT) we get (4.21). ��
Lemma 4.6 Let t ∈ [0, τ ), c̄ ≥ 0 and p ∈ [1, 2) be fixed. Then

lim
θ→0

E
t

[∣∣∣∣∣c̄ − ct − γ
θ,c̄,t
t+θ

θ

∣∣∣∣∣
p]

= 0, (4.24)

lim
θ→0

E
t

⎡
⎢⎣
∣∣∣∣∣∣
Qθ,c̄,t

τ
θ,c̄,t
min

− Q
τ

θ,c̄,t
min

θ
+ c̄ − ct

∣∣∣∣∣∣

p⎤
⎥⎦ = 0. (4.25)

Proof Let t ∈ [0, τ ) and θ ∈ (0, (T − t) ∧ q
c̄

)
be fixed. We firstly observe that

∣∣∣∣∣
γ

θ,c̄,t
t+θ

θ

∣∣∣∣∣ ≤
1

θ

∫ t+θ

t
|c̄ − cs |ds ≤ |c̄| + sup

s∈[t,T ]
|cs |,

which is L p-integrable thanks to assumption (2.10). Moreover, we have that

∣∣∣∣∣c̄ − ct − γ
θ,c̄,t
t+θ

θ

∣∣∣∣∣ =
∣∣∣∣c̄ − ct − 1

θ

∫ t+θ

t
(c̄ − cs)ds

∣∣∣∣ .

Therefore, by using right-continuity of control c andmean-value theorem,we conclude
that the pointwise limit of the expression inside the expectation in (4.24) is 0. Finally,
by using DCT we conclude the proof of (4.24).

Moreover, looking at schemes in pages pages 9-10, we can immediately see that

Qθ,c̄,t

τ
θ,c̄,t
min

− Q
τ

θ,c̄,t
min

= −γ
θ,c̄,t
t+θ .

Therefore, by applying (4.24) andprevious expression into (4.25)weprove theLemma.
��
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Lemma 4.7 Let t ∈ [0, τ ), c̄ ≥ 0 and p ∈ [1, 2) be fixed. Then

lim
θ→0

E
t

[∣∣∣∣∣
Q̂θ,c̄,t

τ θ,c̄,t − Q̂θ,c̄,t
τ

θ
− (c̄ − ct )1	(t,c̄)

∣∣∣∣∣
p]

= 0.

Proof Let t ∈ [0, τ ) and θ ∈ (0, (T − t) ∧ q
c̄

)
be fixed. Using schemes in pp. 9–10,

(4.2), (4.4), (4.6), (4.8), using Hölder’s inequality (with coefficients p+2
2p and p+2

2−p ),

reminding that Eθ,c̄,t
2 implies that QT = 0, we get

E
t

[∣∣∣∣∣
Q̂θ,c̄,t

τ θ,c̄,t − Q̂θ,c̄,t
τ

θ
− (c̄ − ct )1	(t,c̄)

∣∣∣∣∣
p]

= E
t
[∣∣∣∣Qτ θ,c̄,t − Qτ

θ
− (c̄ − ct )1	(t,c̄)

∣∣∣∣
p

1Eθ,c̄,t
1

]

+ E
t

[∣∣∣∣∣
Qθ,c̄,t

τ θ,c̄,t − Qθ,c̄,t
τ

θ
− (c̄ − ct )

∣∣∣∣∣
p

1Eθ,c̄,t
2

]

+ E
t
[∣∣−(c̄ − ct )1	(t,c̄)

∣∣p 1Eθ,c̄,t
3

]

≤ E
t
[∣∣∣∣Qτ θ,c̄,t − Qτ

θ

∣∣∣∣
p

1Eθ,c̄,t
1 ∩{QT >0}

]

+ E
t
[∣∣∣∣Qτ θ,c̄,t − Qτ

θ
− (c̄ − ct )1τ<T

∣∣∣∣
p

1Eθ,c̄,t
1 ∩{QT =0}∩{c̄<ct }

]

+ E
t

[∣∣∣∣∣
γ

θ,c̄,t
t+θ

θ
− (c̄ − ct )

∣∣∣∣∣
p

1Eθ,c̄,t
1 ∩{QT =0}∩{c̄≥ct }

]

+ E
t

[∣∣∣∣∣
γ

θ,c̄,t
t+θ

θ
− (c̄ − ct )

∣∣∣∣∣
p

1Eθ,c̄,t
2 ∩{τ θ,c̄,t<T }

]

+ E
t

[∣∣∣∣∣
Qθ,c̄,t

τ θ,c̄,t − Qθ,c̄,t
τ

θ
− (c̄ − ct )

∣∣∣∣∣
p

1Eθ,c̄,t
2 ∩{τ θ,c̄,t=T }

]

+ E
t
[∣∣−(c̄ − ct )1{QT =0}∩{c̄≥ct }

∣∣p 1Eθ,c̄,t
3

]

+ E
t
[∣∣−(c̄ − ct )1{τ<T }∩{c̄<ct }

∣∣p 1Eθ,c̄,t
3

]

≤
⎛
⎝Et

⎡
⎣
∣∣∣∣∣
supr∈[t,t+θ] γ

θ,c̄,t
r

θ

∣∣∣∣∣
p+2
2
⎤
⎦
⎞
⎠

2p
p+2 (

P
t
(
Eθ,c̄,t
1 ∩ {QT > 0}

) 2−p
p+2

+ 2p−1
P
t
(
Eθ,c̄,t
1 ∩ {QT = 0} ∩ {c̄ < ct }

) 2−p
p+2

+ 2p−1
P
t
(
Eθ,c̄,t
2 ∩ {τ θ,c̄,t = T }

) 2−p
p+2
)
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+ E
t

[∣∣∣∣∣
γ

θ,c̄,t
t+θ

θ
− (c̄ − ct )

∣∣∣∣∣
p]

+ |c̄ − ct |p
(
2p−1

P
t

(
Eθ,c̄,t
1 ∩ {QT = 0} ∩ {c̄ < ct }

)
+ 2p−1

P
t
(
Eθ,c̄,t
2 ∩ {τ θ,c̄,t = T }

)

+ P
t
(
Eθ,c̄,t
3 ∩ {QT = 0} ∩ {c̄ > ct }

)
+ P

t
(
Eθ,c̄,t
3 ∩ {τ < T } ∩ {c̄ < ct }

))
.

Taking the limit of the above expression and using (4.14), (4.16), (4.17), (4.18), (4.19),
(4.20) and (4.24) we conclude the proof of the Lemma. ��
Lemma 4.8 Let t ∈ [0, τ ) and c̄ ≥ 0 be fixed. Then,

lim
θ→0

E
t
[∣∣∣Q̂θ,c̄,t

τ θ,c̄,t − Q̂θ,c̄,t
τ

∣∣∣
]

= 0, (4.26)

lim
θ→0

E
t
[∣∣∣Q̂θ,c̄,t

τ − Qτ

∣∣∣
]

= 0. (4.27)

Proof Let θ ∈ (0, (T − t) ∧ q
c̄

)
be fixed. By using (4.4), (4.8) and (4.11), we have

that

E
t
[∣∣∣Q̂θ,c̄,t

τ θ,c̄,t − Q̂θ,c̄,t
τ

∣∣∣
]

≤ E
t
[∣∣Qτ θ,c̄,t − Qτ

∣∣1Eθ,c̄,t
1

]
+ E

t
[∣∣∣Qθ,c̄,t

τ θ,c̄,t − Qθ,c̄,t
τ

∣∣∣1Eθ,c̄,t
2

]

≤ E
t

[
sup

r∈[t,t+θ]

∣∣∣γ θ,c̄,t
r

∣∣∣
]

.

Taking the limit of the above expression and using (4.12) we conclude the proof of
(4.26). We now prove (4.27). By (4.7) and (4.10), we have that

E
t
[∣∣∣Q̂θ,c̄,t

τ − Qτ

∣∣∣
]

≤ E
t
[∣∣∣Qθ,c̄,t

τ − Qτ

∣∣∣1Eθ,c̄,t
2

]
+ E

t
[∣∣∣Qθ,c̄,t

τ − Qτ

∣∣∣1Eθ,c̄,t
3

]

≤ E
t

[
sup

r∈[t,t+θ]

∣∣∣γ θ,c̄,t
r

∣∣∣
]

.

Taking the limit of the above expression and using (4.12) we conclude the proof of
(4.27). ��
Lemma 4.9 For any (x, q), (x, q ′) ∈ O with q �= q ′, we have that

∣∣∣∣g(x, q) − g(x, q ′)
q − q ′ − ∂qg

(
x, q ′)∣∣∣∣ ≤ K |q − q ′|.

Proof We observe that

g(x, q) − g(x, q ′)
q − q ′ =

∫ 1

0
∂qg

(
x, q ′ + λ(q − q ′)

)
dλ

123



Applied Mathematics & Optimization (2022) 85 :43 Page 21 of 32 43

and so using Lipschitz continuity of ∂qg in Assumption 2.8, we get

∣∣∣∣g(x, q) − g(x, q ′)
q − q ′ − ∂qg

(
x, q ′)∣∣∣∣ =

∣∣∣∣
∫ 1

0
∂qg

(
x, q ′ + λ(q − q ′)

)
dλ − ∂qg

(
x, q ′)∣∣∣∣

≤
∫ 1

0

∣∣∂qg (x, q ′ + λ(q − q ′)
)− ∂qg

(
x, q ′)∣∣ dλ

≤ K

2
|q − q ′|.

This proves the lemma. ��
We introduce a process used in the proof of Theorem 2.2. Define (ξr )r∈[t,T ] as

ξr := f (t, c̄, Xt , Qt ) − f (t, ct , Xt , Qt ) −
∫ r

t
(c̄ − ct )∂q f (s, cs, Xs, Qs)ds.

(4.28)

ξ is the same as process ζ inBensoussan [3]. The corresponding part of z inBensoussan
[3] for process Q would be constantly equal to c̄ − ct , as it can be inferred with a
simple calculus.

Our proof relies on the arguments in Bensoussan [3] with one key difference. Due to
the presence of the control-dependent stopping time τ in our setting, itmakes necessary
the introduction of the stopping time τ θ,c̄,t as well. This complicates all the proofs
and makes necessary many adjustments, especially on those results in Bensoussan [3]
that concern terminal time T that must be adapted to τ or τ θ,c̄,t accordingly.

Lemma 4.10 Let t ∈ [0, τ ) and c̄ ≥ 0 be fixed. Then,

lim
θ→0

E
t [∣∣ξτθ,c̄,t − ξτ

∣∣] = 0,

lim
θ→0

E
t [∣∣Qτ θ,c̄,t − Qτ

∣∣] = 0.

Proof From (4.28) and using boundedness of ∂q f , we have that

E
t [∣∣ξτθ,c̄,t − ξτ

∣∣] = E
t

[∣∣∣∣∣−
∫ τ θ,c̄,t

τ

(c̄ − ct )∂q f (r , cr , Xr , Qr )dr

∣∣∣∣∣
]

≤ K |c̄ − ct |Et
[∣∣∣τ θ,c̄,t − τ

∣∣∣
]
.

Therefore, by taking the limit of previous expression and applying (4.21), we get the
first limit in the statement. Moreover, from definition of Qr , we have

E
t [∣∣Qτ θ,c̄,t − Qτ

∣∣] = E
t

[∣∣∣∣∣−
∫ τ θ,c̄,t

τ

crdr

∣∣∣∣∣
]
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≤
(
E
t
[∣∣∣∣
∫ T

t
c2r dr

∣∣∣∣
])1/2 (

E
t
[∣∣∣τ θ,c̄,t − τ

∣∣∣
])1/2

.

Therefore, by taking the limit of previous expression, using (2.10) and applying (4.21),
we finish the proof of the Lemma. ��

Lemma 4.11 Let t ∈ [0, τ ) and c̄ ≥ 0 be fixed. Then

lim
θ→0

E
t

[
1

θ

∫ τ
θ,c̄,t
min

t

(
f
(
s, cθ,c̄,t

s , Xs, Q
θ,c̄,t
s

)
− f (s, cs, Xs, Qs)

)
ds − ξ

τ
θ,c̄,t
min

]
= 0.

Proof Let θ ∈ (0, (T − t) ∧ q
c̄

)
be fixed. We denote for any r ∈ [t, T ]

f̃ θ,c̄,t
r := 1

θ

∫ r

t

(
f
(
s, cθ,c̄,t

s , Xs, Q
θ,c̄,t
s

)
− f (s, cs, Xs, Qs)

)
ds − ξr .

The proof of this lemma will be divided in 3 steps. In step 1 we prove that

lim
θ→0

E
t
[∣∣∣ f̃ θ,c̄,t

t+θ

∣∣∣
]

= 0.

In Step 2 we prove that,

lim
θ→0

E
t
[
f̃ θ,c̄,t

τ
θ,c̄,t
min

1
τ

θ,c̄,t
min ≤t+θ

]
= 0.

In Step 3 we prove that

lim
θ→0

E
t
[
f̃ θ,c̄,t

τ
θ,c̄,t
min

1
τ

θ,c̄,t
min >t+θ

]
= 0.

In Bensoussan [3] there is no difference between Steps 2 and 3, while in our case we
need to consider them both. However, the structure of our proof resembles the one in
the reference. Once the proof of the 3 steps is completed, we conclude the proof of
the Lemma as follows. By merging the limits above in Steps 2 and 3, we have

lim
θ→0

E
t
[
f̃ θ,c̄,t

τ
θ,c̄,t
min

]
= lim

θ→0
E
t
[
f̃ θ,c̄,t

τ
θ,c̄,t
min

1
τ

θ,c̄,t
min ≤t+θ

]
+ lim

θ→0
E
t
[
f̃ θ,c̄,t

τ
θ,c̄,t
min

1
τ

θ,c̄,t
min >t+θ

]
= 0.
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Step 1. From (4.28), reminding that cθ,c̄,t
t = c̄ and definition of f̃ we have that for

any r ∈ [t, t + θ ],

f̃ θ,c̄,t
r = 1

θ

∫ r

t

(
f
(
s, cθ,c̄,t

s , Xs, Q
θ,c̄,t
s

)
− f (s, cθ,c̄,t

s , Xs, Qs)
)
ds

+ 1

θ

∫ r

t

(
f
(
s, cθ,c̄,t

s , Xs, Qs

)
− f (t, cθ,c̄,t

t , Xt , Qt )
)
ds

+ 1

θ

∫ r

t
( f (t, ct , Xt , Qt ) − f (s, cs, Xs, Qs)) ds

+ f (t, ct , Xt , Qt )

(
1 − r − t

θ

)
+ f (t, cθ,c̄,t

t , Xt , Qt )

(
r − t

θ
− 1

)

+ (c̄ − ct )
∫ r

t
∂q f (s, cs, Xs, Qs)ds.

(4.29)

By taking r = t + θ in previous expression, so that the second last line disappears and
using Assumption 2.1, boundedness of ∂q f and Hölder’s inequality, we get

E
t
[∣∣∣ f̃ θ,c̄,t

t+θ

∣∣∣
]

≤ K

(
E
t

[
sup

r∈[t,t+θ]

∣∣∣Qθ,c̄,t
r − Qr

∣∣∣
]

+ 2Et

[
sup

r∈[t,t+θ]
|Qr − Qt |

]
+ θ |c̄ − ct |

+
⎛
⎝
(
E
t

[
sup

r∈[t,t+θ]
|Xr − Xt |2

])1/2

+
(
E
t

[
sup

r∈[t,t+θ]

∣∣∣cθ,c̄,t
r − cθ,c̄,t

t

∣∣∣2
])1/2

⎞
⎠ ·

·
(
E
t

[
sup

r∈[t,t+θ]

(
1 + 2|Xr | + 2|cθ,c̄,t

r |
)2])1/2

+ 2

θ

∫ t+θ

t
|s − t |ds

+
⎛
⎝
(
E
t

[
sup

r∈[t,t+θ]
|Xr − Xt |2

])1/2

+
(
E
t

[
sup

r∈[t,t+θ]
|cr − ct |2

])1/2
⎞
⎠ ·

·
(
E
t

[
sup

r∈[t,t+θ]
(1 + 2|Xr | + 2|cr |)2

])1/2 )
.

(4.30)

Using DCT, Et
[
supr∈[t,t+θ] |cr − ct |2

]
and E

t
[
supr∈[t,t+θ]

∣∣∣cθ,c̄,t
r − cθ,c̄,t

t

∣∣∣2
]
con-

verge to 0 as θ → 0. Indeed, c and cθ,c̄,t are right-continuous and thanks to
(2.10) and (4.14), the arguments of the expectations converge to 0 a.s. and they are
bounded by 2 supr∈[t,T ] |cr |2 and 2 supr∈[t,T ] |cθ,c̄,t

r |2, which are L1-integrable pro-
cesses. Et

[
supr∈[t,t+θ] |Xr − Xt |2

]
converges to 0 using standard arguments in SDE

theory (c.f. Krylov [11,Corollary 2.5.12]). Moreover, using L2-integrability of c and
cθ,c̄,t and standard arguments in SDE theory (c.f. Krylov [11,Corollary 2.5.12]), we

get that Et
[
supr∈[t,t+θ]

(
2|Xr | + 2|cθ,c̄,t

r |
)2]

and E
t
[
supr∈[t,t+θ] (2|Xr | + 2|cr |)2

]
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are bounded independently of θ . Moreover, by definition of Qr ,

E
t

[
sup

r∈[t,t+θ]
|Qr − Qt |

]
= E

t
[∫ t+θ

t
|cr | dr

]
≤ √

θ

(
E
t
[∫ T

t
c2r dr

])1/2

,

which converges to 0, thanks to (2.10). Using (4.13), we have that Et
[(

supr∈[t,t+θ]∣∣∣Qθ,c̄,t
r − Qr

∣∣∣
)]

converges to 0. Finally, we observe that 2
θ

∫ t+θ

t |s − t |ds = θ .

Therefore, by taking limit of (4.30) we conclude the proof of Step 1.
Step 2. From (4.29), using Assumption 2.1 and boundedness of ∂q f , we get a

similar expression to (4.30). Step 2 can be proved in a similar way to Step 1, the

main difference is the term E
t
[∣∣∣∣ τ

θ,c̄,t
min −t

θ
− 1

∣∣∣∣1τ
θ,c̄,t
min ≤t+θ

]
. However, by reminding

that by (4.1),
{
τ

θ,c̄,t
min ≤ t + θ

}
= {τ ≤ t + θ}, that under event τ

θ,c̄,t
min ≤ t + θ , then∣∣∣∣ τ

θ,c̄,t
min −t

θ
− 1

∣∣∣∣ ≤ 1 and by using (4.15), we conclude that

lim
θ→0

E
t
[
f̃ θ,c̄,t

τ
θ,c̄,t
min

1
τ

θ,c̄,t
min ≤t+θ

]

≤ (| f (t, c̄, Xt , Qt )| + | f (t, ct , Xt , Qt )|) lim
θ→0

P ({τ ≤ t + θ}) = 0.

This concludes the proof of Step 2.
Step 3. From (4.28) and definition of f̃ we have that for any r ∈ [t + θ, T ],

f̃ θ,c̄,t
r = f̃ θ,c̄,t

t+θ + 1

θ

∫ r

t+θ

(
f
(
s, cθ,c̄,t

s , Xs, Q
θ,c̄,t
s

)
− f (s, cs, Xs, Q

θ,c̄,t
s )

)
ds

+
∫ r

t+θ

∫ 1

0

(
c̄ − ct − Qs − Qθ,c̄,t

s

θ

)

× ∂q f
(
s, cs, Xs, Qs + λ

(
Qθ,c̄,t

s − Qs

))
dλds

+
∫ r

t+θ

∫ 1

0
(c̄ − ct )

(
∂q f (s, cs, Xs, Qs)

− ∂q f
(
s, cs, Xs, Qs + λ

(
Qθ,c̄,t

s − Qs

)))
dλds.

Therefore, by applying Assumption 2.1, then boundedness and Lipschitz continuity
of ∂q f follows, we have that

∣∣∣ f̃ θ,c̄,t
r

∣∣∣ ≤
∣∣∣ f̃ θ,c̄,t

t+θ

∣∣∣+ K

θ

∫ r

t+θ

∣∣∣cθ,c̄,t
s − cs

∣∣∣ ds

+K
∫ r

t+θ

∣∣∣∣∣
Qs − Qθ,c̄,t

s

θ
− (c̄ − ct )

∣∣∣∣∣ ds

123



Applied Mathematics & Optimization (2022) 85 :43 Page 25 of 32 43

+K |c̄ − ct |
2

∫ r

t+θ

∣∣∣Qθ,c̄,t
s − Qs

∣∣∣ ds.

Therefore, from previous expression and using Lemma 4.2, we get that

∣∣∣∣Et
[
f̃ θ,c̄,t

τ
θ,c̄,t
min

1
τ

θ,c̄,t
min >t+θ

]∣∣∣∣ ≤ E
t
[∣∣∣ f̃ θ,c̄,t

t+θ

∣∣∣
]

+ KE
t
[
1

τ
θ,c̄,t
min >t+θ

θ

∫ τ
θ,c̄,t
min

t+θ

∣∣∣cθ,c̄,t
s − cs

∣∣∣ ds
]

+KE
t
[
1

τ
θ,c̄,t
min >t+θ

∫ τ
θ,c̄,t
min

t+θ

∣∣∣ Qs−Qθ,c̄,t
s

θ
− (c̄ − ct )

∣∣∣ ds
]

+K |c̄−ct |
2 E

t
[
1

τ
θ,c̄,t
min >t+θ

∫ τ
θ,c̄,t
min

t+θ

∣∣∣Qθ,c̄,t
s − Qs

∣∣∣ ds
]

≤ E
t
[∣∣∣ f̃ θ,c̄,t

t+θ

∣∣∣
]

+ KTEt
[∣∣∣∣ γ

θ,c̄,t
t+θ

θ
− (c̄ − ct )

∣∣∣∣
]

+KT |c̄−ct |
2 E

t
[∣∣∣γ θ,c̄,t

t+θ

∣∣∣
]
.

By taking limit of the above expression for θ → 0, by using (4.12) and (4.24)
together with Step 1, we conclude the proof of Step 3 and the proof of the Lemma as
well. ��

Proof of Theorem 2.2. Let t ∈ [0, τ ) be fixed. Since control c is optimal, it
necessarily follows that for any c̄ ≥ 0 and for any θ > 0

vc
θ,c̄,t

(t, x, q) ≤ vc(t, x, q),

where

vπ (t, x, q) = E
t

[
g(Xτπ , Qπ

τπ ) +
∫ τπ

t
f (r , πr , Xr , Q

π
r ) dr

]

and τπ = T ∧min{r ≥ t | Qπ
r = 0}. We write Q as Qc and τ as τ c as in Theorem 2.2.

Therefore, we necessarily have that for any c̄ ≥ 0

lim
θ→0

vc
θ,c̄,t

(t, x, q) − vc(t, x, q)

θ
≤ 0, (4.31)

provided the limit exists. By definition of vπ , reminding that when τ
θ,c̄,t
min = τ θ,c̄,t ,

then for r ≥ τ θ,c̄,t , Q̂θ,c̄,t
r = Qr and ĉθ,c̄,t

r = cr and when τ
θ,c̄,t
min = τ , then for r ≥ τ ,
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Q̂θ,c̄,t
r = Qθ,c̄,t

r and ĉθ,c̄,t
r = cθ,c̄,t

r

lim
θ→0

vc
θ,c̄,t

(t, x, q) − vc(t, x, q)

θ

= lim
θ→0

E
t

[
g(Xτ θ,c̄,t , Qθ,c̄,t

τ θ,c̄,t ) − g(Xτ , Qτ )

θ

]

+ lim
θ→0

E
t

[
1

θ

∫ τ
θ,c̄,t
min

t

(
f (r , cθ,c̄,t

r , Xr , Q
θ,c̄,t
t ) − f (r , cr , Xr , Qr )

)
dr

]

+ lim
θ→0

E
t

[
− sign(τ − τ θ,c̄,t )

θ

∫ τ
θ,c̄,t
max

τ
θ,c̄,t
min

f (r , ĉθ,c̄,t
r , Xr , Q̂

θ,c̄,t
r )dr

]
.

(4.32)

The first line on the right-hand side of (4.32) can be written as

lim
θ→0

E
t

⎡
⎣ g(X

τθ,c̄,t , Q
θ,c̄,t
τθ,c̄,t ) − g(Xτ , Qτ )

θ

⎤
⎦ = lim

θ→0
E
t

⎡
⎣ g(X

τθ,c̄,t , Q
θ,c̄,t
τθ,c̄,t ) − g(Xτ , Qθ,c̄,t

τθ,c̄,t )

θ

⎤
⎦

+ lim
θ→0

E
t

⎡
⎢⎢⎣
g(Xτ , Qθ,c̄,t

τ
θ,c̄,t
min

) − g(Xτ , Q
τ
θ,c̄,t
min

)

θ

⎤
⎥⎥⎦+ lim

θ→0
E
t

⎡
⎣ g(Xτ , Q̂θ,c̄,t

τθ,c̄,t ) − g(Xτ , Q̂θ,c̄,t
τ )

θ

⎤
⎦

+ lim
θ→0

E
t

⎡
⎢⎢⎣
g(Xτ , Qθ,c̄,t

τθ,c̄,t ) − g(Xτ , Qθ,c̄,t

τ
θ,c̄,t
min

) + g(Xτ , Q
τ
θ,c̄,t
min

) − g(Xτ , Q̂θ,c̄,t
τθ,c̄,t ) + g(Xτ , Q̂θ,c̄,t

τ ) − g(Xτ , Qτ )

θ

⎤
⎥⎥⎦ .

(4.33)

Reminding that when τ
θ,c̄,t
min = τ θ,c̄,t , then Q̂θ,c̄,t

τ θ,c̄,t = Qτ θ,c̄,t and Q̂θ,c̄,t
τ = Qτ and

when τ
θ,c̄,t
min = τ , then Q̂θ,c̄,t

τ θ,c̄,t = Qθ,c̄,t
τ θ,c̄,t and Q̂θ,c̄,t

τ = Qθ,c̄,t
τ , then we have that the

last element on the right-hand side of (4.33) is equal to 0. The first element on the
right-hand side of (4.33) is equal to −ḡ(t, c̄, x, q) by its definition (2.11). We define
g̃ for any (x, q) ∈ O, (x, q ′) ∈ O as

g̃(x, q, q ′) :=
{

g(x,q)−g(x,q ′)
q−q ′ if q �= q ′,

∂qg(x, q ′) if q = q ′.

From Assumption 2.8 we have that g̃ is bounded by K (1 + |x |). The second element
on the right-hand side of (4.33) is equal to

lim
θ→0

E
t

⎡
⎣g̃
(
Xτ , Q

θ,c̄,t

τ
θ,c̄,t
min

, Q
τ

θ,c̄,t
min

) Qθ,c̄,t

τ
θ,c̄,t
min

− Q
τ

θ,c̄,t
min

θ

⎤
⎦

= lim
θ→0

E
t

⎡
⎣g̃
(
Xτ , Q

θ,c̄,t

τ
θ,c̄,t
min

, Q
τ

θ,c̄,t
min

)⎛
⎝Qθ,c̄,t

τ
θ,c̄,t
min

− Q
τ

θ,c̄,t
min

θ
+ c̄ − ct

⎞
⎠
⎤
⎦

− lim
θ→0

E
t
[
(c̄ − ct )

(
g̃

(
Xτ , Q

θ,c̄,t

τ
θ,c̄,t
min

, Q
τ

θ,c̄,t
min

)
− ∂qg

(
Xτ , Qτ

θ,c̄,t
min

))]
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−(c̄ − ct ) lim
θ→0

E
t
[
∂qg

(
Xτ , Qτ

θ,c̄,t
min

)
− ∂qg (Xτ , Qτ )

]

−(c̄ − ct )E
t [∂qg (Xτ , Qτ )

]
. (4.34)

Using Hölder’s inequality, boundedness of g̃ and (4.25), we get

lim
θ→0

E
t

⎡
⎣
∣∣∣∣∣∣g̃
(
Xτ , Q

θ,c̄,t

τ
θ,c̄,t
min

, Q
τ

θ,c̄,t
min

)⎛
⎝Qθ,c̄,t

τ
θ,c̄,t
min

− Q
τ

θ,c̄,t
min

θ
+ c̄ − ct

⎞
⎠
∣∣∣∣∣∣

⎤
⎦

≤ K
(
E
t
[
(1 + |Xτ |)4

]) 1
4
lim
θ→0

⎛
⎜⎜⎝Et

⎡
⎢⎢⎣
∣∣∣∣∣∣
Qθ,c̄,t

τ
θ,c̄,t
min

− Q
τ

θ,c̄,t
min

θ
+ c̄ − ct

∣∣∣∣∣∣

4
3

⎤
⎥⎥⎦

⎞
⎟⎟⎠

3
4

= 0.

Here we used standard arguments of SDE theory, i.e. Et
[
supr∈[t,T ] |Xr |4

]
< ∞.

Moreover, using Lemma 4.9 together with definition of g̃, we get that

lim
θ→0

E
t
[
|c̄ − ct |

∣∣∣∣g̃
(
Xτ , Q

θ,c̄,t

τ
θ,c̄,t
min

, Q
τ

θ,c̄,t
min

)
− ∂qg

(
Xτ , Qτ

θ,c̄,t
min

)∣∣∣∣
]

≤ K

2
|c̄ − ct | lim

θ→0
E
t

[∣∣∣∣Qθ,c̄,t

τ
θ,c̄,t
min

− Q
τ

θ,c̄,t
min

∣∣∣∣1Qθ,c̄,t

τ
θ,c̄,t
min

�=Q
τ
θ,c̄,t
min

]
= 0,

where in the last line we used (4.13) in Lemma 4.3. Moreover, using Lipschitz con-
tinuity of ∂qg Lemma (4.10) and that either τ

θ,c̄,t
min = τ θ,c̄,t or τ

θ,c̄,t
min = τ , we get

that

lim
θ→0

E
t
[∣∣∣∂qg

(
Xτ , Qτ

θ,c̄,t
min

)
− ∂qg (Xτ , Qτ )

∣∣∣
]

≤ K lim
θ→0

E
t
[∣∣Qτ θ,c̄,t − Qτ

∣∣1
τ

θ,c̄,t
min =τ θ,c̄,t

]
= 0.

Hence, merging the last three expressions above into (4.34), we get

lim
θ→0

E
t

⎡
⎣g(Xτ , Q

θ,c̄,t

τ
θ,c̄,t
min

) − g(Xτ , Qτ
θ,c̄,t
min

)

θ

⎤
⎦ = −(c̄ − ct )E

t [∂qg (Xτ , Qτ )
]
.

(4.35)
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The third element on the right-hand side of (4.33) is equal to

lim
θ→0

E
t

[
g̃
(
Xτ , Q̂

θ,c̄,t
τ θ,c̄,t , Q̂

θ,c̄,t
τ

) Q̂θ,c̄,t
τ θ,c̄,t − Q̂θ,c̄,t

τ

θ

]

= lim
θ→0

E
t

[
g̃
(
Xτ , Q̂

θ,c̄,t
τ θ,c̄,t , Q̂

θ,c̄,t
τ

)( Q̂θ,c̄,t
τ θ,c̄,t − Q̂θ,c̄,t

τ

θ
− (c̄ − ct )1	(t,c̄)

)]

+ lim
θ→0

E
t
[(

g̃
(
Xτ , Q̂

θ,c̄,t
τ θ,c̄,t , Q̂

θ,c̄,t
τ

)
− ∂qg

(
Xτ , Q̂

θ,c̄,t
τ

))
(c̄ − ct )1	(t,c̄)

]

+ lim
θ→0

E
t
[(

∂qg
(
Xτ , Q̂

θ,c̄,t
τ

)
− ∂qg (Xτ , Qτ )

)
(c̄ − ct )1	(t,c̄)

]

+ (c̄ − ct )E
t [∂qg (Xτ , Qτ )1	(t,c̄)

]
.

(4.36)

Using Hölder’s inequality, boundedness of g̃ and Lemma 4.7, we get

lim
θ→0

E
t

[∣∣∣∣∣g̃
(
Xτ , Q̂

θ,c̄,t
τ θ,c̄,t , Q̂

θ,c̄,t
τ

)( Q̂θ,c̄,t
τ θ,c̄,t − Q̂θ,c̄,t

τ

θ
− (c̄ − ct )1	(t,c̄)

)∣∣∣∣∣
]

≤ K
(
E
t
[
(1 + |Xτ |)4

]) 1
4

lim
θ→0

⎛
⎜⎝Et

⎡
⎢⎣
∣∣∣∣∣
Q̂θ,c̄,t

τ θ,c̄,t − Q̂θ,c̄,t
τ

θ
− (c̄ − ct )1	(t,c̄)

∣∣∣∣∣
4
3

⎤
⎥⎦
⎞
⎟⎠

3
4

= 0.

Here we used standard arguments of SDE theory, i.e. Et
[
supr∈[0,T ] |Xr |4

]
< ∞.

Moreover, using Lemma 4.9 together with definition of g̃, we get that

lim
θ→0

E
t
[
|c̄ − ct |

∣∣∣g̃
(
Xτ , Q̂

θ,c̄,t
τ θ,c̄,t , Q̂

θ,c̄,t
τ

)
− ∂qg

(
Xτ , Q̂

θ,c̄,t
τ

)∣∣∣1	(t,c̄)

]

≤ K

2
|c̄ − ct | lim

θ→0
E
t
[∣∣∣Q̂θ,c̄,t

τ θ,c̄,t − Q̂θ,c̄,t
τ

∣∣∣1Q̂θ,c̄,t
τθ,c̄,t �=Q̂θ,c̄,t

τ

]
= 0,

where in the last line we used (4.26) in Lemma 4.8. Moreover, using Lipschitz conti-
nuity of ∂qg in Assumption 2.8, we have that

lim
θ→0

E
t
[∣∣∣(c̄ − ct )1	(t,c̄)

(
∂qg

(
Xτ , Q̂

θ,c̄,t
τ

)
− ∂qg (Xτ , Qτ )

)∣∣∣
]

≤ K |c̄ − ct | lim
θ→0

E

[∣∣∣Q̂θ,c̄,t
τ − Qτ

∣∣∣
]

= 0,
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where in the last equality we have used (4.27) in Lemma 4.8. Hence, merging the last
three expressions above into (4.36), we get

lim
θ→0

E
t

[
g(Xτ , Q̂

θ,c̄,t
τ θ,c̄,t ) − g(Xτ , Q̂θ,c̄,t

τ )

θ

]
= (c̄ − ct )E

t [∂qg (Xτ , Qτ )1	(t,c̄)
]
.

Combining (2.11), (4.35) and the above expression into (4.33), we conclude that the
first line of the right-hand side of (4.32) is equal to

lim
θ→0

E
t

[
g(Xτ θ,c̄,t , Qθ,c̄,t

τ θ,c̄,t ) − g(Xτ , Qτ )

θ

]

= −ḡ(t, c̄, x, q) − E
t [(c̄ − ct )∂qg(Xτ , Qτ )

]+ (c̄ − ct )E
t [∂qg(Xτ , Qτ )1	(t,c̄)

]
.

(4.37)

The second and third lines of right-hand side of (4.32) can be written as

lim
θ→0

E
t

[
1

θ

∫ τ
θ,c̄,t
min

t

(
f (r , cθ,c̄,t

r , Xr , Q
θ,c̄,t
r ) − f (r , cr , Xr , Qr )

)
dr

]

− lim
θ→0

E
t

[
sign(τ − τ θ,c̄,t )

θ

∫ τ
θ,c̄,t
max

τ
θ,c̄,t
min

f (r , ĉθ,c̄,t
r , Xr , Q̂

θ,c̄,t
r )dr

]

= lim
θ→0

E
t

[
1

θ

∫ τ
θ,c̄,t
min

t

(
f (r , cθ,c̄,t

r , Xr , Q
θ,c̄,t
r ) − f (r , cr , Xr , Qr )

)
dr − ξ

τ
θ,c̄,t
min

]

+ lim
θ→0

E
t
[
ξ
τ

θ,c̄,t
min

]
− lim

θ→0
E
t

[
sign(τ − τ θ,c̄,t )

θ

∫ τ
θ,c̄,t
max

τ
θ,c̄,t
min

f (r , ĉθ,c̄,t
r , Xr , Q̂

θ,c̄,t
r )dr

]
.

(4.38)

Using Lemma 4.11, we have that

lim
θ→0

E
t

[
1

θ

∫ τ
θ,c̄,t
min

t

(
f (r , cθ,c̄,t

r , Xr , Q
θ,c̄,t
r ) − f (r , cr , Xr , Qr )

)
dr − ξ

τ
θ,c̄,t
min

]
= 0.

Using Lemma 4.10 ad reminding that either τ θ,c̄,t
min = τ θ,c̄,t or τ θ,c̄,t

min = τ , we have that

lim
θ→0

E
t
[
ξ
τ

θ,c̄,t
min

]
= lim

θ→0
E
t
[(

ξτθ,c̄,t − ξτ

)
1

τ
θ,c̄,t
min =τ θ,c̄,t

]
+ E

t [ξτ ] = E
t [ξτ ] .
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Using (2.12), the third limit on the right-hand side of (4.38) converges to f̄ (t, c̄, x, q).
Combining the above two expressions and (2.12) into (4.38), we get that

lim
θ→0

E
t

[
1

θ

∫ τ
θ,c̄,t
min

t

(
f (r , cθ,c̄,t

r , Xr , Q
θ,c̄,t
r ) − f (r , cr , Xr , Qr )

)
dr

]

− lim
θ→0

E
t

[
sign(τ − τ θ,c̄,t )

θ

∫ τ
θ,c̄,t
max

τ
θ,c̄,t
min

f (r , ĉθ,c̄,t
r , Xr , Q̂

θ,c̄,t
r )dr

]

= E
t [ξτ ] − f̄ (t, c̄, x, q).

Then, merging (4.32) with (4.37) and the above expression, also noting Xt = x and
Qt = q, we get

lim
θ→0

vc
θ,c̄,t

(t, x, q) − vc(t, x, q)

θ
= E

t [−(c̄ − ct )∂qg(Xτ , Qτ ) + ξτ

]+ G(t, c̄, Xt , Qt ),

(4.39)

where G(t, c̄, x, q) is defined in (2.14).
However, from (2.7) and (4.28), we have

E
t [−(c̄ − ct )∂qg(Xτ , Qτ ) + ξτ

] = E
t [−(c̄ − ct )Yτ + ξτ ]

= E
t
[
−(c̄ − ct )Yt − (c̄ − ct )

∫ τ

t
dYr + ξt +

∫ τ

t
dξr

]

= E
t [−(c̄ − ct )Yt + f (t, c̄, Xt , Qt ) − f (t, ct , Xt , Qt )] .

In the last equality we have used the Optional Stopping Theorem, which ensures that∫ ·
t Zr dWr is a martingale, whose conditional expectation is 0. Substituting the above
expression into (4.39) and using the optimality condition (4.31), we get that for any
c̄ ≥ 0 and t ∈ [0, τ )

E
t [−(c̄ − ct )Yt + f (t, c̄, Xt , Qt ) − f (t, ct , Xt , Qt )] + G(t, c̄, Xt , Qt ) ≤ 0.

Since the argument of the first conditional expectation is F t -measurable, using H in
(2.9), we get the Hamiltonian condition (2.13). This concludes the proof of Theo-
rem 2.2.

5 Conclusions

In this paper we have proved a new SMP (Theorem 2.2) for an optimal liquidation
problem with control-dependent terminal time, which is markedly different in the
Hamiltonian condition from that of the standard SMP. We have given a simple exam-
ple to show that the optimal solution satisfies the SMP in Theorem 2.2 but not the
standard SMP in the literature. This is only the first step in the direction of SMP for
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control-dependent stopping time problems and there remain many open questions to
be answered, for example, existence of pointwise limits (2.11) and (2.12), sufficient
SMP for optimality, a jump diffusion control-dependent model for X process, and
applications to concrete financial scenarios. We leave these and other questions for
future research.
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