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Abstract
We propose a class of numerical schemes for mixed optimal stopping and control
of processes with infinite activity jumps and where the objective is evaluated by a
nonlinear expectation. Exploiting an approximation by switching systems, piecewise
constant policy timestepping reduces the problem to nonlocal semi-linear equations
with different control parameters, uncoupled over individual time steps, which we
solve by fully implicit monotone approximations to the controlled diffusion and the
nonlocal term, and specifically the Lax–Friedrichs scheme for the nonlinearity in the
gradient. We establish a comparison principle for the switching system and demon-
strate the convergence of the schemes, which subsequently gives a constructive proof
for the existence of a solution to the switching system. Numerical experiments are pre-
sented for a recursive utility maximization problem to demonstrate the effectiveness
of the new schemes.
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1 Introduction

Classical Markovian mixed optimal stopping and control problems, where the target is
to maximise the (linear) expectation of a payoff on a finite time horizon T , are defined
as

u(t, x) = sup
τ

sup
α

E
t,x

[ ∫ τ

t
e−r(s−t) f (αs, X

α,t,x
s ) ds + e−r(τ−t)ξ(τ, Xα,t,x

τ )

]
,

(1.1)

where t ∈ [0, T ] is the initial time of the control problem, α is an admissible control
process and τ is a stopping time, and Xα,t,x is a controlled stochastic differential
equation (SDE) of the form:

dXα,t,x
s = b(αs, X

α,t,x
s ) ds + σ(αs, X

α,t,x
s ) dWs

+ η(αs, X
α,t,x
s , e) Ñ (ds, de), s ∈ [t, T ]; Xα,t,x

t = x .

The positive constant r denotes the discount rate, and the functions ξ and f represent
the terminal payoff and the instantaneous reward function, respectively. Under certain
regularity assumptions on the coefficients, one can demonstrate that the value function
u satisfies a nonlocal Hamilton–Jacobi–Bellman variational inequality (HJBVI) in the
viscosity sense.

These results are extended inReference [17] to a settingwhere the linear expectation
E is replaced by a nonlinear expectation Eα,t,x generated by a BSDE with jumps,

u(t, x) = sup
τ

sup
α

Eα,t,x
t,τ [ξ(τ, Xα,t,x

τ )]. (1.2)

It has been demonstrated in Reference [17] that under suitable assumptions the
value function u in (1.2) (after a change of time variable) can be characterized by
the viscosity solution to a more complicated HJBVI (1.3), which involves an extra
nonlinearity resulting from the nonlinear expectation:

min
{
u(x) − ζ(x), ut + inf

α∈A
( − Lαu − f (α, x, u, (σα)T Du, Bαu)

)} = 0,

x ∈ [0, T ] × R
d ; u(0, x) = g(x), x ∈ R

d , (1.3)

with x = (t, x), nonlocal operators Lα and Bα , the driver f of the BSDE, and given
functions ζ and g, which we will specify in Sect. 2. Particularly, in the case where the
driver is additive in y and independent of z and k, i.e., f (α, x, y, z, k) ≡ f (α, x)−r y,
the generalized control problem (1.2) reduces to the classical linear expectation case
(1.1), and (1.3) reduces to an HJB obstacle problem.1

Nonlinear expectations as in (1.2), and hence HJBVIs as in (1.3), arise naturally in
financial mathematics, for instance as models for American options in a market with
constrained portfolios [23], from recursive utility optimization problems [9], from

1 Note a slight abuse of notation where f (·, ·) is the same as in (1.1).
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dynamic risk measures [30], and from robust pricing and risk measures under proba-
bility model uncertainty [31]. In Sect. 5, we describe in more detail the situation of an
ambiguity-averse investor who chooses the optimal wealth allocation and liquidation
time of an asset whose price process has infinite activity jumps. This problem can be
modelled naturally within the setup described above, and therefore leads directly to an
HJBVI of the type (1.3) with all its key features present (i.e., singular non-local term,
nonlinear driver, control optimisation, obstacle term). As it is usually difficult to obtain
analytic solutions of HJBVIs, it is necessary to design efficient and robust numeri-
cal methods for solving these fully nonlinear PIDEs, of which we give a worked-out
example in Sect. 5.

We also remark that, to the best of our knowledge, even for the case with linear
expectations (i.e. f in the special form from above), there is no published numerical
scheme covering the generality of (1.3). However, there is a vast literature onmonotone
approximations for local HJB equations (see, e.g., [2,11,13] and references therein)
and a number of works covering specific extensions. For instance, monotone finite-
difference quadrature schemes are proposed in References [5–7,10] for nonlocal HJB
equations. We refer the reader also to Reference [14] for penalty approximations to
nonlocal variational inequalities and to Reference [33] for an application of policy
iteration together with penalization to solve HJB obstacle problems. Probabilistic
methods for solving HJB equations (without jumps and optimal stopping) can be
found, for example, in Reference [26].

All the aforementioned PDEmethods solve (1.3) (with f (α, x, y, z, k) ≡ f (α, x)−
r y) by the standard “discretize, then optimize” approach, where one discretizes the
operators in (1.3), and solves the resulting nonlinear discretized equations using policy
iteration, or more generally semi-smooth Newton methods [21,28].

However, this standard approach cannot be easily extended to nonlinear f which is
only assumed to be Lipschitz (and generally is not semi-smooth [28]), which prevents
a direct application of Newton-like solvers (see Reference [34] for a special case of the
discrete optimization problem with f (α, x, y, z, k) ≡ f (α, x, y) differentiable and
concave in y, and A finite).

Moreover, at each step of policy iteration, one needs to identify the global optimal
policy for each computational node. The nonlinear driver f and other PDE coefficients
may have sufficiently complicate nonlinearities in the control variable such that the
only way to construct a convergent algorithm is to discretize the admissible control
set, and perform exhaustive search to determine the optimal policy at each node.

Another approach to solve (1.3) uses piecewise constant policy time stepping
(PCPT) as in Reference [29]. It is based explicitly on a discrete approximation of
the admissible set by a finite set, say with J elements, and then defines a piecewise
decoupled system of PDEs corresponding to these J (constant) controls. The infor-
mation from the different solutions is assembled at the end of each timestep by taking
the pointwise maximum.

As a specific scheme for these semi-linear PDEs, we propose an implicit Euler
time discretization, monotone (semi-Lagrangian) approximations for local diffusions,
a monotone quadrature-based scheme for the nonlocal terms, and the Lax-Friedrichs
scheme for the nonlinearity in the gradient. The different solutions may be defined on
different discretization grids by possibly high order monotonicity preserving interpo-
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lations. This approach not only avoids policy iteration, but also allows for an easier
construction of convergent monotone schemes and an efficient parallel implementa-
tion of the individual semi-linear PDEs. Note that it is essential to obtain a monotone
discretization, since it is well-known that non-monotone schemes may fail to converge
or even converge to false “solutions” [13]. By Godunov’s Theorem [20], in general,
one can expect a monotone scheme to be at most first-order accurate.

The main contributions of our paper are:

• We formulate our algorithm by approximating the solution of (1.3) by the solution
to a switching system with small switching cost. We shall establish a comparison
principle for the switching system and demonstrate that as the switching cost tends
to zero, the solution of the switching system converges to the viscosity solution of
(1.3), which extends the results in Reference [6] to obstacle problems of switching
systems and includes nonlinear drivers.

• We discretize the switching system piecewise in time by fully implicit monotone
approximations. The convergence of the scheme is demonstrated, which subse-
quently gives a constructive proof for the existence of a viscosity solution to the
switching system. Our results extend the one obtained in Reference [29] from the
case of standard control problems. In contrast to there, PCPT leads to coupled
semi-linear PDEs rather than linear PDEs due to the nonlinear expectations. The
optimal stopping is treated as an additional control and included in the switching
directly instead of the classical penalisation approach.

• By truncation of the singular jumpmeasure and discretization of the control set, we
obtain a stochastic control and optimal stopping problem whose value function is
shown to converge to the value function of the initial problem and which satisfies
a HJBVI equation. Our result extends earlier ones obtained only in the case of
a linear expectation without control and optimal stopping (see e.g. [10]). This
control-theoretical interpretation further enables us to establish the convergence
order of these approximations through a probabilistic argument.

• For practical implementations, we propose a Picard-type iteration for the efficient
numerical solution without the need to invert the dense matrices resulting from
the nonlocal terms.

• Numerical examples for a recursive utility maximization problem are included
to investigate the convergence order of the scheme with respect to different dis-
cretization parameters.

The remainder of this paper is organized as follows. In Sect. 2, we introduce the
Markovian mixed optimal stopping and control problem with nonlinear expectations,
and characterize its value function as the viscosity solution of a nonlocal HJBVI. We
then derive numerical schemes in Sect. 3 by approximating theHJBVIwith a switching
system, PCPT, and ultimately fully discrete monotone schemes. Then we move on to
the convergence analysis of our numerical schemes in Sect. 4. Numerical examples
for a recursive utility maximization problem are presented in Sect. 5 to illustrate the
effectiveness of our algorithms. In the Appendix, we include a rigorous proof of the
comparison principle for the switching system and some complementary results that
are used in this article.
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2 Problem Formulation and Preliminaries

In this section, we formulate the mixed optimal stopping and control problem with
nonlinear expectation and introduce the connection between such problems and HJB-
VIs, which is crucial for the subsequent developments. We start with some useful
notation that is needed frequently in the rest of this work.

We write by T > 0 the terminal time, and by (�,F , P) a complete probabil-
ity space, in which two mutually independent processes, a d-dimensional Brownian
motion W and a Poisson random measure N (dt, de) with compensator ν(de)dt , are
defined. We assume ν is a σ -finite measure on E := R

n \ {0} equipped with its Borel
field B(E) and satisfies

∫
E
(1 ∧ |e|2) ν(de) < ∞. (2.1)

We denote by E the usual expectation operator with respect to the measure P .
For any given t ∈ [0, T ], we define the t-translated Brownian motionWt := (Ws −

Wt )s≥t and the t-translated Poisson randommeasure Nt := N (]t, s], ·)s≥t . We denote
by Ñ t (dt, de) = Nt (dt, de) − ν(de)dt the compensated process of Nt , and by Ft =
{F t

s }s∈[t,T ] be the filtration generated by Wt and Nt augmented by the P-null sets.
Furthermore, we introduce several spaces: L2

ν is the space of Borel functions l :
E → Rwith ‖l‖2ν := ∫

E |l(e)|2 ν(de) < ∞;H2
t (resp.H

2
t,ν) is the space ofR

d -valued

(resp. real-valued) Ft -predictable processes (πs) (resp. (ls(·)) with E
∫ T
t |πs |2 ds <

∞ (resp. E
∫ T
t ‖ls‖2L2

ν
ds < ∞); S2

t is the space of real-valued F
t -adapted càdlàg

processes (ψs) with E[supt≤s≤T ψ2
s ] < ∞.

We now proceed to introduce the control problem of interest. For each t ∈ [0, T ],
let At

t be a set of admissible controls, which are Ft -predictable processes (αs)s∈[t,T ]
valued in a compact set A, and T t

t be the set of Ft -stopping times which take values
in [t, T ]. For any given initial state x ∈ R

d , and control α ∈ At
t , we consider the

controlled jump-diffusion process (Xα,t,x
s )t≤s≤T satisfying the following SDE: for

each s ∈ [t, T ],

Xα,t,x
s = x +

∫ s

t
b(αv, X

α,t,x
v ) dv +

∫ s

t
σ(αv, X

α,t,x
v ) dWt

v

+
∫ s

t

∫
E

η(αv, X
α,t,x
v , e) Ñ t (dv, de), (2.2)

where b, η ∈ R
d and σ ∈ R

d×d are given measurable functions. We remark that
although our analyses are performed only for jump-diffusion processes with time-
homogenous coefficients, similar results are valid for controlled dynamics with time-
dependent coefficients.

The performance of the control problem, depending onα, is evaluated by a nonlinear
expectation induced by a BSDE with a controlled driver f (αs, s, X

α,t,x
s , y, z, k). That

is, for any given stopping time τ ∈ T t
t and any bounded Borel function ξ , we define

the nonlinear expectation
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Eα,t,x
t,τ [ξ(τ, Xα,t,x

τ )] := Y α,τ,t,x
t ,

where the process (Y α,τ,t,x
s )s≤τ is a solution in S2

t of the following BSDE: for each
s ∈ [t, τ ],

⎧⎪⎪⎨
⎪⎪⎩

−dY α,t,x
s,τ = f (αs, s, X

α,t,x
s ,Y α,t,x

s,τ , Zα,t,x
s,τ , K α,t,x

s,τ )ds − Zα,t,x
s,τ dWt

s

− ∫
E K α,t,x

s,τ Ñ t (ds, de),

Y α,t,x
τ,τ = ξ(τ, Xα,t,x

τ ),

(2.3)

and (Zα,t,x
s,τ ), (K α,t,x

s,τ ) are two associated processes, if they exist, lying in Ht and Hν
t ,

respectively.
Now we are ready to state the generalized mixed optimal stopping and control

problem. For each initial time t ∈ [0, T ] and initial state x ∈ R
d , we consider the

following value function:

u(t, x) = sup
τ∈T t

t

sup
α∈At

t

Eα,t,x
t,τ [ξ(τ, Xα,t,x

τ )], (2.4)

subject to the controlled SDE (2.2), where ξ is the terminal position given by

ξ(τ, Xα,t,x
τ ) = ζ(τ, Xα,t,x

τ )1t≤τ<T + g(Xα,t,x
T )1τ=T ,

for some reward functions ζ and g. Note that the value function of our control problem
is constant up to a P-null set. Throughout this work, we shall perform the analysis
under the following standard assumptions on the coefficients:

Assumption 2.1 The set of control valuesA is compact and the driver f is ameasurable
function of the form f (α, s, x, y, z, k) := f̂ (α, s, x, y, z,

∫
E k(e)γ (x, e) ν(de))1s≥t

for some functions f̂ and γ . Moreover, there exists a constant C > 0 such that for any
α, α′ ∈ A, t ∈ [0, T ], e ∈ E , x, x ′ ∈ R

d , u, v ∈ R, p, q ∈ R
d , k, k′ ∈ R, we have

(1) |b(α, x) − b(α′, x ′)| + |σ(α, x) − σ(α′, x ′)| ≤ C(|x − x ′| + |α − α′|);
(2) |η(α, x, e) − η(α′, x ′, e)| ≤ C(|x − x ′| + |α − α′|)(1 ∧ |e|) and |η(α, x, e)| ≤

C(1 ∧ |e|);
(3) |γ (x, e)−γ (x ′, e)| ≤ C |x−x ′|(1∧|e|2); |γ (x, e)| ≤ C(1∧|e|) and γ (x, e) ≥ 0;
(4) f̂ : A × [0, T ] × R

d × R × R
d × R → R is continuous in t and admits the

properties:

(a) (Boundedness.) | f̂ (α, t, x, 0, 0, 0)| ≤ C ;
(b) (Monotonicity.) f̂ (α, t, x, v, p, k) − f̂ (α, t, x, u, p, k) ≥ C(u − v) when

u ≥ v, and k → f̂ (α, t, x, u, p, k) is non-decreasing in k;
(c) (Lipschitz continuity.) | f̂ (α, t, x, u, p, k) − f̂ (α′, t, x ′, v, q, k′)| ≤ C(|α −

α′| + |x − x ′| + |u − v| + |p − q| + |k − k′|);
(5) the function ζ : [0, T ]×R

d → R is continuous in t , and we have |g(x)−g(x ′)|+
|ζ(t, x) − ζ(t, x)| ≤ C |x − x ′|, |g(x)| + |ζ(t, x)| ≤ C , and g(x) ≥ ζ(0, x).
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Remark 1 Assumption 2.1 is the same as that made in Reference [17]. Under assump-
tions (1), (2), equation (2.2) admits a unique solution. Assumptions (3), (4.a), (4.c),
(5) guarantee the existence and uniqueness of the solution of (2.3).

Note that the Lipschitz continuity of f̂ with respect to (x, y, z, u) is a key assump-
tion in order to establish the “good” measurability properties of the value function
uα(t, x) with respect to α and x , where uα(t, x) := supτ∈T t

t
Eα,t,x
t,τ [ξ(τ, Xα,t,x

τ )],
which are needed in the proof of the dynamic programming principle in Reference
[17] (see in particular Sect. 3.2, Theorem 3.7, which holds under Assumption 2.1).

Themonotonicity of f̂ with respect to the fourth variable y is a standard assumption
for the comparison principle of the viscosity solutions to the HJB equations (see
e.g. Assumption (C3) in Reference [22]). It can be made without loss of generality
by performing an exponential in time scaling of the solution (see e.g. Remark 2.1 in
Reference [22]).

The boundedness of f̂ , g and ζ ensures the boundedness of the value function u
(see Lemma 6.2 in Reference [16]), which subsequently allows us to work with the
infinity norm of the solution to the HJBVIs. It also plays an important role in deriving
the error estimates of our approximations (see e.g. Theorem 4.3).

Finally, we remark that the Lipschitz continuity of γ is needed in Reference [16] for
the proof of the comparison principle, which ensures the uniqueness of the solution to
the corresponding HJBVIs with nonlinear drivers (see e.g. Lemma 4.3 in Reference
[16] and (A.2 vi) in Reference [4]).

For notational convenience, in the sequel, we will write f̂ as f , and denote by ψα a
generic function ψ with control-dependence.

The rest of this section is devoted to the equivalence between the mixed control
problem and a generalized nonlocal HJBVI. Specifically, we now consider aHamilton-
Jacobi-Bellman variational inequality of the following form:

0 = F(x, u, Du, D2u, {K αu}α∈A, {Bαu}α∈A)

=
{
min

{
u(x) − ζ(x), ut + infα∈A

( − Lαu − f α[u])}, x ∈ QT ,

u(x) − g(x), x ∈ {0} × R
d ,

(2.5)

where f α[u] = f (α, x, u, (σα)TDu, Bαu), QT = (0, T ] × R
d , x = (t, x) contains

both the time t and the spatial coordinate x ∈ R
d , and the nonlocal operators Lα :=

Aα + K α and Bα satisfy, for φ ∈ C1,2(Q̄T ):

Aαφ(x) = 1

2
tr(σα(x)(σα(x))T D2φ(x)) + bα(x) · Dφ(x), (2.6)

K αφ(x) =
∫
E

(
φ(t, x + ηα(x, e)) − φ(x) − ηα(x, e) · Dφ(x)

)
ν(de), (2.7)

Bαφ(x) =
∫
E

(
φ(t, x + ηα(x, e)) − φ(x)

)
γ (x, e) ν(de), (2.8)

where E = R
n \ {0} is defined at the beginning of Sect. 2 and the nonlocal operators

K αu and Bαu are well-defined under Assumption 2.1.
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We emphasize that since the matrix σα(σα)T is only assumed to be nonnegative
definite, both the diffusion coefficient σα(σα)T and the jump intensity η of (2.5) are
allowed to vanish at some points. Consequently, there is no Laplacian smoothing from
the second-order differential operator nor fractional Laplacian smoothing from the
nonlocal operator to this degenerate equation (2.5). Therefore, in general, this HJBVI
will not admit classical solutions, and we shall interpret the equation in the following
viscosity sense based on semi-continuous envelopes of the equation [1,29].

Definition 2.2 (Viscosity solution of HJBVI) An upper (resp. lower) semicontinuous
function u is said to be a viscosity subsolution (resp. supersolution) of (2.5) if and
only if for any point x0 and for any φ ∈ C1,2(Q̄T ) such that φ(x0) = u(x0) and u −φ

attains its global maximum (resp. minimum) at x0, one has

F∗(x0, u(x0), Dφ(x0), D2φ(x0), {K αφ(x0)}α∈A, {Bαφ(x0)}α∈A) ≤ 0,(
resp. F∗(x0, u(x0), Dφ(x0), D2φ(x0), {K αφ(x0)}α∈A, {Bαφ(x0)}α∈A) ≥ 0

)
.

Acontinuous function is a viscosity solution of theHJBVI (2.5) if it is both a a viscosity
sub- and supersolution.

Under Assumption 2.1, the HJBVI (2.5) is well-posed in the class of bounded
continuous functions (see References [16,17]). The unique viscosity solution of (2.5)
(after a change of time variable) can be further characterized as the optimal value
function (2.4) of the mixed control problem. In other words, to obtain the optimal
value function for all initial times t and initial states x , it is equivalent to design
effective numerical schemes to solve (2.5).

Moreover, a strong comparison principle holds for the HJBVI (2.5), the proof
of which is similar to that in Reference [16] (without controls) and hence omitted.
In particular, if U is a bounded viscosity subsolution and V is a bounded viscosity
supersolution to (2.5) with U (0, ·) ≤ V (0, ·), we have U (x) ≤ V (x) for all x ∈ Q̄T .

3 Construction of Numerical Schemes

In this section, we will design numerical schemes for solving HJBVI (2.5). We carry
out the following string of approximations to construct our numerical algorithm:

• truncation of the singular jump measure (Eq. (3.3) and Sect. 4.1);
• approximation of the control set with a finite set (Eq. (3.5) and Theorem 4.3);
• approximation of the discretized control problem with a switching system (Eq.
(3.6) and Theorem 4.6);

• discretization in time and space (Eqs. (3.8, 3.9) and Theorem 4.7).

We start the derivations of our schemes by approximating the singular mea-
sure ν with a truncated non-singular measure and a modified diffusion coefficient
as suggested in Reference [10]. This can be done by introducing an approxima-
tive jump-diffusion dynamics and an approximative backward SDE (see Sect. 4.1).
More precisely, for any given ε > 0, let us define the truncated measure νε(de) =
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1|e|>εν(de) and the modified diffusion coefficient σ̃ α(x) such that σ̃ α
i j (x) = σα

i j (x)
for i �= j and

σ̃ α
i i (x) = sgn(σα

i i (x))

(
(σα

i i (x))
2

+
∫

|e|<ε

|ηα
i (x, e)|2 ν(de)

)1/2

, i = 1, . . . , d, x ∈ R
d . (3.1)

We further introduce the modified local operator Aα
ε as:

Aα
ε φ(x) := 1

2
tr(σ̃ α(x)(σ̃ α(x))T D2φ(x)), φ ∈ C1,2([0, T ] × R

d), (3.2)

and truncated nonlocal operators K α
ε and Bα

ε by replacing ν with νε in (2.7) and (2.8),
respectively.

With these operators in hand, we consider the following modified HJBVI:

0 = Fε(x, u, Du, D2u, {K α
ε u}α∈A, {Bα

ε u}α∈A)

=
{
min

{
u − ζ, ut + minα∈A

( − Lα
ε u − f α

ε [u])}, x ∈ QT ,

u(x) − g(x), x ∈ {0} × R
d ,

(3.3)

where we have f α
ε [u] = f α(x, u, (σ̃ α)TDu, Bα

ε u) and Lα
ε φ := Aα

ε φ + K α
ε φ for any

φ ∈ C1,2([0, T ] × R
d). These modified coefficients clearly satisfy Assumption 2.1,

and hence (3.3) is well-posed in the viscosity sense.
We then approximate the admissible control set in (3.3) by a finite set. More pre-

cisely, for a finite subset Aδ of the compact set A such that

max
α∈A min

α̃∈Aδ

|α − α̃| < δ, (3.4)

we introduce the finite control HJBVI by

0 = Fε,δ(x, u, Du, D2u, {K α
ε u}α∈Aδ , {Bα

ε u}α∈Aδ )

=
{
min

{
u − ζ, ut + minα∈Aδ

( − Lα
ε u − f α

ε [u])}, x ∈ QT ,

u(x) − g(x), x ∈ {0} × R
d ,

(3.5)

Since (3.5) is a special case of (2.5) with a finite admissible set, it is clear that (3.5)
admits a unique bounded viscosity solution.

Remark 2 In Sect. 4.1, we provide an alternative interpretation of the above two
approximations by identifying the viscosity solution of (3.5) as the value function
of a mixed control problem in terms of modified SDE and BSDE. This characteriza-
tion further enables us to establish the convergence of these approximations through
a probabilistic argument.
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Next, we approximate the finite control equation (3.5) by a switching system (
[2,6]). Suppose the finite control set is given by Aδ = {α1, α2, . . . , αJ }. We denote
by U ε,δ,c

j , j = 1, . . . , J the solution of the following system of HJB equations:

0 = Fε,δ,c
j (x,Uj , DUj , D

2Uj , {K α
ε u}α∈Aδ , {Bα

ε u}α∈Aδ , {Uk}k �= j )

=

⎧⎪⎨
⎪⎩
min

[
Uj − ζ, min

(
Uj,t − L

α j
ε Uj − f

α j
ε [Uj ]; Uj − M jU

)]
, x ∈ QT ,

Uj (x)−g(x), x∈{0} × R
d ,

(3.6)

where we define M jU := maxk �= j
(
Uk − c

)
for any c > 0. The positive switching

cost is needed for the well-posedness of the switching system (3.6).
We now proceed to introduce a discrete approximation to the switching system

based on the idea of piecewise constant policy timestepping. Define a set of nodes
{x j,i } and timesteps tn , with discretization parameters h and �t , i.e.,

max
1≤ j≤J ,x∈Rd

min
i

|x − x j,i | = h, max
n

(tn+1 − tn) = �t . (3.7)

By parameterizing the grid � j,h = {x j,i }i with the control index j , we are allowing
the usage of different discretization grids for different controls. We denote by Un

j,i
the discrete approximation to Uj at the point xnj,i = (tn, x j,i ), and extend it to the
computational domain by interpolation.

Let L
α j
ε,h and f

α j
ε,h be the discrete form of the operators L

α j
ε and f

α j
ε , respectively.

We discretize (3.6) on the grid � j,h with the uniform time partition tn+1 − tn = �t
by performing piecewise constant policy timestepping and applying the constraints at
the beginning of a new timestep,

U
n+ 1

2
j,i = max

[
ζ n+1
i , Un

j,i , max
k �= j

(Ũ n
k,i( j) − c)

)]
, (3.8)

Un+1
j,i − �t

(
L

α j
ε,hU

n+1
j,i + f

α j
ε,h[Un+1

j,i ]) = U
n+ 1

2
j,i , j = 1, . . . , J , (3.9)

where Ũ n
k,i( j) is the value of the interpolant of {Un

k,l}l∈�k,l at the i-th point of the grid
� j,h .

Now by rearranging the terms of (3.9), we obtain the following numerical scheme:
for xnj,i ∈ QT and j = 1, . . . , J ,

0 = G j (x
n+1
j,i , h,Un+1

j,i , {Ub+1
j,a }(a,b)�=(i,n), {Ũn

k }k �= j )

= min

[
Un+1

j,i − ζ n+1
i − �t

(
L

α j
ε,hU

n+1
j,i + f

α j
ε,h[Un+1

j,i ]), Un+1
j,i −Un

j,i

�t
− L

α j
ε,hU

n+1
j,i

− f
α j
ε,h [Un+1

j,i ],Un+1
j,i − max

k �= j
(Ũn

k,i( j) − c) − �t
(
L

α j
ε,hU

n+1
j,i + f

α j
ε,h[Un+1

j,i ])
]
. (3.10)
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As seen from (3.10), performing switching at the beginning of a new timestep
introduces two additional terms to both the switching part and the obstacle part of the
equation, which will not appear in a straightforward discretization of the switching
system (3.6). However, we will demonstrate in Sect. 4.4 that these terms vanish as
�t, h → 0, and consequently our scheme (3.10) forms a consistent approximation to
(3.6).

For notational simplicity, we label our approximations only by h and assume in the
sequel that �t is a given function of h with �t → 0 as h → 0.

Remark 3 To determine the optimal stopping strategy and the optimal controls, one can
simply compare values of the obstacle and all components of the switching system
at each grid point. As we will see in Sect. 4.2, each component of the switching
system converges to the solution of the HJBVI (2.5) as the discretization parameters
tend to 0; therefore, although we have no guarantee for the convergence of the control
approximation, this numerically found control is close to optimal for themixed control
problem (2.4).

We now describe in detail how we perform spatial discretizations for Lα
ε and Bα

ε

to construct a monotone discrete operator Lα
ε,h and f α

ε,h , for a fixed control parameter
α ∈ {α1, . . . , αJ }. To simplify the presentation, we consider a piecewise linear or
multilinear interpolation Ih on a uniform spatial grid hZd . That is,

Ih[φ](x) =
∑
m∈Zd

φ(xm)ωm(x; h), x ∈ R
d , (3.11)

for the standard “tent functions” ωm satisfying 0 ≤ ωm(x; h) ≤ 1, ωm(xi ; h) = δmi ,∑
m ωm = 1, suppωm ⊂ B(xm, 2h), and |Dωm | ≤ C/h.
We start with the nonlocal terms. The definition of K α

ε gives

K α
ε φ(x) =

∫
|e|≥ε

(
φ(t, x + ηα(x, e)) − φ(x) − ηα(x, e) · Dφ(x)

)
ν(de)

=
∫

|e|≥ε

(
φ(t, x + ηα(x, e)) − φ(x)

)
ν(de)

+
∫

|e|≥ε

−ηα(x, e) ν(de) · Dφ(x)

:= K α,1
ε φ(x) + bα

ε (x) · Dφ(x).

Then, by replacing the integrands by their monotone interpolants (c.f. [7]), we derive
the following approximations for K α,1

ε and Bα
ε (where we have dropped the mesh

index j in x for simplicity):

K α,1
ε,h φ(tn, xi ) :=

∫
|e|≥ε

Ih[φ(tn, xi + ·) − φ(tn, xi )](ηα(xi , e)) ν(de)

=
∑
m∈Zd

κ
α,n
h,m,i [φ(tn, xi + xm) − φ(tn, xi )] (3.12)
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Bα
ε,hφ(tn, xi ) :=

∫
|e|≥ε

Ih[φ(tn, xi + ·) − φ(tn, xi )](ηα(xi , e))γ (xi , e) ν(de)

=
∑
m∈Zd

β
α,n
h,m,i [φ(tn, xi + xm) − φ(tn, xi )], (3.13)

with the coefficients

κ
α,n
h,m,i :=

∫
|e|≥ε

ωm(ηα(xi , e); h) ν(de), β
α,n
h,m,i

:=
∫

|e|≥ε

ωm(ηα(xi , e); h)γ (xi , e) ν(de), (3.14)

which are well-defined and nonnegative, and consequently result in monotone approx-
imations. These coefficients can be efficiently evaluated by using quadrature rules with
positive weights, such as Gauss methods of appropriate order [7].

We then turn to discretizing the local terms. We introduce the modified drift by
b̃α(x) = bα(x) + bα

ε (x), and write the modified diffusion σ̃ α = (σ̃ α
1 , . . . , σ̃ α

d ), where
σ̃ α
l , l = 1, . . . , d is the l-th column of σ̃ α defined in (3.1).
With these modified coefficients, we are ready to construct the following approxi-

mations of the local operators: for any k > 0,

1

2
tr(σ̃ α(x)(σ̃ α(x))T D2φ(x))≈ 1

2

d∑
l=1

Ih[φ](x + kσ̃ α
l )−2Ih[φ](x)+Ih[φ](x−kσ̃ α

l )

k2

b̃α(x) · Dφ≈ 1

2

Ih[φ](x + k2b̃α) − 2Ih[φ](x) + Ih[φ](x + k2b̃α)

k2
,

which, by using (3.11) and the fact that
∑

m ωm = 1, can be further written in the
discrete monotone form

Aα
ε,h,kφ(tn, xi ) =

∑
m∈Zd

dα,n
h,k,m,i [φ(tn, xm) − φ(tn, xi )], (3.15)

with non-negative coefficients

dα,n
h,k,m,i = 1

2

d∑
l=1

ωm(xi + kσ̃ α
l (xi ); h) + ωm(xi − kσ̃ α

l (xi ); h)

k2

+ ωm(xi + k2b̃α(xi ); h)

k2
≥ 0. (3.16)

The approximation to the local operator Aα
ε falls into the class of semi-Lagrangian

schemes (see e.g. [13]), and provides a consistent monotone approximation for possi-
bly degenerate, non-diagonally dominant diffusion coefficients.
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Before presenting our fully discrete scheme, we shall point out that by considering
a truncated problem, one can without loss of generality assume that σα is bounded,
which consequently implies the Hamiltonian

f̄ α(x, u, p, k) := f α(x, u, (σ̃ α(x))T p, k)

is Lipschitz continuous with respect to p. Indeed, suppose σα is unbounded, then for
any given μ > 0, we define the cut-off function

ξμ : Rd → [0, 1], ξμ ≡ 1 for |x | <
1

μ
, and ξμ ∈ C∞

0 (Rd),

and consider a truncated HJBVI (3.5) by replacing σα with the bounded diffusion
coefficient σα

μ(x) := ξμ(x)σα(x). Using the fact that 1 − ξμ → 0 uniformly on
compact sets asμ → 0, one can easily prove this additional approximation is consistent
with (3.5), and hence its viscosity solution converges to the solution to (3.5) uniformly
on bounded sets.

The Lipschitz continuous Hamiltonian enables an approximation by the implicit
Lax-Friedrichs numerical flux [11]. For each l = 1, . . . , d, we denote by �

(l)
+ Un

j,i

(resp. �(l)
− Un

j,i ) the one-step forward (resp. backward) difference operator along the

l-th coordinate, and by �Un
j,i = (�

(1)
+ Un

j,i + �
(1)
− Un

j,i , . . . , �
(d)
+ Un

j,i + �
(d)
− Un

j,i )
T

the central difference operator at the grid point xnj,i . Then for any θ > 0, the Lax-
Friedrichs numerical flux is given for any (xnj,i , u, k) ∈ � j,h × R × R by

f̃ α(xnj,i , u,�Un
j,i , k) := f̄ α

(
xnj,i , u,

�Un
j,i

2h
, k

)
+

d∑
l=1

θ

λ

(
�

(l)
+ Un

j,i − �
(l)
− Un

j,i

h

)
,

(3.17)

where we define λ = �t/h.
A fully implicit time discretisation is finally given by

Un
j,i − �t

(
Aα

ε,h,kU
n
j,i + K α,1

ε,h U
n
j,i

+ f̃ α(xnj,i ,U
n
j,i ,�Un

j,i , B
α
ε,hU

n
j,i )

) −U
n− 1

2
j,i = 0.

(3.18)

Substituting (3.8) into (3.18), one can reformulate this implicit scheme in its equivalent
form (3.10).

We end this section with a remark about the implementation of the implicit scheme
(3.18). To avoid solving linear systems with the dense matrices resulting from the
discretization of the nonlocal operators, we write the solution to (3.18) as the fixed
point of a sparse contraction mapping T , such that sufficient accuracy is achieved in
practice by a few fixed point iterations.
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Given bounded functions U
n− 1

2
j and Un,(k)

j , we define the following mapping T

on �∞(Zd), i.e., the Banach space of bounded functions on hZd employed with the
sup-norm | · |0:

(1 − �t Aα
ε,h,k)(TU

n,(k)
j,i ) = �t

(
K α,1

ε,h U
n,(k)
j,i

+ f̃ α(xnj,i ,U
n,(k)
j,i ,�Un,(k)

j,i , Bα
ε,hU

n,(k)
j,i )

) +U
n− 1

2
j,i . (3.19)

It is clear that a fixed point Un
j with TUn

j = Un
j is a solution to (3.18). Moreover,

for any given functions Un,(k)
j and V n,(k)

j in �∞(Zd), we obtain from the Lipschitz

continuity of f and the �∞ stability of the numerical flux f̃ (see Lemma 4.11) that

|TUn,(k)
j − T V n,(k)

j |0 ≤
(

�t
[ ∑
m �=0

κ
α,n
h,m,i

+ C
(
1 +

∑
m �=0

β
α,n
h,m,i

)] + 4dθ

)
|Un,(k)

j − V n,(k)
j |0.

Since we need h = o(ε) in general to achieve consistency of our scheme (see Lemma
4.9), it suffices to require �t

ε2
< 1 and 4dθ < 1 to ensure T is a contraction mapping

on �∞(Zd). This establishes the well-posedness of (3.18) and enables us to solve the
nonlinear equation (3.18) through Picard iterations by setting

Un,(0)
j = U

n− 1
2

j , Un,(k+1)
j = TUn,(k)

j , k ≥ 0.

We emphasize that the criterion �t
ε2

< 1 is a sufficient condition in the worst case,
but is often far from computationally optimal since we have used no information about
the exact behavior of the singular measure ν around zero (see Remark 6 for details).
For typical Lévy measures from finance [10], we only need �t = O(ε) (such as in
the variance gamma case in our tests) or even �t independent of ε (for instance, for a
Gaussian density) to guarantee T is a contraction mapping.

Moreover, since in practice we can evaluate the discrete nonlocal operators K α,1
ε,h U

n
j

and Bα
ε,hU

n
j at all grid points in O(N log N ) operations using a FFT (see e.g. [14]), and

in each iteration a sparse linear system is solved (in one dimension it is tridiagonal),
the total complexity of the implicit scheme is still close to linear.

It is also worth pointing out that even if we chose explicit approximations for the
nonlocal operators, due to the nonlinearity of f , one still has to perform iterations to
solve the resulting nonlinear equations. Because we only assume Lipschitz continuity
but no higher regularity of f , we adopt the Picard iteration to solve for Un .
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4 Convergence Analysis

In this section, we establish the convergence of the numerical approximations in Sect.
3 to the viscosity solution of the HJBVI (2.5). To simplify the notation, we will
occasionally drop the terms {K αu}α∈A and {Bαu}α∈A in (3.3), (3.5) and (3.6), and
simply denote them by F(x, u, Du, D2u) = 0 in the sequel.

4.1 Approximation by Non-singular Measures and Finite Control Sets

In this section, we shall study the approximations of HJBVI (2.5) with a non-singular
measure and finite control set.

In fact, it is not difficult to see that (3.3) and (3.5) are consistent approximations
of (2.5) in the viscosity sense (see e.g. [22,29]), such that the comparison principle of
(2.5) enables us to conclude that the solutions of (3.3) and (3.5) converge to that of
(2.5) on compact sets as ε, δ → 0.

The remainder of this section thus focuses on obtaining an error estimate for these
approximations in termsof the jump truncation size ε and controlmesh size δ.Although
it should be possible to extend the analytic arguments in Reference [22] to the present
nonlinear setting, we follow a different path by first identifying the viscosity solution
of (3.5) as the value function of a mixed control problem in terms of modified SDE
and BSDE. This control-theoretical interpretation further enables us to develop a
shorter proof of the convergence order of these approximations through a probabilistic
argument.

We start with the truncation of singular measures. A possible way to work with
a nonsingular jump measure is to introduce a Backward SDE with a modified driver
and an approximative jump-diffusion dynamics where the small jumps part has been
substituted by a rescaled diffusion coefficient of the Brownian motion W .

More precisely, we adopt the same probability space as introduced in Sect. 2,
which supports the Brownian motion processW and the independent Poisson measure
N (dt, de). For a given jump truncation size ε > 0, we define a modified diffusion
coefficient σ̃ α as in (3.1), and also introduce a modified driver f ε(α, t, x, y, z, k) :=
f̂ (α, t, x, y, z,

∫
|e|≥ε

k(e)γ (x, e)ν(de)), where f̂ is given in Assumption 2.1.
Nextwe shallmodify the coefficients by including the control discretization. For any

given control mesh size δ > 0, we denote by φδ the piecewise constant approximation
(on the control variable α) of a generic function φ based on its value on Aδ , where
φ = b, σ̃ , η, f ε. Note that the Lipschitz continuity of the coefficients on the control
parameter α (see Assumption 2.1) and the condition (3.4) imply that there exists a
constant C ≥ 0, such that it holds for any given (α, t, x, u, p, k) ∈ A×[0, T ]×R

d ×
R × R

d × R and discretization parameters ε, δ > 0 that

|b(α, x) − bδ(α, x)| + |σ(α, x) − σ̃ δ(α, x)| ≤ C

(
δ +

∣∣∣∣
∫

|e|<ε

(1 ∧ |e|2) ν(de)

∣∣∣∣
1
2
)

,

(4.1)

|η(α, x, e) − ηδ(α, x, e)| ≤ Cδ(1 ∧ |e|), (4.2)
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| f (α, t, x, u, p, k) − f ε,δ(α, t, x, u, p, k)| ≤ C

(
δ +

∫
|e|<ε

k(e)γ (x, e) ν(de)

)
.

(4.3)

For any given initial state x ∈ R
d , control α ∈ At

t and τ ∈ T t
t , we consider the

modified controlled jump-diffusion process (Xε,δ,α,t,x
s )t≤s≤T satisfying the following

SDE: for each s ∈ [t, T ],

Xs = x +
∫ s

t
bδ(αv, Xv) dv +

∫ s

t
σ̃ δ(αv, Xv) dW

t
v

+
∫ s

t

∫
|e|>ε

ηδ(αv, Xv, e) Ñ
t (dv, de), (4.4)

and the BSDE with the modified controlled driver f ε,δ(αs, s, X
ε,δ,α,t,x
s , y, z, k):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−dY ε,δ,α,t,x
s,τ = f ε,δ(αs, s, X

ε,δ,α,t,x
s ,Y ε,δ,α,t,x

s,τ , Z ε,δ,α,t,x
s,τ , K ε,δ,α,t,x

s,τ )ds

− Z ε,δ,α,t,x
s,τ dWt

s −
∫
E
K ε,δ,α,t,x
s,τ (e) Ñ t (ds, de), s∈[t, τ );

Y ε,α,t,x
τ,τ =ξ(τ, Xε,α,t,x

τ ).

(4.5)

The coefficients of the above SDE and BSDE satisfy Assumption 2.1, and therefore
the equations are well-posed.

Now for any each time t ∈ [0, T ] and state x ∈ R
d , we consider the following

value function:

uε,δ(t, x) = sup
τ∈T t

t

sup
α∈At

t

E f ε,δ,α

t,τ [ξ(τ, Xε,δ,α,t,x
τ )], (4.6)

subject to the controlled SDE (4.4), where the nonlinear expectation is induced by
(4.5).

The following theorem shows that uε,δ is the unique viscosity solution of theHJBVI
equation (3.5) introduced in Sect. 3.

Proposition 4.1 The function (t, x) �→ uε,δ(T − t, x), with uε,δ defined by (4.6), is
the unique viscosity solution of the HJBVI (3.5).

Proof Due to the compactness of the setA, one can follow the same arguments in Ref-
erence [16,17] and characterize uε,δ as the unique viscosity solution of an HJBVI with
coefficients bδ, σ̃ δ, ηδ, f ε,δ . Then it suffices to observe that such HJBVI is equivalent
to (3.5) since its coefficients are piecewise linear in the control parameter. ��
Remark 4 Contrary to the case without control and optimal stopping studied in Ref-
erence [15], it is not clear that one can use a different approximation of the forward
backward system by introducing an independent Brownian motion scaled with the

123



Applied Mathematics & Optimization (2021) 83:1387–1429 1403

standard deviation of small jumps. Indeed, the equations would be well-posed in an
enlarged filtration G, but the control process is F-predictable, with F ⊂ G, which
leads to difficulties in the derivation of the dynamic programming principle.

We now exploit the above control-theoretical characterization of the viscosity solu-
tion uε,δ and obtain a convergence order in terms of the jump truncation size ε and
control mesh size δ. Let us first show the following uniform convergence result of the
forward component Xε,δ,α,t,x towards Xα,t,x when ε, δ tends to 0.

Lemma 4.2 For each ε, δ ∈ (0, 1), p ≥ 2, t ∈ [0, T ], x ∈ R
d and α ∈ At

t , it holds
that

E

[
sup

t≤s≤T
|Xε,δ,α,t,x

s − Xα,t,x
s |p

]

≤ C

{
δ p +

( ∫
|e|≤ε

|e|2ν(de)

)p/2

+
(∫

|e|≤ε

|e|pν(de)

)}
, (4.7)

where C is a constant independent of t, x, α, ε and δ.

Proof Fix ε, δ ∈ (0, 1), α ∈ At
t and v ∈ [t, T ]. We have:

E

[
sup

t≤u≤v
|Xε,δ,α,t,x

u − Xα,t,x
u |p

]

≤ CE

[
sup

t≤u≤v

∣∣∣∣
∫ u

t
(bδ(αs, X

ε,δ,α,t,x
s ) − b(αs, X

α,t,x
s ))ds

∣∣∣∣
p]

+ CE

[
sup

t≤u≤v

∣∣∣∣
∫ u

t
(σ̃ δ(αs, X

ε,δ,α,t,x
s ) − σ(αs, X

α,t,x
s ))dWs

∣∣∣∣
p]

+ CE

[
sup

t≤u≤v

∣∣∣∣
∫ u

t

∫
|e|>ε

(ηδ(αs, X
ε,δ,α,t,x
s , e) − η(αs, X

α,t,x
s , e))Ñ (ds, de)

∣∣∣∣
p]

+ CE

[
sup

t≤u≤v

∣∣∣∣
∫ u

t

∫
|e|≤ε

(η(αs, X
α,t,x
s , e))Ñ (ds, de)

∣∣∣∣
p]

,

where C is a constant independent of α. The Burkholder–Davis–Gundy inequality,
together with (4.1), (4.2), and the Lipschitz assumptions on the coefficients b, σ, η

(see Assumption 2.1) lead to:

E

[
sup

t≤u≤v
|Xε,δ,α,t,x

u − Xα,t,x
u |p

]

≤ C

{
δ p +

(∫
|e|≤ε

(1 ∧ |e|2)ν(de)

) p
2

+ E

[∫ v

t

(
sup

t≤u≤s

∣∣Xε,δ,α,t,x
u − Xα,t,x

u

∣∣p )
ds

] }
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+ CE

[(∫ v

t

∫
|e|>ε

|ηδ(αs, X
ε,δ,α,t,x
s , e) − η(αs, X

α,t,x
s , e)|2ν(de)ds

) p
2
]

+ CE

[∫ v

t

∫
|e|>ε

|ηδ(αs, X
ε,δ,α,t,x
s , e) − η(αs, X

α,t,x
s , e)|pν(de)ds

]

+ CE

[(∫ v

t

∫
|e|≤ε

|η(αs, X
α,t,x
s , e)|2ν(de)ds

) p
2

+
(∫ v

t

∫
|e|≤ε

|η(αs, X
α,t,x
s , e)|pν(de)ds

)]

≤ C

{
E

[∫ v

t

(
sup

t≤u≤s
|Xε,δ,α,t,x

u − Xα,t,x
u |p

)
ds

]

+ δ p +
(∫

|e|≤ε

|e|2ν(de)

) p
2 +

( ∫
|e|≤ε

|e|pν(de)

)}
,

where the last inequality follows by the integrability assumption on the measure ν.
Then we obtain the desired result (4.7) from the Gronwall’s inequality. ��

Based on the above estimate, we now show the convergence order of the viscosity
function uε,δ of (3.5) towards u in terms of ε and δ.

Theorem 4.3 For any p > 2, there exists a constant Cp depending on p, such that for
all ε, δ ∈ (0, 1), we have

∣∣uε,δ(t, x) − u(t, x)
∣∣ ≤ Cp

{
δ +

( ∫
|e|≤ε

|e|2ν(de)

) 1
2

+
( ∫

|e|≤ε

|e|pν(de)

) 1
p
}
, (t, x) ∈ [0, T ] ∈ R

d .

Proof Fix ε, δ ∈ (0, 1), t ∈ [0, T ] and x ∈ R
d . The definitions of uε,δ and u imply

that

|uε,δ(t, x) − u(t, x)|2 = ∣∣ sup
α∈At

t

sup
τ∈T t

t

E f ε,δ,α

t,τ
[
ζ(τ, Xε,δ,α,t,x

τ )
]

− sup
α∈At

t

sup
τ∈T t

t

E f α

t,τ
[
ζ(τ, Xα,t,x

τ )
] ∣∣2

≤ sup
α∈At

t

sup
τ∈T t

t

∣∣∣E f ε,δ,α

t,τ
[
ζ(τ, Xε,δ,α,t,x

τ )
] − E f α

t,τ
[
ζ(τ, Xα,t,x

τ )
]∣∣∣2 . (4.8)

Recall that, since α ∈ At
t and τ ∈ T t

t ,

∣∣∣∣E f ε,δ,α

t,τ
[
ζ(τ, Xε,δ,α,t,x

τ )
]−E f α

t,τ
[
ζ(τ, Xα,t,x

τ )
] ∣∣∣∣

is deterministic. By the a priori estimates on the spread between the first component
of the solutions of two BSDEs with jumps (see Proposition A.4. in Reference [32]),

123



Applied Mathematics & Optimization (2021) 83:1387–1429 1405

we derive from (4.3) that there exist β > 0 and η > 0 independent on τ ∈ T t
t and

α ∈ At
t , such that

∣∣∣E f ε,δ,α

t,τ
[
ζ(τ, Xε,δ,α,t,x

τ )
] − E f α

t,τ
[
ζ(τ, Xα,t,x

τ )
]∣∣∣2

≤ E

[
eβ(τ−t) (

ζ(τ, Xε,δ,α,t,x
τ ) − ζ(τ, Xα,t,x

τ )
)2]

+ ηE

[∫ τ

t
eβ(s−t) (

f (s, αs, X
α,t,x
s ,Y α,t,x

s,τ , Zα,t,x
s,τ , K α,t,x

s,τ )

− f ε,δ(s, αs, X
ε,δ,α,t,x
s ,Y α,t,x

s,τ , Zα,t,x
s,τ , K α,t,x

s,τ )
)2

ds
]

≤ C

{
E

[
sup

t≤u≤T
|Xε,δ,α,t,x

u − Xα,t,x
u |2

]
+ δ2

+ E

[ ∫ τ

t

( ∫
|e|≤ε

K α,t,x
s,τ (e)γ (Xα,t,x

s , e)ν(de)

)2

ds

]

+ E

[ ∫ τ

t

( ∫
|e|>ε

K α,t,x
s,τ (e)(γ (Xα,t,x

s , e) − γ (Xε,δ,α,t,x
s , e))ν(de)

)2

ds

]}
,

where C is a constant independent on t, x, ε, δ, α, τ , only depending on β, η, T and
the Lipschitz constant of f .

Now we estimate the last two terms in the above inequality. For any given p ≥ 2,
the uniform boundness of ζ , g and f with respect to t, x, α and τ (see Assumption
2.1), together with the a priori estimates for L p solutions of BSDEs (see Proposition 2
in Reference [27]) gives us an uniform control on theHp

t,ν norm of K α,t,x·,τ (which only
depends on p and the bounds of ζ , g, f and T ). Using this result and the boundedness
of the map γ (see Assumption 2.1), we derive from Hölder’s inequality that there
exists a constant C independent on τ and α such that

E

[ ∫ τ

t

( ∫
|e|≤ε

K α,t,x
s,τ (e)γ (Xα,t,x

s , e)ν(de)

)2

ds

]

≤ E

[ ∫ τ

t

(∫
|e|≤ε

(K α,t,x
s,τ )2(e)ν(de)

)(∫
|e|≤ε

γ 2(Xα,t,x
s , e)ν(de)

)
ds

]

≤ C

( ∫
|e|≤ε

|e|2ν(de)

)
.

Furthermore, for any given p > 1, by using the Lipschitz continuity of the map γ , we
can obtain

E

[ ∫ τ

t

( ∫
|e|>ε

K α,t,x
s,τ (e)(γ (Xα,t,x

s , e) − γ (Xε,δ,α,t,x
s , e))ν(de)

)2

ds

]

≤ CE

[ ∫ τ

t

(∫
|e|>ε

|K α,t,x
s,τ (e)||Xα,t,x

s − Xε,δ,α,t,x
s |(1 ∧ |e|2)ν(de)

)2

ds

]
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≤ CE

[
sup

t≤u≤T
|Xα,t,x

u − Xε,δ,α,t,x
u |2

∫ τ

t

( ∫
E

|K α,t,x
s,τ (e)|(1 ∧ |e|2)ν(de)

)2

ds

]

≤ CE

[
sup

t≤u≤T
|Xα,t,x

u − Xε,δ,α,t,x
u |2

(∫ τ

t

∫
E

|K α,t,x
s,τ (e)|2ν(de)ds

)( ∫
E
(1 ∧ |e|4)ν(de)

)]

≤ Cp

(
E

[
sup

t≤u≤T
|Xα,t,x

u − Xε,δ,α,t,x
u |2p

])1/p

, (4.9)

where we have used Hölder’s inequality and the boundedness of the H2p/(p−1)
t,ν norm

of K α,t,x·,τ for the last line. Consequently, by summarizing all the above estimates and
using Lemma 4.2, we can obtain that

∣∣∣E f ε,δ,α

t,τ
[
ζ(τ, Xε,δ,α,t,x

τ )
] − E f α

t,τ
[
ζ(τ, Xα,t,x

τ )
]∣∣∣2

≤ C

{
E

[
sup

t≤u≤T
|Xε,δ,α,t,x

u − Xα,t,x
u |2

]
+ δ2

+
∫

|e|≤ε

|e|2ν(de) +
(
E

[
sup

t≤u≤T
|Xε,δ,α,t,x

u − Xα,t,x
u |2p

]) 1
p
}

≤ C

{
δ2 +

∫
|e|≤ε

|e|2ν(de) +
[
δ2p +

( ∫
|e|≤ε

|e|2ν(de)

)p

+
(∫

|e|≤ε

|e|2pν(de)

)] 1
p
}

≤ C

{
δ2 +

(∫
|e|≤ε

|e|2ν(de)

)
+

( ∫
|e|≤ε

|e|2pν(de)

) 1
p
}
,

from which we can conclude the desired estimate by taking the supremum over α and
τ . ��
Theorem 4.3 extends the continuous dependence result for classical nonlocal HJB-
VIs in Reference [22, Theorem 4.4] to the HJBVIs with nonlinear drivers and
state-dependent measures (the operator Bα defined by (2.8) involves the measure
γ (x, e)ν(de), which depends on the spatial variable x).

Due to the presence of the state-dependent measure, in particular the term (4.9), our
error estimate has an additional term

( ∫
|e|≤ε

|e|pν(de)
)1/p, which in general cannot be

compared to the term
( ∫

|e|≤ε
|e|2ν(de)

)1/2 without further information. For example,
if ν is finite around zero, then for small enough ε, the fact that p > 2 and Jensen’s
inequality lead to the following estimate:

( ∫
|e|≤ε

|e|2ν(de)

) p
2 = ν(Bε)

p
2

( ∫
|e|≤ε

|e|2 ν(de)

ν(Bε)

) p
2

≤ ν(Bε)
p
2 −1

( ∫
|e|≤ε

|e|pν(de)

)
≤

∫
|e|≤ε

|e|pν(de),
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where we denote ν(Bε) = ν({e ∈ E | 0 < |e| ≤ ε}). On the other hand, if we
assume that the singular measure ν behaves similar to the Lévy measures of α-stable
processes around zero, in the sense that ν admits a density ρ(e) such that it holds for
some constants C > 0 and κ ∈ [0, 2) that

0 ≤ ρ(e) ≤ C |e|−n−κ , |e| < 1, e ∈ E = R
n \ {0},

then a direct computation shows
( ∫

|e|≤ε
|e|pν(de)

)1/p = O(ε(p−κ)/p), p ≥ 2, which

implies the jump truncation error is dominated by the term
( ∫

|e|≤ε
|e|2ν(de)

)1/2, and
consequently we recover the same convergence rate as that for the classical setting.

4.2 Approximation by Switching Systems

In this section, we study the approximation of (3.5) by switching systems. We adopt
the following standard definition of a viscosity solution to switching systems of the
form (3.6) (see [1,6,29] and references therein).

Definition 4.4 (Viscosity solution of switching system) A R
J -valued upper (resp.

lower) semicontinuous function U is said to be a viscosity subsolution (resp. super-
solution) of (3.6) if and only if for any point x0 and for any φ ∈ C1,2(Q̄T ) such that
Uj − φ attains its global maximum (resp. minimum) at x0, one has

Fε,δ,c
j∗ (x0,Uj (x0), Dφ(x0), D2φ(x0), {K α

ε φ(x0)}α∈Aδ ,

{Bα
ε φ(x0)}α∈Aδ , {Uk(x0)}k �= j ) ≤ 0(

resp. Fε,δ,c ∗
j (x0,Uj (x0), Dφ(x0), D2φ(x0), {K α

ε φ(x0)}α∈Aδ ,

{Bα
ε φ(x0)}α∈Aδ , {Uk(x0)}k �= j ) ≥ 0

)
.

Acontinuous function is a viscosity solution of theHJBVI (3.6) if it is both a a viscosity
sub- and supersolution.

Note that in the definition of the viscosity solution of Fj , the test function
only replaces Uj in the integrals and derivatives, while leaving the terms {Uk}k �= j

unchanged.
Now we present the comparison principle for bounded semicontinuous viscosity

solutions of (3.6),whichnot only implies the uniqueness of boundedviscosity solutions
of (3.6), but is also essential for our convergence analysis. The proof will be given in
Appendix 1.

Theorem 4.5 LetU= (U1,U2, ...,UJ ) and V= (V1, V2, ..., VJ ) be bounded viscosity
sub- and supersolutions, respectively, of (3.6) with U (0, ·) ≤ V (0, ·). Then it holds
under Assumption 2.1 that U j (x) ≤ Vj (x) for all j = 1, . . . , J .

The following theorem demonstrates the convergence of the switching system to
the finite control HJBVI (3.5) as the switching cost goes to 0. Convergence with order
1/3 is proved inReference [6] by a different technique, for nonlocal Bellman equations
without obstacles and nonlinear source terms.
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We momentarily assume the switching system (3.6) to admit a viscosity solution
bounded independently of the (small enough) switching cost c. We give a constructive
proof of existence through our numerical schemes in Sect. 4.3.

Theorem 4.6 Under Assumption 2.1, let U ε,δ,c = (U ε,δ,c
1 , . . . ,U ε,δ,c

J ) and uε,δ be the
viscosity solution of (3.6) and (3.5), respectively. Then for fixed ε, δ > 0, we have for
each j = 1, . . . , J that U ε,δ,c

j → uε,δ uniformly on compact sets as c → 0.

Proof Since ε and δ are fixed for our analysis, we shall omit the dependence on
ε and δ, and simply denote by Uc the solution of (3.6). Consider a sequence of
switching costs cm → 0 as m → ∞, and the corresponding viscosity solution
Ucm = (Ucm

1 , . . . ,Ucm
J ). We shall first prove by contradiction that

Ucm
j (x) ≥ M jU

cm , x ∈ QT , j = 1, . . . , J . (4.10)

Suppose the statement is false, then there would exist k �= j and x0 ∈ QT such that
Ucm

j (x0) < Ucm
k (x0) − cm . We then obtain from the continuity of Ucm

j and Ucm
k that

there exists a nonempty open ball B around x0 such that

Ucm
j (x) < Ucm

k (x) − cm, x ∈ B.

On the other hand, due to the fact that semi-jets are nonempty on a dense set (see e.g.
[25, Lemma 8 on pp. 23]), there exists a C2 function φ such that Ucm

j − φ attains its

minimum at some point in B, say x1. Hence we deduce from the fact that Ucm
j is a

supersolution that

Ucm
j (x1) ≥ M jU

cm (x1) ≥ Ucm
k (x1) − cm,

which leads to a contradiction.
Wenow introduce the following functions through a relaxed limit: for j = 1, . . . , J ,

U j (x) = lim
r→∞ sup

m>r
sup

|y−x|<1/r
Ucm

j (y), U j (x) = lim
r→∞ inf

m>r
inf|y−x|<1/r

Ucm
j (y). (4.11)

It is not hard to check U 1 = . . . = U J ≡ U and U 1 = . . . = U J ≡ U . In fact, for
any given j, k ∈ {1, . . . , J }, j �= k, x ∈ QT , and m, r ∈ N, we obtain from (4.10)
that Ucm

j (y) ≥ Ucm
k (y) − cm for y ∈ QT , and hence

sup
m>r

sup
|y−x|<1/r

Ucm
j (y) ≥ sup

m>r
sup

|y−x|<1/r
Ucm
k (y) − sup

m>r
cm .

Letting r → ∞ leads to the fact that U j ≥ Uk for all j �= k. The statement for {U j }
can be shown similarly.

Since it is clear thatU andU is bounded upper and lower semicontinuous, respec-
tively, we now aim to showU andU is respectively a sub- and supersolution of (3.5).
Then the strong comparision principle gives usU ≤ U , which impliesU = U = U is
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the unique viscosity solution of (3.5). Uniform convergence on compact sets follows
from a variation of Dini’s theorem (See Remark 6.4 in Reference [12]).

We start by showing U is a subsolution of (3.5). Let φ ∈ C1,2 and U − φ have
a strict global maximum at x̂0 ∈ Q̄T , then there will be a sequence cm → 0 such
that for each j ∈ {1, . . . , J }, we have x̂ j

m → x̂0, U
cm
j (x̂ j

m) → U (x̂0), and Ucm
j − φ

attains a global maximum at x̂ j
m . Since U

cm
j is a subsolution of (3.6) with cm , if we

have x̂0 ∈ {0} × R
d , Ucm

j (x̂ j
m) ≤ g(x̂ j

m) for infinitly many m and a fixed j , then it is

clear that U (x̂0) ≤ g(x̂0). Therefore, without loss of generality, we assume for all m
and j that

min

[
Ucm

j (x̂ j
m) − ζ(x̂ j

m), min
(
φt (x̂

j
m) − L

α j
ε φ(x̂ j

m)

− f α j (x̂ j
m,Ucm

j (x̂ j
m), σ̃ α j · Dφ(x̂ j

m), B
α j
ε φ(x̂ j

m));

Ucm
j (x̂ j

m) − M jU
cm (x̂ j

m)
)] ≤ 0. (4.12)

We have two cases. If there exists j ∈ {1, . . . , J } and a subsequence of cm such that
Ucm

j (x̂ j
m)−ζ(x̂ j

m) ≤ 0, then by passing to the limitm → ∞, we haveU (x̂0)−ζ(x̂0) ≤
0. Otherwise, by passing to subsequence, without loss of generality we can assume
Ucm

j (x̂ j
m) − ζ(x̂ j

m) > 0 holds for all j and m. Then for each m ∈ N, we can choose

jm ∈ {1, . . . , J } and x̂ jm
m such that

(Ucm
jm

− φ)(x̂ jm
m ) = max

j=1,...,J
(Ucm

j − φ)(x̂ j
m) = max

j=1,...,J
max
x

(Ucm
j − φ)(x),

and deduce from (4.12) that

min
(
φt (x̂

jm
m ) − L

α jm
ε φ(x̂m)− f α jm (x̂ jm

m ,Ucm
jm

(x̂ jm
m ), σ̃ α jm · Dφ(x̂ jm

m ), B
α jm
ε φ(x̂ jm

m ));
Ucm

jm
(x̂ jm

m ) − M jmU
cm (x̂ jm

m )
) ≤ 0. (4.13)

Our choice of jm implies (Ucm
jm

− φ)(x̂ jm
m ) ≥ (Ucm

k − φ)(x̂ jm
m ) for all k �= jm , and

thus Ucm
jm

(x̂ jm
m ) > M jmU

cm (x̂ jm
m ). Consequently we obtain from (4.13) that

φt (x̂
jm
m ) − L

α jm
ε φ(x̂m) − f α jm (x̂ jm

m ,Ucm
jm

(x̂ jm
m ), σ̃ α jm · Dφ(x̂ jm

m ), B
α jm
ε φ(x̂ jm

m )) ≤ 0.

Since we only have finite many choices of jm , by passing to a further subsequence if
necessary, we can assume that jm → j0, then lettingm → ∞ and using the continuity
of the equation, we have

φt (x̂0) − L
α j0
ε φ(x̂0) − f α j0 (x̂0,U (x̂0), σ̃ α j0 · Dφ(x̂0), B

α j0
ε φ(x̂0)) ≤ 0.
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Since α j0 ∈ Aδ is an admissible control, we obtain

min
α∈Aδ

{
φt (x̂0) − Lα

ε φ(x̂0) − f α j (x̂0,U (x̂0), σ̃ α · Dφ(x̂0), Bα
ε φ(x̂0))

} ≤ 0,

and conclude that U is a subsolution of (3.6).
We now proceed to show U is a supersolution. If φ ∈ C1,2 and U − φ has a

strict global mimimum at x̂0 ∈ Q̄T , then for any given j ∈ {1, . . . , J }, there will be
sequences cm → 0, x̂m → x̂0, U

cm
j (x̂m) → U (x̂0), and Ucm

j − φ attains a global

mimimum at x̂m . Using the fact that Ucm
j is asupersolution to (3.6), we have (by

ignoring the term Ucm
j (x̂ j

m) − M jUcm (x̂ j
m)):

min

[
Ucm

j (x̂m) − ζ(x̂m), φt (x̂m) − L
α j
ε φ(x̂m)

− f α j (x̂m,Ucm
j (x̂m), σ̃ α j · Dφ(x̂m), B

α j
ε φ(x̂m))

]
≥ 0,

then passing m → ∞ enables us to conclude for any j ∈ {1, . . . , J },

min

[
U (x̂0) − ζ(x̂0), φt (x̂0) − L

α j
ε φ(x̂0)

− f α j (x̂0,U (x̂0), σ̃ α j · Dφ(x̂0), B
α j
ε φ(x̂0))

]
≥ 0,

which completes our proof. ��

4.3 General Discrete Approximation to the Switching System

In this section, we establish the convergence of the piecewise constant policy approxi-
mation of (3.10) to the solution of the switching system (3.6). We will first summarize
all the required conditions to guarantee the convergence, and perform the analysis
under these assumptions. Then we will demonstrate in Sect. 4.4 that these conditions
are in fact satisfied by the numerical scheme (3.18) proposed in Sect. 3 .

We assume the scheme (3.10) satisfies the following conditions introduced in Ref-
erence [29]:

Condition 1 (1) (Positive interpolation.) Let Ũ n
k,i( j) be the interpolant of the k-th grid

onto the i-th point xnj,i of the j-th grid, and Nk( j, i, n) be the neighbours2 to the
point xnj,i on the k-th grid �k,h. Then there exist weights {ωn

k,i( j),a}a∈Nk( j,i,n)

satisfying ωn
k,i( j),a ≥ 0 and

∑
a∈Nk ( j,i,n) ωn

k,i( j),a = 1, such that we can write

Ũ n
k,i( j) =

∑
a∈Nk ( j,i,n)

ωn
k,i( j),aU

n
k,a . (4.14)

2 “Neighbours” can be any a set of indices a such that xnk,a → xnj,i .
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(2) (Weak monotonicity.) The scheme (3.10) is monotone with respect to Un
j,i and

Ũn
k,i( j), i.e., if

V n
j,i ≥ Un

j,i , ∀(i, j, n); Ṽ n
k,i( j) ≥ Ũ n

k,i( j), ∀(i, k, n),

then we have

G j (xnj,i , h,Un+1
j,i , {V b+1

j,a }(a,b)�=(i,n), {Ṽ n
k }k �= j )

≤ G j (xnj,i , h,Un+1
j,i , {Ub+1

j,a }(a,b)�=(i,n), {Ũ n
k }k �= j ). (4.15)

(3) (�∞ stability.) The solution Un+1
j,i of the scheme (3.10) exists and is bounded

uniformly in h and c.
(4) (Consistency.) Let ε, δ, c be fixed. For any test functions φ j ∈ C1,2(Q̄T ) and

continuous ϕk , there exist function ω1(h) and ω2(ξ), possibly depending on ε,
such that ω1(h) → 0 as h → 0, ω2(ξ) → 0 as ξ → 0, and

|G j (x
n+1
j,i , h, φn+1

j,i + ξ, {φb+1
j,a }(a,b)�=(i,n) + ξ, {ϕ̃n

k }k �= j )

− Fε,δ,c
j (xn+1

j,i , φ j (x
n+1
j,i ), Dφ j (x

n+1
j,i ), D2φ j (x

n+1
j,i ),

{ϕ̃k(xnj,i )}k �= j )| ≤ ω1(h) + ω2(ξ).

(4.16)

Remark 5 As pointed out in Reference [29], Condition 1 (1)–(2) are weaker than
the standard condition that the scheme is monotone in Un

k,α (see e.g. [3]). By only
requiring that the interpolation has positive coefficients and that the numerical scheme
is monotone in the interpolant Ũ n

k,α , we are allowing the usage of high order nonlinear
interpolations among different grids (e.g., the monotonicity preserving interpolations
in Reference [19]).

Also note the contrast to the linear interpolant (3.11) used in (3.12) and (3.13) for
the construction of a monotone approximation to the integral operators.

We now present the convergence of the discrete approximation to the switching
system.

Theorem 4.7 Under Assumptions 2.1, the solution to any scheme of the form (3.10)
satisfyingCondition 1 converges to the viscosity solution of (3.6) uniformly on bounded
domains.

The proof is essentially the same as that in Reference [29] and is omitted.We remark
that in the proof, we construct the solution of the switching system directly from the
numerical solutions. Since the solution of the scheme (3.10) is uniformly bounded,
Theorems 4.5 and 4.7 immediately give the existence and uniqueness of a bounded
viscosity solution to the switching system (3.6).

Corollary 4.8 UnderAssumption2.1and the existenceof a scheme satisfyingCondition
1, the switching system (3.6) admits a unique viscosity solution bounded uniformly in
c.
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4.4 A Specific Implicit Scheme for the Switching System

In this section, we analyze the implicit scheme (3.18) and demonstrate that it satisfies
Condition 1, which subsequently implies its convergence to the switching system.

The following estimates are essential for our consistency and stability analysis.

Lemma 4.9 Under Assumption 2.1, there exists C independent of h, k, ε, δ such that
for any test functions φ j ∈ C1,2(Q̄T ) and ε < 1 that

|Aα
ε,h,kφ

n+1
j,i + K α,1

ε,h φn+1
j,i − Aα

ε φ j (x
n+1
j,i )

− K α
ε φ j (x

n+1
j,i )| ≤ C

(
h2

k2
+ h2

ε2
+ ω(xn+1

j,i , k)

)
,

|Bα
ε,hφ

n+1
j,i − Bα

ε φ(xn+1
j,i )| ≤ C

h2

ε
.

for some ω(xn+1
j,i , k) such that ω(·, k) → 0 as k → 0 uniformly on compact neigh-

bourhoods of xn+1
j,i .

Proof We first derive the estimate for Bα
ε,hφ

n+1
j,i . It follows from |ηα| ≤ C and the

definitions of Bα
ε,hφ and Bα

ε φ that

|Bα
ε,hφ

n+1
j,i − Bα

ε φ(xn+1
j,i )|

≤
∫

|e|≥ε

|Ih[φ(tn+1, x j,i + ·)](ηα(x j,i , e))

− φ(tn+1, x j,i + ηα(x j,i , e))|γ (x j,i , e) ν(de)

≤ Ch2|D2φ|B(xn+1
j,i ,C)

∫
|e|≥ε

(1 ∧ |e|) ν(de) ≤ C
h2

ε
,

where we have used the fact that |Ih[φ] − φ|B(xn+1
j,i ,C)

≤ C |D2φ|B(xn+1
j,i ,C)

h2. Similar

arguments give us that |K α,1
ε,h φn+1

j,i −K α,1
ε φ(xn+1

j,i )| ≤ Ch2|D2φ|B(xn+1
j,i ,C)

∫
|e|≥ε

ν(de)

≤ C h2

ε2
.

We then infer from Taylor’s theorem with an integral remainder that the truncation
errors of the local terms can be bounded by

|Aα
ε,h,kφ

n+1
j,i − Aα

ε φ(xn+1
j,i ) − bα

ε (x j,i ) · Dφ(xn+1
j,i )|

≤ C |D2φ|B(xn+1
j,i ,C)

h2

k2
+ ω(xn+1

j,i , k)

for some function ω(xn+1
j,i , k) such that ω(·, k) → 0 as k → 0 uniformly on compact

neighbourhoods of xn+1
j,i , which enables us to deduce that
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|Aα
ε,h,kφ

n+1
j,i + K α,1

ε,h φn+1
j,i − Aα

ε φ j (x
n+1
j,i ) − K α

ε φ j (x
n+1
j,i )|

≤ |Aα
ε,h,kφ

n+1
j,i − Aα

ε φ(xn+1
j,i )−bα

ε (x j,i ) · Dφ(xn+1
j,i )|+|K α,1

ε,h φn+1
j,i −K α,1

ε φ(xn+1
j,i )|

≤ C

(
h2

k2
+ h2

ε2
+ ω(xn+1

j,i , k)

)
.

��
Lemma 4.10 Under Assumption 2.1 there exists C independent of h, k, ε, δ such that
for all ε < 1

∑
m �=0

κ
α,n
h,m,i ≤ C

hε
∧ 1

ε2
,

∑
m �=0

β
α,n
h,m,i ≤ C

h
∧ 1

ε
,

∑
m∈Zd

dα,n
h,k,m,i ≤ C

k2
,

where κ
α,n
h,m,i , β

α,n
h,m,i , and dα,n

h,k,m,i are defined in (3.14) and (3.16), respectively.

Proof We shall only prove the estimate for κα,n
h,m,i , since the estimate for βα,n

h,m,i follows
from a similar argument, and the estimate for dα,n

h,k,m,i follows directly from the fact
that

∑
m ωm = 1.

The definition of κ
α,n
h,m,i and the integrability property (2.1) of ν imply that

∑
m �=0

κ
α,n
h,m,i =

∑
m �=0

∫
|e|>ε

ωm(ηα(xi , e); h) ν(de)

=
∑
m �=0

∫
|e|>ε

ωm(ηα(xi , e); h)1{ηα(xi ,e)∈suppωm } ν(de)

=
∑
m �=0

∫
|e|>ε

(
ωm(ηα(xi , e); h) − ωm(0; h)

)
1{ηα(xi ,e)∈suppωm } ν(de)

≤
∫

|e|>ε

∑
m �=0

|Dωm |0|ηα(xi , e)|1{ηα(xi ,e)∈suppωm } ν(de)

≤ C

h

∫
|e|>ε

(1 ∧ |e|) ν(de)

≤ C

h

∫
|e|>ε

1 ∧ |e|
ε

(1 ∧ |e|) ν(de) = C

hε

∫
|e|>ε

(1 ∧ |e|2) ν(de) ≤ C

hε
.

Alternatively, it follows directly from the identity
∑

m∈Zd ωm(·; h) ≡ 1 that

∑
m �=0

κ
α,n
h,m,i =

∑
m �=0

∫
|e|>ε

ωm(ηα(xi , e); h) ν(de)

≤
∫

|e|>ε

ν(de) ≤ 1

ε2

∫
|e|>ε

(1 ∧ |e|2) ν(de),

which leads us to the desired estimates. ��
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Remark 6 Since we have not used any information on the exact behavior of the non-
singular measure ν around zero, the estimates for the nonlocal terms in Lemmas 4.9
and 4.10 are not optimal for many specific cases. If one can estimate upper bounds
of the density of the Lévy measure, or equivalently estimate the (pseudo-differential)
orders of the nonlocal operators K α and Bα , more precise results for the truncation
error of the singular measure can be deduced (Reference [5]).

The next lemma presents some important properties of the Lax–Friedrichs numeri-
cal flux for Lipschitz continuous Hamiltonian, which are crucial for our subsequent
analysis. We refer readers to Reference [11] for a proof of these statements. Then the
following hold:

Lemma 4.11 Let f̃ as in (3.17) and (xnj,i , u, k) ∈ � j,h ×R×R, and suppose Assump-
tion 2.1 and the condition θ > Cλ hold, where C is the Lipschitz constant of the
Hamiltonian f̄ .

(1) (Consistency.) For any test functions φ ∈ C1,2([0, T ] × R
d), we have

| f̃ α(xnj,i , u,�φn
j,i , k) − f̄ α(xnj,i , u, Dφ(xnj,i ), k)| ≤ Ch2/�t .

(2) (Monotonicity.) If V n
j,i ≥ Un

j,i , for all i, j, n, then we have

�t f̃ α(xnj,i , u,�V n
j,i , k) + 2dθV n

j,i ≥ �t f̃ α(xnj,i , u,�Un
j,i , k) + 2dθUn

j,i .

(3) (Stability.) For any bounded functions U and V , we have

|(�t f̃ α(xnj,i , u,�V n
j,i , k) + 2dθV n

j,i )

− (�t f̃ α(xnj,i , u,�Un
j,i , k) + 2dθUn

j,i )| ≤ 2dθ |U − V |0.

Proposition 4.12 Suppose Assumption 2.1, the positive interpolation property in Con-
dition 1 and the condition θ > Cλ hold. Then we have the following:

(1) There exists a unique bounded solution Un of the scheme (3.18).
(2) The scheme is �∞ stable and weakly monotone. It is consistent with the switching

system (3.6) provided h2/�t → 0 and h/k → 0 as h, k,�t → 0 (ε is fixed here).

Proof We start to establish the existence and uniqueness of a bounded solution of
(3.18) in (1) by an induction argument. It is clear the statement holds for t0 = 0
since U 0 = g is bounded. Now we assume that {Un−1

j }Jj=1 are bounded functions on

hZd and consider the time point tn . The positive interpolation property implies the
interpolation step among different grids does not increase the �∞ norm of the solution,

and hence U
n− 1

2
j is bounded for each j = 1, . . . , J .

For each ρ > 0 and j = 1, . . . , J , we define the operator P : Un
j → Un

j by

PUn
j,i = Un

j,i − ρ · (left-hand side of (3.18)), i ∈ Z
d ,
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with a given function U
n− 1

2
j . By virtue of the fact that fixed points to the equation

PUn
j = Un

j are precisely the solutions to (3.18), it suffices to establish that for small

enough ρ, the operatorP is a contraction on �∞(Zd), i.e., the Banach space of bounded
functions on hZd employed with the sup-norm, which along with the contraction
mapping theorem leads to the desired results. (Similar contraction operators have been
introduced in References [7,13] to demonstrate the well-posedness of their numerical
schemes).

For any bounded functions Un
j and V n

j , the definitions of P , Aα
ε,h,k and K α,1

ε,h give
that

PUn
j,i − PV n

j,i

≤(1 − ρ)(Un
j,i − V n

j,i ) + ρ�t

[ ∑
m∈Zd

dα,n
h,k,m,i [(Un

j,m − V n
j,m) − (Un

j,i − V n
j,i )]

+
∑
m �=0

κ
α,n
h,m,i [(Un

j,i+m − V n
j,i+m) − (Un

j,i − V n
j,i )]

+ f̃ α(xnj,i ,U
n
j,i ,�Un

j,i , B
α
ε,hU

n
j,i ) − f̃ α(xnj,i , V

n
j,i ,�V n

j,i , B
α
ε,hV

n
j,i )

]

≤(1 − ρ − ρ�t
∑
m∈Zd

dα,n
h,k,m,i − ρ�t

∑
m �=0

κ
α,n
h,m,i )(U

n
j,i − V n

j,i )

+ ρ�t(
∑
m∈Zd

dα,n
h,k,m,i +

∑
m �=0

κ
α,n
h,m,i )|Un

j − V n
j |0

+ ρ�t
(
f̃ α(xnj,i ,U

n
j,i ,�Un

j,i , B
α
ε,hU

n
j,i ) − f̃ α(xnj,i , V

n
j,i ,�Un

j,i , B
α
ε,hU

n
j,i )

)
(4.17)

+ ρ�t
(
f̃ α(xnj,i , V

n
j,i ,�Un

j,i , B
α
ε,hU

n
j,i ) − f̃ α(xnj,i , V

n
j,i ,�Un

j,i , B
α
ε,hV

n
j,i )

)
(4.18)

+ ρ�t
(
f̃ α(xnj,i , V

n
j,i ,�Un

j,i , B
α
ε,hV

n
j,i ) − f̃ α(xnj,i , V

n
j,i ,�V n

j,i , B
α
ε,hV

n
j,i )

)
.

(4.19)

It remains to estimate (4.17), (4.18) and (4.19). Lemma 4.11 (3) enables us to bound
(4.19) by −ρ2dθ(Un

j,i − V n
j,i ) + ρ2dθ |Un

j − V n
j |0. We then derive upper bounds for

(4.17) and (4.18) depending on whetherUn
j,i −V n

j,i or B
α
ε,hU

n
j,i − Bα

ε,hV
n
j,i is positive.

If Un
j,i − V n

j,i > 0, the monotonicity of f in y implies that (4.17) is bounded above
by −ρ�tC(Un

j,i − V n
j,i ), while if U

n
j,i − V n

j,i < 0, the Lipschitz continuity of f in y
enables us to bound (4.17) by ρ�tC |Un

j,i − V n
j,i | = −ρ�tC(Un

j,i − V n
j,i ).

We then discuss the sign of Bα
ε,hU

n
j,i − Bα

ε,hV
n
j,i . Suppose B

α
ε,hU

n
j,i − Bα

ε,hV
n
j,i < 0,

then we obtain from the monotonicity of f in k that (4.18)≤ 0. Consequently we
obtain that

PUn
j,i − PV n

j,i ≤(1 − ρ − ρ�t
∑
m∈Zd

dα,n
h,k,m,i
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− ρ�t
∑
m �=0

κ
α,n
h,m,i − ρ�tC − ρ2dθ)(Un

j,i − V n
j,i )

+ ρ(�t
∑
m∈Zd

dα,n
h,k,m,i + �t

∑
m �=0

κ
α,n
h,m,i + 2dθ)|Un

j − V n
j |0

≤(1 − ρ − ρ�tC)|Un
j − V n

j |0, (4.20)

provided that 1−ρ(1+2dθ)−ρ�t
( ∑

m∈Zd dα,n
h,k,m,i +

∑
m �=0 κ

α,n
h,m,i +C) > 0, which

is satisfied for small enough ρ.
On the other hand, if Bα

ε,hU
n
j,i − Bα

ε,hV
n
j,i > 0, the Lipschitz continuity of f in k

enables us to bound (4.18) byC(Bα
ε,hU

n
j,i −Bα

ε,hV
n
j,i ), which along with (3.13) implies

again (4.20) provided that the the following condition is satisfied:

1 − ρ(1 + 2dθ) − ρ�t

( ∑
m∈Zd

dα,n
h,k,m,i +

∑
m �=0

(κ
α,n
h,m,i + β

α,n
h,m,i ) + C

)
> 0, (4.21)

which holds for small enough ρ. This completes the proof that P is a contraction
operator.

We now proceed to establish the �∞ stability of the scheme. Let {Un−1
j }Jj=1 be

the solutions to (3.18). By expressing the discrete operators Aα
ε,h,k and K α,1

ε,h in the
monotone form (3.15) and (3.12), and substituting them into (3.18), we obtain that

[1 + 2dθ + �t
( ∑
m∈Zd

dα,n
h,k,m,i +

∑
m �=0

κ
α,n
h,m,i

)]Un
j,i

− �t
( ∑
m∈Zd

dα,n
h,k,m,iU

n
j,m +

∑
m �=0

κ
α,n
h,m,iU

n
j,i+m

)

= U
n− 1

2
j,i + �t f̃ α(xnj,i ,U

n
j,i ,�Un

j,i , B
α
ε,hU

n
j,i ) + 2dθUn

j,i ,

from which we can deduce

[1 + 2dθ + �t
( ∑
m∈Zd

dα,n
h,k,m,i +

∑
m �=0

κ
α,n
h,m,i

)]Un
j,i

− �t
( ∑
m∈Zd

dα,n
h,k,m,i +

∑
m �=0

κ
α,n
h,m,i

)|Un
j,i |0

≤ �t
[
f α(xnj,i ,U

n
j,i ,�Un

j,i , B
α
ε,hU

n
j,i ) − f α(xnj,i , 0,�Un

j,i , B
α
ε,hU

n
j,i )

]
(4.22)

+ �t
[
f α(xnj,i , 0,�Un

j,i , B
α
ε,hU

n
j,i ) − f α(xnj,i , 0,�Un

j,i , 0)
]

+ |Un− 1
2

j |0 + (�t[ f̃ α(xnj,i , 0,�Un
j,i , 0) − f̃ α(xnj,i , 0, 0, 0)]

+ 2dθUn
j,i ) + �t f̃ α(xnj,i , 0, 0, 0). (4.23)

Using similar arguments as those for the upper bound of (4.17), we deduce that
(4.22) is bounded above by −�tCUn

j,i independent of the sign of U
n
j,i .
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Suppose now Bα
ε,hU

n
j,i < 0, then we obtain from the monotonicity of f in k that

(4.23) is nonpositive. Then the �∞ stability of the numerical flux and the boundedness
of f α(x, 0, 0, 0) yield that

(1 + �tC)|Un
j |0 ≤ |Un− 1

2
j |0 + �tC1. (4.24)

Here C is the constant from Assumption 2.1 and C1 > 0 is a large enough constant
that we will choose later. On the other hand, if Bα

ε,hU
n
j,i > 0, the Lipschitz continuity

of f in k enables us to bound (4.23) by CBα
ε,hU

n
j,i , which along with (3.12) implies

again (4.24).
With the estimate (4.24) in hand, we are ready to derive a uniform bound for the

solutions {Un
j }, which is independent of h and c. The proof follows from an inductive

argument. Let us introduce the notation |Un|0 = max1≤ j≤J |Un
j |0 for each n and

define the term a0 = max(|g|0, |ζ |0), then it is clear that a0 ≥ max(|U 0|0, |ζ |0).
Suppose we have an−1 such that an−1 ≥ max(|Un−1|0, |ζ |0). Then the definition of

U
n− 1

2
j,i implies that |Un− 1

2
j |0 ≤ max(|ζ |0, |Un−1|0) ≤ an−1. Define the term

an := 1

1 + �tC
an−1 + �tC1,

with the same constants as those in (4.24), then we have |Un|0 ≤ an . To proceed
by induction, we further require an ≥ |ζ |0. Since an−1 ≥ |ζ |0 and C is fixed, it
suffices to require C1 ≥ C |ζ |0. In this way, we can construct a sequence {an}, such
that |Un|0 ≤ an , but an is uniformly bounded independent of c, h and �t , and hence
this completes the proof of �∞ stability.

We now study the weak monotonicity of the scheme. Let V n
j,i ≥ Un

j,i and Ṽ
n
k,i( j) ≥

Ũ n
k,i( j) for all i, j, k, n, then we have V

n+ 1
2

j,i ≥ U
n+ 1

2
j,i . Moreover the monotonicity of

f in k and the weak monotonicity of f̃ imply that

∑
m∈Zd

dα,n
h,k,m,iU

n+1
j,m +

∑
m �=0

κ
α,n
h,m,iU

n+1
j,i+m

+ f̃ α(xn+1
j,i ,Un+1

j,i ,�Un+1
j,i ,

∑
m �=0

β
α,n
h,m,i [Un+1

j,i+m −Un+1
j,i ])

is nondecreasing with {Ub+1
j,a }(a,b)�=(i,n), which gives the weak monotonicity of the

scheme (3.18).
Finally we study the consistency of the scheme. By using the Lipschitz continuity

of x → min(x, a), it is clear that it suffices to bound
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(I1) :=�t
(
Aα

ε,h,kφ
n+1
j,i + K α,1

ε,h φn+1
j,i + f̃ α(xn+1

j,i , φn+1
j,i + ξ,�φn+1

j,i , Bα
ε,hφ

n+1
j,i )

)

(I2) :=
∣∣∣∣
φn+1
j,i − φn

j,i

�t
− (

Aα
ε,h,kφ

n+1
j,i + K α,1

ε,h φn+1
j,i

+ f̃ α(xn+1
j,i , φn+1

j,i + ξ,�φn+1
j,i , Bα

ε,hφ
n+1
j,i )

)
− φ j,t (x

n+1
j,i ) − Aα

ε φ j (x
n+1
j,i ) − K α

ε φ j (x
n+1
j,i )

− f α(xn+1
j,i , φ(xn+1

j,i ), Dφ(xn+1
j,i ), Bα

ε φ(xn+1
j,i ))

∣∣∣∣,

which can be estimated by using Lemmas 4.9, 4.11, and the Lipschitz continuity of
f . ��
Remark 7 The contraction operatorP is introduced to demonstrate our scheme admits
a unique solution for any given discretization parameters �t , h, k and ε. However,
due to its low convergence rate, it is not advisable to implement this contraction
mapping directly to solve the nonlinear equation (3.18). In fact, Lemma 4.10 and the
stability condition (4.20) restrict the contraction constant of P to admit a lower bound
depending on the spatial discretization of the diffusion operator. This undesirable
dependence of �t on k can be avoided by considering the mapping T defined by
(3.19), which is implicit in the local terms. It has been shown that for small enough
h, the contraction constant of T is proportional to θ , which can be chosen to achieve
a rapid convergence.

5 Numerical Experiments

In this section, we present several numerical experiments to analyse the effectiveness
of the numerical scheme proposed in Sect. 3. We shall investigate the convergence of
numerical solutions with respect to the switching cost, timestep, and mesh size, and
show that a relatively coarse discretization of the admissible control set already leads
to an accurate approximation.

We consider a portfolio optimization problem over a time interval [0, T ], in a frame-
work of recursive utility. An investor can control his wealth process Xt,x,α through a
selection of the control process α ∈ At

t , say his or her portfolio strategy, and can also
choose the duration of the investment via a stopping time τ . If the agent chooses a
strategy pair (α, τ ), then the associated terminal reward is given by

ξ t,x,ατ = ζ(τ, Xt,x,α
τ )1t≤τ<T + g(Xt,x,α

τ )1τ=T

for some utilities ζ and g, and where τ ∈ T t
t , the set of F

t -stopping times valued in
[t, T ].

The performance of this investment is evaluated under a particular nonlinear expec-
tation, called the recursive utility process (see e.g. [9]), which is associated with a
BSDE (with Lipschitz continuous drivers). It generalizes the standard additive util-
ities by including a dependence on the future utility (corresponding to the future
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wealth). Roughly speaking, the recursive utility depends on the future utility through
the dependance of the driver f on y, and can also depend on the “variability” or
“volatility” of future utility through the dependance of f on z and k.

Let x be the wealth at the initial time t , (α, τ ) be the chosen strategy, Eα,t,x [·] be
a recursive utility function associated with the BSDE with driver f α . The aim of the
investor is to maximize the utility of the investment:

u(t, x) := sup
τ∈T t

t

sup
α∈At

t

E t,α
t,τ [ξ t,x,ατ ],

over all admissible choices of (α, τ ). Under Assumption 2.1, it can be shown that
the value function u of this mixed optimization problem coincides with the unique
bounded viscosity solution of the (backward) HJBVI (2.5).

For the numerical tests, we consider a financial market with a risk-free asset with
an interest rate r and a risky asset whose price follows

dSt = St−
[
b dt + σ dWt +

∫
E

η(e) Ñ (dt, de)

]
,

where W is a Brownian motion and Ñ (dt, de) = N (dt, de) − ν(de)dt is a compen-
sated jump measure. If we denote by αt the percentage of the portfolio held in the
risky asset at time t , then the dynamics of the portfolio is given by

dXt = αt Xt−
[
b dt + σ dWt +

∫
E

η(e) Ñ (dt, de)

]
, X0 = x0.

The performance will be evaluated by the recursive utility function induced by the
BSDE with the following driver:

f (t, x, y, z) = ψ(t, x) − β y − κ|z|.

for some instantaneous reward function ψ . Recall that any concave utility function
admits a dual representation via a set of probability measures absolutely continuous
with respect to the original probability measure P (see e.g. [24]). This result allows
us to interpret κ ≥ 0 as an ambiguity-aversion coefficient relative to the Brownian
motion as suggested in [9, Sect. 3.3].

The value function of this control problem satisfies the following HJBVI:

{
min

{
u(t, x) − ζ(t, x), ut + infα∈[0,1]

( − Lαu − ψ + βu + ακσ |xux |)
)} = 0,

u(0, x) − g(x) = 0

(5.1)

for (t, x) ∈ [0, T ] × R, where the nonlocal operator Lα = Aα + K α satisfies for
φ ∈ C2([0, T ] × R)
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Table 1 Model parameters for the recursive utility maximization problem

β κ b σ μ T x0

0.2 1 0.1 0.15 6 1 1

Aαφ(t, x) = 1

2
α2σ 2x2φxx (t, x) + (αb + (1 − α)r)xφx (t, x),

K αφ(t, x) =
∫
R\{0}

(
φ(t, x + αxη(e)) − φ(t, x) − αxη(e)φx (t, x)

)
ν(de). (5.2)

We then specify the choice of data for our numerical experiments. We use the
exponential utility function ζ(t, x) = g(x) = (1− e−x )+, which determines both the
intermediate and terminal payoff, and acts as the initial condition and the obstacle to the

HJBVI. Moreover, we consider the tempered stable Lévy measure ν(de) = e−μ|e|
|e| de

on R with intensity η(e) = 1 ∧ |e| for the jump component (which is a special case
of the variance Gamma model in Reference [10]). For simplicity, we choose a zero
interest rate, i.e., r = 0.

We further choose the function ψ(t, x) = 0.8 exp(−(T − t)) exp(−x/2) as the
instantaneous reward. As we will see later, this choice of ψ implies that the optimal
control α varies in the state space and evolves in time, and there can be non-trivial
stopping. The resulting HJBVI will be localized to the domain (0, 2) with u(t, x) =
g(x) for (t, x) ∈ (0, T ) ×R \ (0, 2). The numerical values for the parameters used in
the experiments are given in Table 1.

Now we are ready to discuss the selection of the discretization parameters in detail.
The density of the tempered stable measure ν enables us to improve the estimates
in Lemma 4.10 to

∑
m �=0 κ

α,n
h,m,i ≤ log(ε), and hence choosing ε = h and �t =

O(h) leads us to a consistent approximation to the switching system (3.6). Moreover,
choosing θ = 1

40 and�t = h
15 ensures the numerical flux is stable and the contraction

constant of T in (3.19) is less than 1
10 .

The coefficients of the nonlocal terms are evaluated by the midpoint quadrature
formula, which is clearly monotone and consistent. We observe that for the control
problem with the parameters as in Table 1, the optimal strategy α∗ will always be
obtained at one of the endpoints of [0, 1]. In fact, using Taylor’s theorem, we are able
to approximate the nonlocal term K αu by

K αu(t, x) ≈ 1

2
α2x2

∫
R\{0}

(1 ∧ |e|)2 ν(de)uxx (t, x) = 1

2
α2x2Cuxx (t, x),

at any given (t, x) for which the value function lies above the obstacle and is suffi-
ciently smooth. Then we infer from the HJBVI (5.1) that the optimal control α∗ is the
maximizer of a quadratic function on [0, 1], which is attained in the interior only if

uxx (t, x) < 0, − bux − σ |ux |
(σ 2 + C)xuxx

∈ (0, 1).
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Table 2 Numerical solutions for the recursive utility maximization problem with different mesh sizes and
switching costs

h 1/25 1/50 1/100 1/200 1/400 1/800 1/1600

c = 1
40 (a) 0.77538 0.77770 0.77869 0.77912 0.77933 0.77942 0.77947

(b) 2321.35 984.37 437.19 203.03 97.30 47.53

(c) 2.3582 2.2516 2.1533 2.0867 2.0471

c = 1
160 (a) 0.79003 0.79194 0.79290 0.79338 0.79361 0.79373 0.79379

(b) 1916.14 954.91 476.01 237.63 118.73 59.34

(c) 2.0066 2.0061 2.0031 2.0015 2.0008

c = 1
640 (a) 0.79471 0.79663 0.79759 0.79806 0.79830 0.79842 0.79848

(b) 1917.40 955.54 476.33 237.79 118.80 59.38

(c) 2.0066 2.0061 2.0031 2.0015 2.0008

c = 1
2560 (a) 0.79588 0.79780 0.79876 0.79923 0.79947 0.79959 0.79965

(b) 1917.71 955.70 476.40 237.83 118.82 59.39

(c) 2.0066 2.0061 2.0031 2.0015 2.0008

c = 1
10240 (a) 0.79618 0.79810 0.79905 0.79953 0.79977 0.79988 0.79994

(b) 1917.79 955.74 476.42 237.84 118.83 59.39

(c) 2.0066 2.0061 2.0031 2.0015 2.0007

Shown are: (a) the numerical solutions Uh at (T , x0); (b) the increments Uh −U2h (in 10−6) ; (c) the rate
of increments (Uh −U2h)/(U2h −U4h)

However, since we have b < σ , the above conditions can never hold for any x > 0.
Consequently, we deduce that the admissible set is already finite, and replacing [0, 1]
by Aδ = {0, 1} in (5.1) will not introduce any discretiztion error. This has been
confirmed with our numerical experiments. For the sake of simplicity, we discretise
each component of the switching system on a single uniform mesh, thus Condition 1
(1) is trivially satisfied.

Table 2 contains the numerical solutions to the last component of the switching
system at the grid point (T , x0) with different mesh size h and switching cost c. We
examine the convergence of the numerical solutions, denoted as Uh , in h for fixed c,
as well as their convergence with respect to the cost c. For any fixed positive switching
cost c, we infer from the lines (a) that the numerical solutions converge monotonically
to the exact solution.Moreover, the lines (c) indicate the approximation error admits an
asymptoticmagnitude O(h)+O(�t), which seems not to be affected by the size of the
cost c. By considering the boldface values in Table 2 as an accurate approximation to
the exact solution of the switching system with a given cost c, we can further conclude
that the switching system is consistent to the HJBVI (5.1) with order 1. This follows
from the approximate factor of four between the differences 0.00469, 0.00117, and
0.00029 between the last three pairs of values, proportional to the reduction in c.
Therefore, by taking c = O(h) and �t = O(h), we can obtain a first-order scheme
for the HJBVI.
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Table 3 Numerical results for the recursive utility maximization problemwith different control refinements

J 2 11 21 41 81

Average error (×10−7) (a) 1.1392 0.2398 0.0570 0.0133 0

Runtime in seconds (b) 200.014 1106.266 2142.714 4204.336 8536.232

(c) 155.977 228.594 331.294 501.895 809.178

(d) 53.728 124.390 192.634 230.019 262.488

(e) 102.249 104.204 138.660 271.876 546.690

Speed-up rate (b/e) (f) 1.9561 10.61 15.45 15.46 15.61

Shown are: (a) the difference to the solution with the finest refinement; (b) total runtime time without paral-
lelization; (c) total runtime time with parallelization on 16 processors; (d) total communication time among
processors; (e) net parallel computation time without communication; (f) speed-up rate of parallelization

We then proceed to analyze the effect of the control discretization.We pick the same
parameters as those in Table 1, except that b = 0.25, which is chosen such that it is
now possible that the optimal control is attained in the interior of (0, 1) (as seen from
a similar argument as earlier). Computations are performed using Matlab R2016b
on a 3.30GHz Intel Xeon ES-2667 16-Core processor with 256 GB RAM to enable
parallelization. Table 3 illustrates the numerical results for different control meshes
(J = 1/δ + 1) with a fixed mesh size h = 0.005 and switching cost c = 1/2560, and
also compares the runtime with or without parallelization.

We can clearly observe from line (a) second order convergence of the numeri-
cal solutions, and a relatively coarse control mesh has already yielded an accurate
approximation with a negligible control discretization error.

Next, we discuss lines (b)–(f) which analyse the algorithm’s parallel efficiency.
Hereby, the implicit finite difference scheme for individual components of the switch-
ing system (i.e., (3.9), for different j) is solved independently on different processors,
while the maximisation step (3.8) requires communication between processors.

The total execution time with and without parallelization are presented in line (b)
and (c), respectively, which indicate a significant reduction of computational times.
Moreover, by subtracting the communication time among clusters, as shown in line
(d), from the total runtime, we can obtain the actual time spent on executing the
numerical scheme (line (e)). The speed-up rate of the parallelization is shown in line
(f),which growswith the number of controls, and remains stable at the number of cores.
Therefore, together with parallelization, piecewise constant timestepping enables us
to achieve a high accuracy in the control discretization without significantly increasing
the computational time, which is an advantage over policy iterations, which do not
parallelise naturally.

We finally examine the impact of the computational domain by performing com-
putations on (0, 3) with h = 1/400, �t = h/20, c = 1/640 and the parameters as in
Table 1. Compared to the results in Table 2, this larger domain leads to a relative differ-
ence of 7.53 ·10−7, which is negligible compared to the time and spatial discretization
errors.

123



Applied Mathematics & Optimization (2021) 83:1387–1429 1423

Fig. 1 Numerical value functions (left) and corresponding control strategies with J = 21 (right), where
the early stopping region is white

The numerical value function and the corresponded feedback control strategy with
J = 21 are presented in Figure 1, in which the white area represents the region where
the obstacle is active, and otherwise the colour indicates the value of the optimal
control, as shown in the panel on the right. The approximation to the optimal control
pair (τ, α)was found from the numerical solution as follows (see also (3.8) andRemark
3), noting that in our tests x j,i = xk,i for all j, k, and therefore no interpolation is
needed:

i∗n ∈ argmaxkU
n
k,i ,

θni =
{
0 maxk Un

k,i > ξ(tn, x1,i ),
1 maxk Un

k,i ≤ ξ(tn, x1,i ),

where αn
i = αi∗n is an approximation to the optimal policy and {(tn, x1,i ) : θni = 1} is

an approximation to the stopping region.

6 Conclusions

This paper provides a PDE approximation scheme for the value function of a mixed
stochastic control/optimal stopping problem with nonlinear expectations and infinite
activity jumps, which is the unique viscosity solution of a nonlocal HJB variational
inequality. The approach that we have adopted is based on piecewise constant policy
time stepping (PCPT), which reduces the problem to a system of semi-linear PDEs,
and a monotone approximation scheme. We prove the convergence of the numerical
scheme and illustrate the theoretical results with some numerical examples in the case
of a recursive utility maximisation problem.

To the best of our knowledge, this is the first paper which proposes a numerical
approximation for a control problem in such a generality. Natural next steps would be
to derive theoretical results on the convergence rate and to extend this approach to the
case of Hamilton–Jacobi–Bellman–Isaac equations obtained in Reference [8].
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Appendix: Comparison Principle for Switching Systems

In this section, we establish the comparison principle for switching system (3.6), cf.
Theorem 4.5.We consider a slightlymore general switching systemwith no truncation
of the singular measure in Kε and Bε, which includes as a special case the switching
system (3.6). We first use a classical no-loop argument to reduce the problem into
scalar cases, and then analyze the scalar HJBVI by extending the results for continuous
solutions in Reference [16] to semicontinuous viscosity solutions. For simplicity, we
denote by σ the modified diffusion coefficient σ̃ α defined as (3.1).

Proof of Theorem 4.5 Set

M = sup
1≤ j≤J ,x,y∈QT

(Uj (x) − Vj (y)).

It suffices to show that M ≤ 0. For any given ε, ρ > 0, we introduce the functions

ψ
ε,ρ
j (t, s, x, y) = Uj (t, x) − Vj (s, y) − |x − y|2

ε2

− |t − s|2
ε2

− ρ2(|x |2 + |y|2), j = 1, . . . , J , (7.1)

for each t, s ∈ [0, T ] and x, y ∈ R
d , and define the quantity

Mε,ρ := sup
j,t,s,x,y

ψ
ε,ρ
j (t, s, x, y).

The upper semicontinuity and boundedness ofUj − Vj , along the penalization terms,
imply that the supremum is obtained at somepoint ( jε,ρ , tε,ρ, sε,ρ, xε,ρ, yε,ρ). Then as
inReference [16], one can find a constantC such that |tε,ρ−sε,ρ |+|xε,ρ−yε,ρ | ≤ Cε,
|xε,ρ | ≤ C

ρ
, and |yε,ρ | ≤ C

ρ
. Passing to a subsequence if necessary, we may assume

that for each ρ, the sequences {tε,ρ}ε and {sε,ρ}ε converge to a common limit tρ ,
while the sequences {xε,ρ}ε and {yε,ρ}ε converge to a common limit xρ as ε tends to
0. Moreover, jε,ρ lies in a finite set, we may assume jε,ρ = jρ for all ε. The following
lemma gives the convergence of these sequences, whose proof will be deferred after
the proof of Theorem 4.5.

Lemma 7.1 Extracting a further subsequence if necessary, we have

lim
ε→0

|xε,ρ − yε,ρ |2
ε2

= lim
ε→0

|tε,ρ − sε,ρ |2
ε2

= 0, lim
ε→0

Ujρ (t
ε,ρ, xε,ρ) = Ujρ (t

ρ, xρ)
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lim
ε→0

Vjρ (s
ε,ρ, yε,ρ) = Vjρ (t

ρ, xρ), lim
ρ→0

ρ2|xρ |2 = 0, lim
ρ→0

lim
ε→0

Mε,ρ = M .

We now divide our analysis into three cases to establish M ≤ 0.
If there exists a subsequenceof {tρ} such that tρ = 0 for allρ,we thendeduceM ≤ 0

along this subsequence by adapting the arguments inReference [16] to semicontinuous
solutions.

On the other hand, if tρ is different from 0 for all ρ, then for any fixed ρ and small
enough ε, using Lemma 7.2, which can be proved similarly as Lemma 4.1 in Reference
[6], we know there exists jε,ρ0 ∈ {1, . . . , J }, which for simplicity is still denoted as
jε,ρ , such that Ujε,ρ (tε,ρ, xε,ρ) > M jε,ρU (tε,ρ, xε,ρ). In other words, at the point
(tε,ρ, sε,ρ, xε,ρ, yε,ρ), by considering the jε,ρ component of the switching system,
we can without loss of generality ignore the termUjε,ρ −M jε,ρU in the definition of
subsolutions and get back to the scalar HJBVI.

In this case, if we further assume for each ρ, there exists a subsequence of {xε,ρ}ε
such that (Ujρ −ζ )(tε,ρ, xε,ρ) ≤ 0, then the same arguments in Reference [16] enables
us to derive that M ≤ 0.

Now we come to the final case, where for each ρ, ε > 0, we have (Ujρ −
ζ )(tε,ρ, xε,ρ) > 0. Applying the nonlocal Jensen-Ishii’s lemma as in Reference [16]
enables us to obtain a ∈ R, p̄, q̄ ∈ R

d , and X ,Y ∈ R
d×d such that it holds for any

δ > 0 that

Hjρ (t
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), a, p̄, X , lK , lB)

−Hjρ (s
ε,ρ, yε,ρ, Vjρ (s

ε,ρ, yε,ρ), a, q̄,Y , l ′K , l ′B) ≤ 0, (7.2)

where lK , l ′K , lB, l ′B are defined as in Reference [16] for each δ > 0 and
Hjρ (t, x, u, a, p, X , l1, l2) is given by:

Hjρ := a − tr(σ (α jρ , x)(σ (α jρ , x))
T X)

−b(α jρ , x)
T p − l1 − f (α jρ , t, x, u, σ (α jρ , x)

T p, l2).

We now extend the arguments in Reference [16] to semicontinuous subsolution U
(resp. supersolution V ) and argue by contradiction by assuming M > 0. Then for
small enough ρ, ε, δ > 0, we obtain from the monotonicity of f in u that there exists
a constant C > 0 satisfying

0 <
C

2
M ≤ CMε,ρ ≤ C(Ujρ (t

ε,ρ, xε,ρ) − Vjρ (s
ε,ρ, yε,ρ))

≤ Hjρ (s
ε,ρ, yε,ρ,Ujρ (t

ε,ρ, xε,ρ), a, q̄,Y , l ′K , l ′B)

− Hjρ (s
ε,ρ, yε,ρ, Vjρ (s

ε,ρ, yε,ρ), a, q̄,Y , l ′K , l ′B)

= Hjρ (s
ε,ρ, yε,ρ,Ujρ (t

ε,ρ, xε,ρ), a, q̄,Y , l ′K , l ′B)

− Hjρ (t
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), a, p̄, X , l ′K , l ′B) (7.3)

+ Hjρ (t
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), a, p̄, X , l ′K , l ′B)

− Hjρ (t
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), a, p̄, X , lK , lB) (7.4)
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+ Hjρ (t
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), a, p̄, X , lK , lB)

− Hjρ (s
ε,ρ, yε,ρ, Vjρ (s

ε,ρ, yε,ρ), a, q̄,Y , l ′K , l ′B), (7.5)

from which, by expanding (7.3), using the fact that f is Lipschitz continuous and
monotone in k for (7.4), and applying (7.2) to (7.5), we can derive that

0 ≤CM/2 ≤ lK − l ′K + C(lB − l ′B) + [b(α jρ , x
ε,ρ)T p̄ − b(α jρ , y

ε,ρ)T q̄]
+1

2

[
tr(σ (α jρ , x

ε,ρ)(σ (α jρ , x
ε,ρ))T X

− σ(α jρ , y
ε,ρ)(σ (α jρ , y

ε,ρ))T Y )
]

+ f (α jρ , t
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), σ (α jρ , x
ε,ρ)T p̄, l ′B)

− f (α jρ , s
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), σ (α jρ , x
ε,ρ)T p̄, l ′B)

+ f (α jρ , s
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), σ (α jρ , x
ε,ρ)T p̄, l ′B)

− f (α jρ , s
ε,ρ, yε,ρ,Ujρ (t

ε,ρ, xε,ρ), σ (α jρ , x
ε,ρ)T p̄, l ′B)

+ f (α jρ , s
ε,ρ, yε,ρ,Ujρ (t

ε,ρ, xε,ρ), σ (α jρ , x
ε,ρ)T p̄, l ′B)

− f (α jρ , s
ε,ρ, yε,ρ,Ujρ (t

ε,ρ, xε,ρ), σ (α jρ , y
ε,ρ)T q̄, l ′B)

≤lK − l ′K + C(lB − l ′B) + 1

2

[
tr(σ (α jρ , x

ε,ρ)(σ (α jρ , x
ε,ρ))T X

− σ(α jρ , y
ε,ρ)(σ (α jρ , y

ε,ρ))T Y )
]

+ f (α jρ , t
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), σ (α jρ , x
ε,ρ)T p̄, l ′B)

− f (α jρ , s
ε,ρ, xε,ρ,Ujρ (t

ε,ρ, xε,ρ), σ (α jρ , x
ε,ρ)T p̄, l ′B)

+ |xε,ρ − yε,ρ | + [b(α jρ , x
ε,ρ)T p̄ − b(α jρ , y

ε,ρ)T q̄]
+ [σ(α jρ , x

ε,ρ)T p̄ − σ(α jρ , y
ε,ρ)T q̄].

Then noticing the estimates derived in Reference [16] for each term on the right-
hand side of the above expression are uniform in the control α jρ , and successively
passing δ, ε and ρ to 0, we deduce that 0 < M ≤ 0, which leads to a contradiction.
Thus we conclude M ≤ 0 and complete the proof. ��
Proof of Lemma 7.1 For each ρ > 0 and j = 1, . . . , J , we introduce the functions
Ûρ

j (t, x) = Uj (t, x) − η2|x |2 and V̂ ρ
j (t, x) = Vj (t, x) − η2|x |2. Then we define

Mρ = sup
j,t,x

(Ûρ
j − V̂ ρ

j ),

which is attained at some point ( ĵρ, t̂ρ, x̂ρ). Recall that for any ρ, we can assume
without loss of generality that {(tε,ρ, sε,ρ, xε,ρ, yε,ρ)}ε converges to (tρ, tρ, xρ, xρ)

as ε → 0 and jε,ρ = jρ for all ε. Then the definition of Mε,ρ gives us that

Mρ = (Ûρ

ĵρ
− V̂ ρ

ĵρ
)(t̂ρ, x̂ρ) ≤ Mε,ρ = Ujρ (t

ε,ρ, xε,ρ) − Vjρ (s
ε,ρ, yε,ρ)
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− |xε,ρ − yε,ρ |2
ε2

− |tε,ρ − sε,ρ |2
ε2

− ρ2(|xε,ρ |2 + |yε,ρ |2). (7.6)

Define l̄ρ = lim supε→0
|xε,ρ−yε,ρ |2

ε2
and lρ = lim infε→0

|xε,ρ−yε,ρ |2
ε2

, then we obtain
from (7.6) that

0 ≤ lρ ≤ l̄ρ ≤ lim sup
ε→0

(
Ujρ (t

ε,ρ, xε,ρ) − Vjρ (s
ε,ρ, yε,ρ)

− ρ2(|xε,ρ |2 + |yε,ρ |2)) − (Ûρ

ĵρ
− V̂ ρ

ĵρ
)(t̂ρ, x̂ρ)

≤ (Ûρ
jρ − V̂ ρ

jρ )(t
ρ, xρ) − (Ûρ

ĵρ
− V̂ ρ

ĵρ
)(t̂ρ, x̂ρ) ≤ 0,

where we have used the semicontinuity of Ujρ and Vjρ . Similarly, we can derive

limε→0
|tε,ρ−sε,ρ |2

ε2
= 0, which along with (7.6) implies that limε→0 Mε,ρ = Mρ . The

fact that limρ→0 Mρ = M can be shown as in Reference [16].
Let us now prove limρ→0 ρ2|xρ |2 = 0. It holds for each ρ > 0 that

Mρ = lim
ε→0

Mε,ρ = lim sup
ε→0

Mε,ρ ≤ Ujρ (t
ρ, xρ) − Vjρ (t

ρ, xρ) − 2ρ2|xρ |2 ≤ Mρ,

(7.7)

and hence all inequalities in the above expression are in fact equalities. Thus we have

Mρ/2 = sup
j,t,x

[
Uj (t, x) − Vj (t, x) − 2(

ρ

2
)2|x |2

]
≥ Ujρ (t

ρ, xρ) − Vjρ (t
ρ, xρ)

− 2ρ2|xρ |2 + 3

2
ρ2|xρ |2

= Mρ + 3

2
ρ2|xρ |2,

which implies 0 ≤ lim supρ→0 ρ2|xρ |2 ≤ lim supρ→0
2
3 (M

ρ/2 − Mρ) = 0.

Finally, we obtain from (7.7) and limε→0
|tε,ρ−sε,ρ |2

ε2
= limε→0

|xε,ρ−yε,ρ |2
ε2

= 0 that
we have limε→0Ujρ (tε,ρ, xε,ρ)−Vjρ (sε,ρ, yε,ρ) = Ujρ (tρ, xρ)−Vjρ (tρ, xρ), which
together the semicontinuity of Ujρ and Vjρ implies lim supε→0Ujρ (tε,ρ, xε,ρ) =
Ujρ (tρ, xρ) and lim infε→0 Vjρ (sε,ρ, yε,ρ) = Vjρ (tρ, xρ). By extracting further sub-
sequences if necessary, we complete our proof. ��
Lemma 7.2 Let U (resp. V) be a bounded subsolution (resp. supersolution) of (3.6).
For any given ε, ρ > 0, we consider the function ψ

ε,ρ
j (t, s, x, y) as defined in (7.1)

and Mε,ρ = sup j,t,s,x,y ψ
ε,ρ
i (t, s, x, y). If there exists an index jε,ρ and a point

(tε,ρ, sε,ρ, xε,ρ, yε,ρ) ∈ (0, T ]2 ×R
2d such that ψ jε,ρ (sε,ρ, tε,ρ, xε,ρ, yε,ρ) = Mε,ρ ,

then there exists an index jε,ρ0 ∈ {1, . . . , J } such that

ψ jε,ρ0
(sε,ρ, tε,ρ, xε,ρ, yε,ρ) = Mε,ρ and U jε,ρ0

(tε,ρ, xε,ρ) > M jε,ρ0
(tε,ρ, xε,ρ).
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