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Abstract
The paper presents new results about convergence of the gradient projection and the
conditional gradient methods for abstract minimization problems on strongly convex
sets. In particular, linear convergence is proved, although the objective functional does
not need to be convex. Such problems arise, in particular, when a recently developed
discretization technique is applied to optimal control problems which are affine with
respect to the control. This discretization technique has the advantage to provide
higher accuracy of discretization (compared with the known discretization schemes)
and involves strongly convex constraints andpossibly non-convexobjective functional.
The applicability of the abstract results is proved in the case of linear-quadratic affine
optimal control problems. A numerical example is given, confirming the theoretical
findings.

Keywords Optimal control · Mathematical programming · Numerical methods ·
Gradient methods · Affine control systems · Bang–bang control
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1 Introduction

Solving numerically optimal control problems in which the control function appears
linearly, and performing error analysis, are still challenging issues due to the typi-
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cal discontinuity of the optimal control. Considerable progress was made in the past
decade in the analysis of discretization schemes in combination with various methods
of solving the resulting discrete-time optimization problems. The papers [1,2,25,27]
apply to problems with linear dynamics, while [3,11] address nonlinear affine (in the
control) dynamics. Usually the discretization is performed by Runge–Kutta schemes
(mainly the Euler scheme) and the accuracy is at most of first order due to the disconti-
nuity of the optimal control. Discretization schemes of higher accuracy were recently
proposed in [21,24] for systems with linear dynamics and Mayer or Bolza problems.
In both cases the error analysis is based on the assumption that the optimal control is
of purely bang–bang type.

On the other hand, the papers [12,23] present convergence results for a version
of the (abstract) Newton method for nonlinear problems, affine with respect to the
control. Every step of the Newton method requires solving a linear-quadratic (affine
in the control) optimal control problem for a linear system, namely a problem of the
following type:

minimize
x,u

J (x, u) := 1

2
x(T )�Qx(T ) + q�x(T )

+
∫ T

0

(
1

2
x(t)�W (t)x(t) + x(t)�S(t)u(t)

)
dt, (1)

subject to

ẋ(t) = A(t)x(t) + B(t)u(t) + d(t), x(0) = x0, t ∈ [0, T ], (2)

u(t) ∈ U := [−1, 1]m . (3)

Here, [0, T ] is a fixed time horizon, Q ∈ R
n×n, q ∈ R

n , A(t),W (t) ∈ R
n×n ,

B(t), S(t) ∈ R
n×m , d(t) ∈ R

n for every t ∈ [0, T ], the superscript � means transpo-
sition. Admissible controls are all measurable functions u : [0, T ] → U . The state of
the system at time t is x(t) ∈ R

n , where x(·) is the (absolutely continuous) solution
of (2), given an admissible control u(·). Linear terms are not included in the integrand
in (1), since they can be shifted in a standard way into the differential equation (2).

For solving the above problem one can apply the high-order discretization scheme
developed in [21,24]. It results in a discrete-time optimal control problem (a mathe-
matical programming problem), where the gradient of the objective function can be
calculated following a standard procedure involving the solution of the associated
adjoint system, so that gradient-type methods are conveniently applicable. And here
we encounter a remarkable fact: although neither the objective functional (1) of the
continuous-time problem (1)–(3) nor the control constraints (3) are strongly convex,
it turns out that the feasible set of the discretized problem is strongly convex. This
brings into consideration the issue of convergence of gradient methods for problems
with strongly convex feasible sets and possibly non-convex objective functions (even
if the functional J in (1) is convex on the set of admissible control–trajectory pairs,
the discretized problem may fail to be convex!).
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Versions of the gradient projection method (GPM) and the conditional gradient
method (CGM) are widely studied (see e.g. [18,19] and the references therein), but
results about linear convergence of the generated sequence of iterates seem to be
available only for problems with strongly convex objective functions. Exceptions are
the papers [6,15], where strong convexity is assumed for the feasible set instead of the
objective function. However, as clarified in the end of Sect. 2.1 below, the additional
assumptions in these two papers are rather strong and are not fulfilled for the problem
arising in the optimal control context as described above.

In this paper we present convergence results for the gradient projection and the
conditional gradient methods for minimization problems in a Hilbert space, where the
feasible set is strongly convex but the objective functional is not necessarily convex.
These results are new even for convex or strongly convex objective functional, but
we relax the convexity assumption due to the needs of our main goal—to cover the
problems arising in optimal control of affine systems, as described above. For that we
consider objective functionals that we called, for shortness, (ε, δ)-approximately con-
vex. These functions constitute a larger class than that of the weakly convex functions
(see e.g. [4]). In Sect. 2.1 we prove linear convergence of the sequence of approximate
solutions generated by the GPM, provided that the step sizes are appropriately chosen.
Apart from the applicability for non-convex objective functionals, this result does not
require the additional conditions in [6,15]. As usual, the “appropriate” choice of the
step sizes is expressed by some constants related to the data of the problem, which are
often not available (or very roughly estimated). Therefore, we present an additional
convergence result involving a rather general and constructive condition for the step
sizes (well-known in the literature).

The conditional gradient method may have some advantages (compared with the
GPM) in our optimal control application. For this reason we also prove a linear con-
vergence result for the CGM. This is done in Sect. 2.2.

In Sect. 3 we turn back to the optimal control problem (1)–(3). The first two sub-
sections are preliminary, where we introduce notations, formulate assumptions and
present the discrete approximation introduced in [21,24] and the error estimate proved
in [24]. All this is needed for understanding of the implementation of the GPM and
the CGM and of the proofs of the error estimations. Then, in Sects. 3.3 and 3.4 we
prove the applicability of the abstract convergence results, obtained in Sect. 2, to our
discretized optimal control problem and present details about the implementation of
the GPM and the CGM. A numerical example that confirms the theoretical findings is
given in Sect. 3.5.

The paper concludes with indication of some open problems for further research
(Sect. 4).

2 Gradient Methods for Problems with Strongly Convex Feasible Set

In this section we investigate the convergence of certain gradient methods for an
abstract minimization problem of the form
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min
w∈K f (w), (4)

where K is a convex subset of a real Hilbert space H and f : H → R is a function
for which certain conditions weaker than convexity will be posed. We remind that if
w∗ ∈ K is a (local) solution of (4) and f is Fréchet-differentiable at w∗ then

〈∇ f (w∗), y − w∗〉 ≥ 0 ∀y ∈ K .

Convergence results for gradient projection methods for this problem in finite dimen-
sional spaces and convex f are known (see e.g. [19]). It has been proved that the
iterative sequence generated by versions of the gradient projection method converges
linearly to a solution, provided that the objective function f is strongly convex and its
gradient is Lipschitz continuous. Extensions to infinite dimensional Hilbert spaces are
straightforward. In contrast, in our results below the function f does not even need
to be convex, while the set K is assumed strongly convex. Some convergence results
for smooth convex functions f and strongly convex sets K are obtained in [6,15], but
under suppositions that (apart from the convexity of f ) are not satisfied in our main
motivation as described in the introduction (see Remark 2.3 below). The convergence
results presented in this section are substantially stronger.

As usual, 〈·, ·〉 denotes the inner product in H and ‖ · ‖—the induced norm.
Let K be a nonempty closed convex subset of H . For each u ∈ H , there exists a

unique point in K (see [16, p. 8]), denoted by PK (u), such that

‖u − PK (u)‖ ≤ ‖u − v‖ ∀v ∈ K .

It is well-known that the metric projection PK is a nonexpansive mapping, i.e., for all
u, v ∈ H

‖PK (u) − PK (v)‖ ≤ ‖u − v‖.

Moreover for any u ∈ H and v ∈ K , it holds that

〈u − PK (u), v − PK (u)〉 ≤ 0. (5)

Conversely, if w ∈ K and 〈u − w, v − w〉 ≤ 0 for all v ∈ K , then w = PK (u).
Below we remind the following notions.

Definition 2.1 The set K ⊂ H is called strongly convex or γ -strongly convex if there
exists a number γ > 0 (calledmodulus of strong convexity) such that for any u, v ∈ K
and any λ ∈ [0, 1] it holds that

λu + (1 − λ)v + λ(1 − λ)
γ

2
‖u − v‖2z ∈ K ∀ z with ‖z‖ ≤ 1.

An alternative definition is often used in the literature: a set is strongly convex (with
respect to the number R > 0) if it coincides with the intersection of all balls of radius
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R containing this set. The two definitions are equivalent (see e.g. [28, Theorem 1])
and the relation between γ and R is that R = 1/γ .1

Definition 2.2 A function f : H → R is called L-smooth on K if f is Fréchet
differentiable and its derivative, ∇ f , is L-Lipschitz continuous on K , i.e.,

‖∇ f (u) − ∇ f (v)‖ ≤ L‖u − v‖ ∀ u, v ∈ K .

The following definition introduces a property that is usually called “weak convex-
ity” or “paraconvexity” (see e.g. [4]).

Definition 2.3 A function f : H → R is called ε-convex (with ε ≥ 0) on a convex
subset K ⊂ H at ŵ ∈ K if the function fε(w) := f (w) + 1

2ε‖w − ŵ‖2 is convex on
K at ŵ, i.e.

fε(αw + (1 − α)ŵ) ≤ α fε(w) + (1 − α) fε(ŵ)

for every w ∈ K and α ∈ (0, 1).

If f : H → R is ε-convex at ŵ and differentiable, then

〈∇ fε(w) − ∇ fε(ŵ), w − ŵ〉 ≥ 0 ∀w ∈ K .

This implies that

〈∇ f (w) − ∇ f (ŵ), w − ŵ〉 ≥ −ε‖w − ŵ‖2 ∀w ∈ K .

In our main application, the function f does not need to be even ε-convex with
ε reasonably small. Therefore we further weaken the convexity as in the following
definition.

Definition 2.4 A Fréchet-differentiable function f : H → R is called (ε, δ)-
approximately convex (with ε, δ ≥ 0) on a convex subset K ⊂ H at ŵ ∈ K if

〈∇ f (w)−∇ f (ŵ), w − ŵ〉 ≥ −ε‖w − ŵ‖2 ∀w ∈ K with ‖w − ŵ‖ ≥ δ. (6)

Notice that δ can be taken equal to zero in the above definition, in which case the
(ε, δ)-approximate convexity reduces to ε-convexity.

The following three results provide the ground for the error analysis of the GPM
and the CGM.

Proposition 2.1 Assume that K is γ -strongly convex, f is differentiable on K and
ŵ ∈ K is a solution of problem (4) such that ‖∇ f (ŵ)‖ ≥ ρ for some number ρ > 0.

1 The equivalence is proved in [28, Theorem 1] for finite-dimensional Hilbert spaces only, but the proof
uses only two-dimensional geometric considerations that work in any Hilbert space.
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Assume also that f is (ε, δ)-approximately convex on K at ŵ and that the number
ν := γρ

4 − ε is positive. Then

〈∇ f (w),w − ŵ
〉 ≥ ν‖w − ŵ‖2 ∀w ∈ K with ‖w − ŵ‖ ≥ δ. (7)

Moreover, any solution of problem (4) is at distance at most δ from ŵ.

Proof Setting z = −∇ f (ŵ)

‖∇ f (ŵ)‖ , we have ‖z‖ = 1. By the strong convexity of K we obtain
that for any w ∈ K

y := 1

2
(w + ŵ) + γ

8
‖w − ŵ‖2z ∈ K .

Due to (6), for all w ∈ K with ‖w − ŵ‖ ≥ δ we have

〈∇ f (w) − ∇ f (ŵ), w − ŵ
〉 ≥ −ε‖w − ŵ‖2.

Hence,

〈∇ f (w),w − ŵ
〉 ≥ 〈∇ f (ŵ), w − ŵ

〉 − ε‖w − ŵ‖2

= 2

〈
∇ f (ŵ),

w + ŵ

2
− y

〉
+ 2

〈∇ f (ŵ), y − ŵ
〉 − ε‖w − ŵ‖2.

(8)

The optimality of ŵ implies that

〈∇ f (ŵ), y − ŵ
〉 ≥ 0.

Then from (8) we obtain that

〈∇ f (w),w − ŵ
〉 ≥ 2

〈
∇ f (ŵ),

γ

8
‖w − ŵ‖2 ∇ f (ŵ)

‖∇ f (ŵ)‖
〉
− ε‖w − ŵ‖2

= γ

4
‖∇ f (ŵ)‖‖w − ŵ‖2 − ε‖w − ŵ‖2 ≥ ν‖w − ŵ‖2,

that is, (7).
Now assume that w̄ is another solution of (4). The optimality of w̄ implies, in

particular, that

〈∇ f (w̄), ŵ − w̄
〉 ≥ 0.

Assuming that ‖w̄ − ŵ‖ > δ we may substitute w = w̄ ∈ K in (7), which gives

〈∇ f (w̄), w̄ − ŵ
〉 ≥ ν‖w̄ − ŵ‖2.
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Adding the last two inequalities we obtain that

0 ≥ ν‖w̄ − ŵ‖2.

which contradicts the assumption ‖w̄ − ŵ‖ > δ. The proof is completed. ��
Property (7) will play an important role in the further analysis. In fact, the (ε, δ)-

approximate convexity of f and the strong convexity of K were needed just to ensure
existence of ν > 0 and δ ≥ 0 for which condition (7) is fulfilled. We mention that (7)
is always fulfilled if the set K is convex and the function f is strongly convex, which
is not the case here.

Lemma 2.1 Let f be differentiable on K and let condition (7) be fulfilled with some
ν > 0. If for some w ∈ K and λ > 0 it holds that PK (w − λ∇ f (w)) = w, then
‖w − ŵ‖ ≤ δ.

Proof Contrary to the claim of the lemma, assume that ‖w − ŵ‖ > δ. Then from
Proposition 2.1 we have that the first inequality in (7) is fulfilled by w. From the
condition PK (w − λ∇ f (w)) = w we have that

〈∇ f (w), u − w〉 ≥ 0 ∀u ∈ K .

Applying this inequality for u = ŵ and adding it to the first inequality in (7) we obtain
that

0 ≥ ν‖w − ŵ‖2,

which is a contradiction. ��
Lemma 2.2 Let f be differentiable on K and let condition (7) be fulfilled with some
ν > 0. If for some w ∈ K it holds that ∇ f (w) = 0, then ‖w − ŵ‖ ≤ δ.

Proof If we assume ‖w − ŵ‖ > δ, then from the first inequality in (7) we have

0 ≥ ν‖w − ŵ‖2,

which is a contradiction. ��

2.1 The Gradient ProjectionMethod

For solving the minimization problem (4), we consider first the most classical algo-
rithm, the gradient projection method (GPM) stated below. In the formulation of the
algorithm we only assume that f is L-smooth.
Algorithm GPM.

Step 0: Choose w0 ∈ K . Set k = 0.
Step 1: If wk = PK (wk − ∇ f (wk)) then Stop. Otherwise, go to Step 2.

123



1028 Applied Mathematics & Optimization (2020) 81:1021–1054

Step 2: Choose λk > 0 and calculate

wk+1 = PK (wk − λk∇ f (wk)) . (9)

Replace k by k + 1; go to Step 1.

It is well-known that for convex f and K the GPM has the error estimate O( 1k ) in
term of the objective function when λk = λ ∈ (0, 1

L ], see e.g. [7]. More precisely, if

problem (4) has a solution and f̂ is the minimal value of f on K , then

f (wk) − f̂ ≤ Lm0

2k
∀k,

wherem0 is the distance fromw0 to the solution set of (4). If in addition, f is strongly
convex, then the sequence {wk} converges linearly to the unique solution of (4). If
f is only convex (but not necessarily strongly convex), the sequence {wk} converges
weakly [20]. When K is strongly convex, the linear convergence of {wk} is obtained
under additional conditions (too strong for our main application) in [5,6,15].

In this subsection, we prove that if condition (7) is fulfilled with ν > 0 then the
sequence {wk} generated by the GPM linearly approaches ŵ at least until entering a
δ-neighborhood of ŵ. Proposition 2.1 gives conditions for existing of such ν in terms
of strong convexity of the set K and (ε, δ)-approximate convexity of the function f .
We mention that if the above algorithm of the GPM stops at Step 1 for some k then,
according to Lemma 2.1, ‖wk − ŵ‖ ≤ δ, that is, a δ-approximate solution is attained
(obviously this is meaningful only if δ is sufficiently small).

Proposition 2.2 Let f be L-smooth on K , let condition (7) be fulfilled with some
ν > 0, and let ‖w0 − ŵ‖ ≥ δ. Then the sequence {wk} generated by the GPM satisfies
the inequality

[
1 + λk

(
2ν − λk L

2
)]

‖wk+1 − ŵ‖2 ≤ ‖wk − ŵ‖2 (10)

at least as long as ‖wk+1 − ŵ‖ ≥ δ.

Proof Since wk+1 = PK (wk − λk∇ f (wk)), due to inequality (5) we have

〈wk − λk∇ f (wk) − wk+1, w − wk+1〉 ≤ 0 ∀w ∈ K .

Substitution of w = ŵ ∈ K in this inequality yields

〈wk − λk∇ f (wk) − wk+1, ŵ − wk+1〉 ≤ 0,

or equivalently

2〈wk − wk+1, ŵ − wk+1〉 ≤ 2λk〈∇ f (wk), ŵ − wk+1〉
= −2λk〈∇ f (wk+1), wk+1 − ŵ〉

+ 2λk〈∇ f (wk) − ∇ f (wk+1), ŵ − wk+1〉. (11)
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Since wk+1 ∈ K and λk > 0, if ‖wk+1 − ŵ‖ ≥ δ then due to (7)

− 2λk〈∇ f (wk+1), wk+1 − ŵ〉 ≤ −2λkν‖wk+1 − ŵ‖2. (12)

By the Cauchy–Schwarz inequality and the Lipschitz continuity of ∇ f , we obtain
that

2λk〈∇ f (wk) − ∇ f (wk+1), ŵ − wk+1〉 ≤ 2λk‖∇ f (wk) − ∇ f (wk+1)‖‖wk+1 − ŵ‖
≤ 2λk L‖wk − wk+1‖‖wk+1 − ŵ‖
≤ ‖wk − wk+1‖2 + (λk L)2‖wk+1 − ŵ‖2.

(13)

Inequalities (11), (12) and (13) imply that

2〈wk−wk+1, ŵ−wk+1〉 ≤ −2λkν‖wk+1−ŵ‖2+‖wk−wk+1‖2+(λk L)2‖wk+1−ŵ‖2.
(14)

On the other hand,

2〈wk − wk+1, ŵ − wk+1〉 = ‖wk − wk+1‖2 + ‖wk+1 − ŵ‖2 − ‖wk − ŵ‖2. (15)

Combining (14) and (15) we obtain that

‖wk − wk+1‖2 + ‖wk+1 − ŵ‖2 − ‖wk − ŵ‖2
≤ −2λkν‖wk+1 − ŵ‖2 + ‖wk − wk+1‖2 + (λk L)2‖wk+1 − ŵ‖2,

hence (10) is satisfied. ��
Now we can state and prove the main convergence result for the GPM.

Theorem 2.1 Let all the assumptions in Proposition 2.2 be satisfied. Let the sequence
{λk} be chosen such that

0 < a ≤ λk ≤ b <
2ν

L2 ∀k, (16)

where a, b are some positive constants. Define

μ = 1√
1 + a

(
2ν − bL2

) ∈ (0, 1). (17)

Let {wk} be the sequence generated by the GPM. Then for every k, if ‖wk+1 − ŵ‖ ≥ δ

then
‖wk+1 − ŵ‖ ≤ μ ‖wk − ŵ‖. (18)

Moreover, for every k, if ‖wi+1 − ŵ‖ ≥ δ, i = 0, . . . , k, then the following a priori
and a posteriori error estimates hold:

‖wk+1 − ŵ‖ ≤ μk+1

1 − μ
‖w1 − w0‖, (19)
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and
‖wk+1 − ŵ‖ ≤ μ

1 − μ
‖wk+1 − wk‖. (20)

Before proving the theorem we mention that in the case of an ε-convex function f
(that is, if δ = 0) the first claim of the theorem means that the sequence generated by
the GPM converges linearly to the (unique) solution ŵ. In the case δ > 0 we also have
linear convergence at least until the generated sequence enters the δ-neighborhood of
ŵ. Thus in this case the theorem is meaningful only if δ is reasonably small.

Proof It follows from (16) that [1+ λk(2ν − λk L2)] ≥ [1+ a(2ν − bL2)] > 1 for all
k. By (10) and the above inequalities,

[
1 + a

(
2ν − bL2

)]
‖wk+1 − ŵ‖2 ≤ ‖wk − ŵ‖2,

provided that ‖wk+1 − ŵ‖ ≥ δ. Hence

‖wk+1 − ŵ‖ ≤ μ‖wk − ŵ‖ (21)

with μ ∈ (0, 1) being defined by (17).
The proof of (19) and (20) is standard, but we present it for completeness. By (21),

‖wk+1 − ŵ‖ ≤ μ‖wk − ŵ‖ ≤ μ2‖wk−1 − ŵ‖ ≤ · · · ≤ μk+1‖w0 − ŵ‖.

Observe that

‖wk − ŵ‖ ≤ ‖wk − wk+1‖ + ‖wk+1 − ŵ‖ ≤ ‖wk − wk+1‖ + μ‖wk − ŵ‖,

and so ‖wk − ŵ‖ ≤ 1
1−μ

‖wk − wk+1‖ for all k. Hence

wk+1 − ŵ‖ ≤ μk+1‖w0 − ŵ‖ ≤ μk+1

1 − μ
‖w0 − w1‖,

‖wk+1 − ŵ‖ ≤ μ‖wk − ŵ‖ ≤ μ

1 − μ
‖wk − wk+1‖.

��
Remark 2.1 If the constants L and ν can be reasonably estimated, then inequalities
(19) and (20) can be used to estimate the number of iterations of the GPM needed to
achieve a given accuracy.

Remark 2.2 The value μ in (17) can be regarded as a function μ = μ(a, b) of the
variable (a, b) belonging to the domain

{
(a, b) ∈ R

2 : 0 < a ≤ b <
2ν

L2

}
.
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It is a routine task to obtain that the minimum of μ(a, b) under the above constraints
is achieved at (a∗, b∗) := ( ν

L2 ,
ν
L2 ) and the minimal value is μ∗ := L√

L2+ν2
. Hence,

λk = ν
L2 would be an optimal choice of λk .

Since the parameters L and ν are usually not known in advance, we can consider the
step size sequence {λk} as any non-summable converging to zero sequence of positive
real numbers as it follows in the next theorem.

Theorem 2.2 Let the assumptions in Proposition 2.2 be satisfied. Let {λk} be a
sequence of positive scalars such that

∞∑
k=0

λk = +∞, lim
k→∞ λk = 0. (22)

Then for every positive number δ′ ≥ δ all elements of the sequence {wk} with suffi-
ciently large k are contained in the δ′-neighborhood of ŵ. Moreover, there exists a
natural number k0 such that for each k ≥ k0 for which ‖wi+1 − ŵ‖ ≥ δ is fulfilled
for i = k0, . . . , k, it holds that λk(2ν − λk L2) > 0, and

‖wk+1 − ŵ‖ ≤ 1√∏k
i=k0 [1 + λi (2ν − λi L2)]

‖wk0 − ŵ‖. (23)

Clearly, in the case δ = 0 the first claim of the theorem implies strong convergence
of the sequence {wk}.
Proof Since λk → 0, there exists k0 such that 4λk L2 < γρ − 4ε for every k ≥ k0.
Hence,

λk

(
2ν − λk L

2
)

> λk (2ν − ν) = νλk > 0,

for all k ≥ k0. If k is such that ‖wi+1 − ŵ‖ ≥ δ, i = k0, . . . , k, then from (10) it
follows that

‖wk+1 − ŵ‖2 ≤ 1

1 + λk
(
2ν − λk L2

)‖wk − ŵ‖2

≤ 1[
1 + λk

(
2ν − λk L2

)] 1

[1 + λk−1(2ν − λk−1L2)]‖wk−1 − ŵ‖2

...

≤ 1∏k
i=k0 [1 + λi (2ν − λi L2)]‖wk0 − ŵ‖2,

which proves (23).
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Let us now prove the first claim of the theorem. For each k set

αk = λk

(
2ν − λk L

2
)

and rewrite (23) (if it holds for k) as

‖wk+1 − ŵ‖ ≤ 1√∏k
i=k0(1 + αi )

‖wk0 − ŵ‖. (24)

Since αk = λk(2ν − λk L2) > νλk for each k ≥ k0, it follows from (22) that∑∞
k=k0 αk = +∞. Hence

k∏
i=k0

(1 + αi ) ≥ 1 +
k∑

i=k0

αi −→ +∞

as k → ∞. Since (24) holds as long as ‖wi+1 − ŵ‖ ≥ δ for i = k0, . . . , k, we obtain
that either ‖wk−ŵ‖ −→ 0 or ‖wk−ŵ‖ < δ for some k ≥ k0. If ‖wk−ŵ‖ −→ 0 then
the claim is true since δ′ > 0. If ‖wk−ŵ‖ < δ for some k ≥ k0, then ‖wk+1−ŵ‖ < δ.
Indeed, if ‖wk+1 − ŵ‖ ≥ δ then we have from (10)

‖wk+1 − ŵ‖2 ≤ 1

1 + αk
‖wk − ŵ‖2 < δ2,

which is a contradiction. Thus wk remains in the δ′-neighborhood of ŵ for all k ≥ k0.
The proof is completed. ��
Remark 2.3 Using the contractivity of the projection onto strongly convex sets, Bal-
ashov and Golubev [6] and Golubev [15] obtained the linear convergence of the GPM
for smooth, convex optimization problem with the following additional conditions:

(i) For any k, there exists a unit vector n(wk) ∈ NK (wk) such that

〈n(wk),∇ f (wk)〉 ≤ 0,

where NK (wk) is the normal cone to K at wk defined as

NK (wk) :=
{

∅ if wk /∈ K ,

{l ∈ H : 〈l, v − wk〉 ≤ 0 ∀v ∈ K } if wk ∈ K .

(ii) The problem (4) has a unique solution and it belongs to the boundary of K .

In our convergence analysis in Theorem 2.1, the assumptions (i), (ii) are eliminated,
which is important for our main motivation (see the next section). Also important is
that our result applies under the (ε, δ)-approximate convexity instead of convexity.
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2.2 The Conditional Gradient Method

In this subsection, we consider the conditional gradient method (CGM) for solving
problem (4) with a γ -strongly convex set K and an (ε, δ)-approximate convex and
L-smooth function f . This method dates back to the original work of Frank and
Wolfe [13] which presented an algorithm for minimizing a quadratic function over
a polytope using only linear optimization steps over the feasible set. The CGM for
solving (strongly) convex problem was investigated in [8,9,14].
Algorithm CGM.

Step 0: Choose w0 ∈ K . Set k = 0.
Step 1: If ∇ f (wk) = 0, then Stop. Otherwise, find a solution xk of the problem

min
y∈K 〈∇ f (wk), y〉 . (25)

Step 2: If xk = wk , then Stop. Otherwise, go to Step 3.
Step 3: If ∇ f (wk) �= 0, choose ηk ∈ (0,min{1, γ ‖∇ f (wk )‖

4L }], calculate

wk+1 = (1 − ηk)wk + ηk xk, (26)

replace k by k + 1, and go to Step 1. Else the iteration process terminates.

Notice that if the above algorithm stops at Step 1 or Step 3 for some k then, under
the assumptions of Lemma 2.2 ‖wk − ŵ‖ ≤ δ, that is, an approximate solution is
attained.

In general, problem (25) may fail to have a solution, in which case the CGM is not
executable.

Remark 2.4 The objective function in the subproblem (25) in the CGM is linear, thus
if K is a polytope, we encounter a linear programming problem which should be
easier to solve than the quadratic programming subproblem (9) in the GPM. In the
case considered in this paper the set K is not a polytope, thus (25) is not a linear
programming problem. However, in our main application (see the next section) the set
K is a product of (possibly large number of) simple two-dimensional strongly convex
sets, so that (25) decomposes into two-dimensional subproblems that are easy to solve.

We will use the following global version of (ε, δ)-approximate convexity.

Definition 2.5 A Fréchet-differentiable function f : H → R is called (ε, δ)-
approximately convex on a convex subset K ⊂ H if

f (w)− f (v) ≥ 〈∇ f (v), w−v〉− ε

2
‖w−v‖2 ∀w, v ∈ K with ‖w−v‖ ≥ δ. (27)

Clearly, (27) implies (6).
We begin the convergence analysis of the CGM with an inequality which will play

a key role for obtaining convergence results. For convenience we assume that if the
CGM terminates at some finite iteration k = i , (due to∇ f (wi ) = 0) then the sequence
{wk} is extended as wk = wi for k > i .
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Proposition 2.3 Assume that K is γ -strongly convex, f is L-smooth on K and ŵ is
a solution of problem (4) such that ‖∇ f (ŵ)‖ ≥ ρ for some number ρ > 0. Assume
also that f is (ε, δ)-approximately convex on K and that the number ν := γρ

4 − ε

is positive. Further, assume that at any iteration k a solution of the subproblem (25)
does exist, and let {wk} be the sequence generated by the CGM. Denote f̂ := f (ŵ)

and 
k := f (wk) − f̂ . Then


k+1 ≤
(
1 − νηk

2ν + ε

)

k − ηk

2

(
γ ‖∇ f (wk)‖

4
− Lηk

)
‖xk − wk‖2, (28)

at least as long as ‖wk − ŵ‖ ≥ δ.

Proof If ∇ f (wi ) = 0 for some i , we have xk = wk and 
k = 0 for all k ≥ i ,
hence (28). Thus we may assume that ∇ f (wk) �= 0 for the arbitrarily fixed k in the
consideration below.

Since f is L-smooth on K we have (see, for example, [20, Lemma 1.30])

f (wk+1) ≤ f (wk) + 〈∇ f (wk), wk+1 − wk〉 + L

2
‖wk+1 − wk‖2

= f (wk) + ηk 〈∇ f (wk), xk − wk〉 + L

2
η2k‖xk − wk‖2. (29)

Subtracting f̂ from both sizes of (29), we obtain


k+1 ≤ 
k + ηk 〈∇ f (wk), xk − wk〉 + L

2
η2k‖xk − wk‖2. (30)

By the optimality of xk in (25), we have

〈∇ f (wk), xk〉 ≤ 〈∇ f (wk), ŵ
〉
. (31)

Assume from now on that ‖wk − ŵ‖ ≥ δ. From (31) and the (ε, δ)-approximate
convexity of f it follows that

〈∇ f (wk), xk − wk〉 ≤ 〈∇ f (wk), ŵ − wk
〉

≤ f (ŵ) − f (wk) + ε

2
‖wk − ŵ‖2 = −
k + ε

2
‖wk − ŵ‖2.

(32)

Setting z = −∇ f (ŵ)

‖∇ f (ŵ)‖ , we have ‖z‖ = 1. By the strong convexity of K we obtain
that

yk := 1

2
(wk + ŵ) + γ

8
‖wk − ŵ‖2z ∈ K .
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Therefore, from the (ε, δ)-approximate convexity of f and the optimality of ŵ, we
obtain


k = f (wk) − f (ŵ) ≥ 〈∇ f (ŵ), wk − ŵ
〉 − ε

2
‖wk − ŵ‖2

= 2

〈
∇ f (ŵ),

wk + ŵ

2
− yk

〉
+ 2

〈∇ f (ŵ), yk − ŵ
〉

−ε

2
‖wk − ŵ‖2

≥ 2

〈
∇ f (ŵ),

wk + ŵ

2
− yk

〉
− ε

2
‖wk − ŵ‖2

= 2

〈
∇ f (ŵ),

γ

8
‖wk − ŵ‖2 ∇ f (ŵ)

‖∇ f (ŵ)‖
〉
− ε

2
‖wk − ŵ‖2

= γ

4
‖∇ f (ŵ)‖‖wk − ŵ‖2 − ε

2
‖wk − ŵ‖2

≥
(γρ

4
− ε

2

)
‖wk − ŵ‖2 =

(
ν + ε

2

)
‖wk − ŵ‖2. (33)

Combining (33) with (32) we have

〈∇ f (wk), xk − wk〉 ≤ −
k + ε/2

ν + ε/2

k = − ν

ν + ε/2

k . (34)

Setting zk = −∇ f (wk )
‖∇ f (wk )‖ , we have ‖zk‖ = 1. By the strong convexity of K we have

that

yk := 1

2
(wk + xk) + γ

8
‖wk − xk‖2zk ∈ K .

The optimality of xk in (25) yields that

〈∇ f (wk), xk − wk〉 ≤ 〈∇ f (wk), yk − wk〉
=

〈
∇ f (wk),

1

2
(xk − wk) + γ

8
‖wk − xk‖2zk

〉

= 1

2
〈∇ f (wk), xk − wk〉

+γ

8
‖wk − xk‖2

〈
∇ f (wk),

−∇ f (wk)

‖∇ f (wk)‖
〉

= 1

2
〈∇ f (wk), xk − wk〉 − γ

8
‖wk − xk‖2‖∇ f (wk)‖

≤ −1

2

ν

ν + ε/2

k − γ

8
‖wk − xk‖2‖∇ f (wk)‖, (35)
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where the last inequality follows from (34). Combining (30) with (35), we obtain that


k+1 ≤
(
1 − νηk

2ν + ε

)

k − ηk

2

(
γ ‖∇ f (wk)‖

4
− Lηk

)
‖xk − wk‖2.

��
We are now in a position to establish the convergence results for the CGM.

Theorem 2.3 Let all the assumptions in Proposition 2.3 be satisfied. Assume also that
‖w0− ŵ‖ ≥ δ and the sequence {wk} generated by the CGM satisfies ‖∇ f (wk)‖ ≥ ρ

for all k. Let the number η and the sequence {ηk} be chosen such that

0 < η ≤ ηk ≤ min

{
1,

2ν + ε

ν
,
γ ‖∇ f (wk)‖

4L

}
∀k. (36)

Then for every k ∈ N, if ‖wk − ŵ‖ ≥ δ then

f (wk+1) − f̂ ≤ θ
(
f (wk) − f̂

)
,

where θ = 1 − νη

2ν+ε
∈ (0, 1). Moreover, for every k, if ‖wi − ŵ‖ ≥ δ, i = 0, . . . , k,

then

‖wk − ŵ‖2 ≤ 
0

ν + ε/2
θk,

Clearly, in the case δ = 0, the first and the second claims of the theorem mean
that the sequences { f (wk)} and {wk} converge linearly to f̂ and ŵ, respectively. In
the case δ > 0 we also have linear convergence at least until the generated sequence
enters the δ-neighborhood of ŵ.

Proof Take k with ‖wk − ŵ‖ ≥ δ. From (36) we have

γ ‖∇ f (wk)‖
4

− Lηk ≥ 0, and 1 ≥ νηk

2ν + ε
≥ νη

2ν + ε
∀k.

Therefore, it follows from (28) that, for all k, it holds


k+1 ≤
(
1 − νη

2ν + ε

)

k,

which implies

f (wk+1) − f̂ ≤ θ
(
f (wk) − f̂

)
. (37)

In addition, if ‖wi − ŵ‖ ≥ δ, i = 0, . . . , k, then we have


k ≤ θk
0.
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This and (33) imply

‖wk − ŵ‖2 ≤ 1

ν + ε/2

k ≤ 
0

ν + ε/2
θk .

��

3 The Affine Optimal Control Problem

In this section we turn back to the control–affine linear-quadratic problem (1)–(3)
and prove that the gradient projection methods considered in the previous section
are applicable to the (high order) discretization of the problem recently developed in
[21,24]. (This also applies to the conditional gradient method, where the analysis is
similar).We also provide error estimates regarding both the errors due to discretization
and those due to truncation of the gradient projection iterations.

The first two subsections reproduce assumptions and results from [24] that are
necessary for understanding the implementation of the GPM to the discretized version
of problem (1)–(3). The next subsections prove the applicability of the abstract results
obtained above, present details about the implementation of the gradient methods, and
provide results of computational experiments.

3.1 Notations and Assumptions

It will be convenient to introduce the space H := ((R2)m)N consisting of vectors
w = (w0, . . . , wN−1) with wi = (w1

i , . . . , w
m
i ) and w

j
i = (u j

i , v
j
i ) ∈ R

2. We regard
this space as a Hilbert space with the scalar product

〈w, w̃〉 := 1

N

N−1∑
i=0

m∑
j=1

〈w j
i , w̃

j
i 〉, 〈w j

i , w̃
j
i 〉 := u j

i ũ
j
i + v

j
i ṽ

j
i

The scalar product is normalized by division by N since below N will be a “large”
number and the sum will be a proxy for integration on a fixed interval [0, T ] by

using values on a mesh with size h = T /N . We also denote |wi | :=
√∑m

j=1 |w j
i |2,

|w j
i |2 := (|u j

i |2 + |v j
i |2). The l1, l2, and l∞ norms in H will be respectively

‖w‖1 := 1

N

N−1∑
i=0

|wi |, ‖w‖2 :=
√√√√ 1

N

N−1∑
i=0

|wi |2, ‖w‖∞ = max
i

|wi |. (38)

Clearly, the inequality ‖w‖1 ≤ ‖w‖2 ≤ ‖w‖∞ holds for every w ∈ H .
As usual, L2([0, T ];Rm) denotes the Hilbert space of all measurable square-

integrable functions [0, T ] → R
m with scalar product 〈u1, u2〉 = ∫ T

0 〈u1(t), u2(t)〉 dt
and the corresponding norm is denoted again by ‖ · ‖2.

123



1038 Applied Mathematics & Optimization (2020) 81:1021–1054

We begin with some assumptions concerning the problem (1)–(3).

Assumption A1 The matrix functions A(t), B(t),W (t) and S(t), t ∈ [0, T ], have
Lipschitz continuousfirst derivatives,Q andW (t) are symmetric.Moreover, thematrix
B(t)�S(t) is symmetric for all t ∈ [0, T ].

Denote byF the set of all admissible control–trajectory pairs (u, x), that is, all pairs
of an admissible control u and the corresponding (absolutely continuous) solution x
of (2). By a standard argument, problem (1)–(3) has a solution, (x̂, û) ∈ F , which
from now on will be considered as fixed.

Assumption A2

1

2
z(T )�Qz(T ) + q�z(T )

+
∫ T

0

(
1

2
z(t)�W (t)z(t) + z(t)�S(t)v(t)

)
dt ≥ 0 ∀ (z, v) ∈ F − (x̂, û).

The first part of Assumption (A1) is standard, while the last requirement is demand-
ing but known from the literature, usually expressed in terms of the Lie brackets of
the involved controlled vector fields see e.g. [26]. It is certainly fulfilled in the case
of single-input systems, m = 1. Assumption (A2) is a directional convexity assump-
tion at (x̂, û), which is somewhat weaker than the usual convexity assumption for the
functional J in (1) regarded as a functional on the set of admissible controls (viewing
x as a function of u).

The Pontryagin principle implies that there exists an absolutely continuous function
p̂ : [0, T ] → R

n such that the triple (x̂, û, p̂) satisfies the following system of
generalized equations: for a.e. t ∈ [0, T ],

0 = ẋ(t) − A(t)x(t) − B(t)u(t), x(0) = x0, (39)

0 = ṗ(t) + A(t)� p(t) + W (t)x(t) + S(t)u(t), (40)

0 ∈ B(t)� p(t) + S(t)�x(t) + NU (u(t)), (41)

0 = p(T ) − Qx(T ) − q, (42)

where NU (u) is the normal cone toU at u. Following [10], we assume that the optimal
control û is strictly bang–bang, with a finite number of switching times on [0, T ], and
that the so-called switching function,

σ̂ (t) := B(t)� p̂(t) + S(t)� x̂(t),

exhibits a linear growth in a neighborhood of any zero.

Assumption A3 (strict bang–bang property)
There exist real numbers α, τ > 0 such that for all j ∈ {1, . . . ,m} and s ∈ [0, T ]

with σ̂ j (s) = 0 (the j-th component of σ̂ ) we have

|σ̂ j (t)| ≥ α|t − s| ∀t ∈ [s − τ, s + τ ] ∩ [0, T ].
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Assumptions (A1)–(A3) will be standing in this section.

3.2 High-Order Time-Discretization

In this subsection we recall the discretization scheme for problem (1)–(3) presented
in [24], which has a higher accuracy than the Euler scheme without a substantial
increase of the numerical complexity of the discretized problem. The approach uses
second order truncated Volterra–Fliess series. The discretization scheme is described
as follows.

For any natural number N denote h = T /N and define the mesh {ti }N0 with ti = ih.
Introducing the notations

Ai := A(ti ) + h

2

(
A(ti )

2 + Ȧ(ti )
)

,

Bi := B(ti ) + hA(ti )B(ti ),

Ci := −A(ti )B(ti ) + Ḃ(ti ),

we replace the differential equation (2) with the discrete-time controlled dynamics

xi+1 = xi + h(Ai xi + Biui + hCivi ), i = 0, . . . , N − 1, x0 given, (43)

wi := (ui , vi ) ∈ Zm, i = 0, . . . , N − 1, (44)

where Zm is the Cartesian product �m
1 Z and Z is the Aumann integral

Z :=
∫ 1

0

(
1
s

)
[−1, 1] ds.

As pointed out in [21], the set Z can be easily represented in the more convenient way
as

Z = {(α, β) : α ∈ [−1, 1], β ∈ [ϕ1(α), ϕ2(α)]} , (45)

where ϕ1(α) := 1
4 (−1 + 2α + α2) and ϕ2(α) := 1

4 (1 + 2α − α2).
For the subsequent analysis it will be important that the set Z ⊂ R

2 is strongly
convex. This is evident from Fig. 1, but the calculation of a modulus γ is cumbersome
and we skip the details. In this calculation we use Theorem 1 in [28] (expressing γ

by the Lipschitz constant of the mapping that maps a unit vector to that point on the
boundary of Z at which this vector is normal to Z ) and the explicit formula for the
normal cone to Z given in [21, Sect. 4]. The number γ = 1/

√
32 turns out to be a

modulus of strong convexity of Z .
We introduce the discrete-time counterpart of the objective functional J in (1): for

x = (x0, . . . , xN ), w = (w0, . . . , wN−1) = ((u0, v0), . . . , (uN−1, vN−1)),
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Fig. 1 The set Z as the area
between the two parabolas ϕ1
(lower) and ϕ2 (upper)
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Jh(x, w) := 1

2
x�
N (QxN + q) + h

2

N−1∑
i=0

(
x�
i W (ti ) (xi + hA(ti )xi ) + h

2
x�
i Ẇ (ti )xi

)

+ h
N−1∑
i=0

(
hx�

i W (ti )B(ti )(ui − vi ) + x�
i

(
S(ti )ui + hṠ(ti )vi

)

+ h (A(ti )xi )
� S(ti )vi + h

2
u�
i B(ti )

�S(ti )ui
)
. (46)

Then we consider the problem of minimization of the functional Jh defined in (46)
subject to the constraints (43)–(44). The set of admissible discrete controls in this
problem is denoted by K ⊂ H , that is,

K := {(w0, . . . , wN−1) ∈ R
2m×N : wi = (ui , vi ) ∈ Zm}.

We also introduce the discrete adjoint equation (see formula (3.11) in [24])

pi =
(
I + hA�

i

)
pi+1 + h

(
S(ti )ui + hṠ(ti )vi + hA(ti )

�S(ti )vi
)

+ h

(
W (ti ) + h

2
W (ti )A(ti ) + h

2
A(ti )

�W (ti ) + h

2
Ẇ (ti )

)
xi

+ h2W (ti )B(ti )(ui − vi ), (47)
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i = N − 1, . . . , 0, with the end condition

pN = Q�xN + q. (48)

Section 3.3 in [24] presents a construction which for every sequence w =
(w0, . . . wN−1) ∈ K defines an admissible control u = �h(w) in problem (1)–(3),
with values ±1 and with at most two switches in every interval [ti , ti+1] of each of
its components. We do not reproduce this construction here, only mentioning that
it requires only a few calculations (to define the switching points), and the restric-
tion of any component j = 1, . . . ,m of u(t) = �h(w)(t) to [ti , ti+1] depends
only on w

j
i . Moreover, the following equalities hold (see (3.14) in [24]): for every

w = ((u0, v0), . . . , (uN−1, vN−1))

∫ ti+1

ti
�h(w)(s) ds = hui ,

∫ ti+1

ti
(s − ti )�

h(w)(s) ds = h2vi , i = 0, . . . , N − 1.

(49)
In addition, the function �h has the important property that there exists a constant c̃
independent of N such that for every i, j and w

j
i , w̃

j
i ∈ Z

∫ ti+1

ti

∣∣∣[�h(w) − �h(w̃)] j
∣∣∣ dt ≤ c̃

N
|w j

i − w̃
j
i |.

Clearly, this implies

‖�h(w) − �h(w̃)‖1 ≤ c̃‖w − w̃‖1 ∀w, w̃ ∈ K . (50)

Below we will use the metric

d#(u1, u2) = meas {t ∈ [0, 1] : u1(t) �= u2(t)}

in the set of admissible controls in problem (1)–(3).
The following theorem is extracted from Theorem 3.1 in [24].

Theorem 3.1 Let Assumption (A1) be fulfilled. Let (x̂, û) be a solution of problem (1)–
(3) for which assumptions (A2) and (A3) are fulfilled, and let p̂ the corresponding
solution of the adjoint equation (40) with end-condition (42). Then for every natu-
ral number N the problem of minimization of (46) under constrains (43)–(44) has a
solution (x̂ N , ŵN ) = {(x̂ Ni , ŵN

i )} and for every such solution and the correspond-
ing discrete adjoint sequence ( p̂N0 , . . . , p̂NN ) solving (47), (48), the following error
estimate holds:

max
i=0,...,N

(
|x̂ Ni − x̂(ti )

∣∣∣ + | p̂Ni − p̂(ti )|) + d#
(
�h(ŵN ), û

)
≤ c h2, (51)

where c is independent of N .
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Wemention that the above discretization scheme ismeaningful evenwithout assum-
ing (A2) and (A3). These assumptions are only needed for the error estimate in
Theorem 3.1.

3.3 Applicability of the Results About Gradient-TypeMethods

First of all, we reformulate the problem of minimization of (46) under the constraints
(43)–(44) as a minimization problem on the set

K :=
N−1∏
0

Zm ⊂ H , (52)

namely,

minimize
w∈K

{
f h(w) := Jh(xh[w], w)

}
, (53)

where xh[w] is the solutionof the discrete-time equation (43) forw = (w0, . . . , wN−1)

∈ K , wi = ((u1i , v
1
i ), . . . (u

m
i , vmi )) ∈ Zm , with the given initial condition x0.

In this subsection we prove that the assumptions needed for applicability of the
results in Sect. 2 to the above problem are fulfilled.

Let us denote by f the objective functional in problem (1)–(3), regarded as a
function of the control, namely, f (u) := J (x[u], u), where x[u] is the solution of
(2) corresponding to u ∈ L2([0, T ];Rm). It is well known that the functional f :
L2([0, T ];Rm) → R is Fréchet differentiable at any u and its derivative has the
functional representation

∇ f (u)(t) = B(t)� p(t) + S(t)�x(t), (54)

where x and p are the solutions of (39), (40), (42) corresponding to u. Similarly, the
function f h : H → R is Fréchet differentiable, and its derivative has the representation
(see the second term in the right hand side of (3.12) in [24])

∇wi f
h(w) =

(∇ui f
h(w)

∇vi f
h(w)

)

=
(

B�
i pi+1 + S(ti )�xi + hB(ti )�W (ti )xi + hB(ti )�S(ti )ui

h
(
C�
i pi+1 − B(ti )�W (ti )xi + (

S(ti )�A(ti ) + Ṡ(ti )�
)
xi

)
)

.

(55)

We mention that Assumption (A2) implies that f is convex at û, hence

〈∇ f (u) − ∇ f (û), u − û〉 ≥ 0 for all admissible controls u. (56)

In contrast, f h does not need to be convex.
Next, we present five technical lemmas which are needed in the proof of the main

result in this section—Proposition 3.1. In the proofs, c1, c2, . . . denote non-negative
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constants that may depend on the data of the problem (1)–(3) (and their derivatives) but
are independent of N . These constants may have different values in different proofs.

Lemma 3.1 There exist constants c′ and c′′ independent of h, such that for every
w′, w′′ ∈ K and 
w ∈ K − K

|〈∇ f h(w′) − ∇ f h(w′′),
w〉| ≤ c′‖w′ − w′′‖1 ‖
w‖1 + c′′h2
N−1∑
i=1

|u′
i − u′′

i | |
ui |

≤ c′‖w′ − w′′‖1 ‖
w‖1 + c′′h‖w′ − w′′‖2 ‖
w‖2,

where u′
i , u

′′
i , 
ui are the first coordinates of the components w′

i , w′′
i , 
wi of the

elements w′, w′′ and 
w, respectively.

Proof Considering the discrete equation (43), it is a standard procedure to obtain the
following estimate for the solutions x ′ and x ′′ corresponding to w′ and w′′:

‖x ′ − x ′′‖∞ ≤ c1‖w′ − w′′‖1. (57)

Similarly, also using the last estimation, we obtain from (47), (48) that

‖p′ − p′′‖∞ ≤ c2‖w′ − w′′‖1. (58)

Then using the explicit representation (55) we obtain that

|〈∇ f h(w′) − ∇ f h(w′′),
w〉| ≤ c1
(‖x ′ − x ′′‖∞ + ‖p′ − p′′‖∞

) ‖
w‖1

+ c2h
2
N−1∑
i=1

|u′
i − u′′

i | |
ui |,

which together with (57) and (58) implies the firts inequality in the lemma. The second
one follows by application of the Cauchy–Schwarz inequality and the definition of the
norms. ��

Lemma 3.2 There exists a number c∗ such that for every natural number N, for every
w̄ ∈ K and for every 
 ∈ L2([0, T ];Rm)

∣∣∣〈∇ f (�h(w̄)),
〉 − T
〈
∇ f h(w̄), w(
)

〉∣∣∣ ≤ c∗h2‖
‖1,

where w(
) := {(ui , vi )}N−1
0 is defined as

ui = 1

h

∫ ti+1

ti

(t) dt, vi = 1

h2

∫ ti+1

ti
(t − ti )
(t) dt .
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Proof Denote by x̄ and p̄ the solutions of (39) and (40), (42), corresponding to the
control function ū := �h(w̄). Similarly we denote by {x̄i } and { p̄i } the solutions of
(43) and (47), (48), corresponding to w̄. The results in points 2 and 3 in [24, Sect. 4]
(see (4.5) there) imply that for t ∈ [ti , ti+1]

B�(t) p̄(t) + S(t)� x̄(t) = (Bi + (t − ti )Ci )
� p̄i+1

+ B(ti )
�

(
(ti+1 − t)W (ti )x̄i + S(ti )

∫ ti+1

ti
ū(s) ds

)

+ S(ti )
� (I + (t − ti )A(ti )) x̄i

+Ṡ(ti )
�(t − ti )x̄i + O(t; h2),

where O(t; h2) is measurable in t and |O(t; h2)| ≤ c1h2 for a.e. t . Using this expres-
sion and (54) we obtain the following equality:

〈∇ f (�h(w̄)),
〉 =
∫ T

0
〈B�(t) p̄(t) + S(t)� x̄(t),
(t)〉 dt

=
N−1∑
i=0

∫ ti+1

ti

〈
(Bi + (t − ti )Ci )

� p̄i+1

+ B(ti )
�(

(ti+1 − t)W (ti )x̄i + S(ti )
∫ ti+1

ti
ū(s) ds

)

+ S(ti )
� (I + (t − ti )A(ti )) x̄i

+ Ṡ(ti )
�(t − ti )x̄i + O(t; h2),
(t)

〉
dt .

Using the expressions (55) we obtain, after a simple rearrangement of terms, that

〈∇ f (�h(w̄)),
〉

=
N−1∑
i=0

[〈
∇ui f

h(w̄),

∫ ti+1

ti

(t) dt

〉
+

〈1
h

∇vi f
h(w̄),

∫ ti+1

ti
(t − ti )
(t) dt

〉]

+
∫ T

0
〈O(t; h2),
(t)〉 dt

=
N−1∑
i=0

[〈
∇ui f

h(w̄), hui
〉
+

〈
∇vi f

h(w̄), hvi

〉]
+

∫ T

0
〈O(t; h2),
(t)〉 dt

= h
N−1∑
i=0

〈
∇wi f

h(w̄), wi (
)
〉
+

∫ T

0
〈O(t; h2),
(t)〉 dt

= T 〈∇ f h(w̄), w(
)〉 +
∫ T

0
〈O(t; h2),
(t)〉 dt .

Then the estimation |O(t; h2)| ≤ c1h2 completes the proof. ��
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Lemma 3.3 The function f h defined in (53) is L-smooth on K with the Lipschitz
constant of its derivative being independent of N:

‖∇ f h(w′) − ∇ f h(w′′)‖2 ≤ L‖w′ − w′′‖2.

Proof The Fréchet differentiability of f h was established in [24]), together with the
representation (55) of its derivative. The Lipschitz continuity on K follows from this
representation, together with (57) and (58) (the notations are as in the proof of Lemma
3.1). ��

We remind that ŵN ∈ K denoted in Theorem 3.1 an optimal control sequence in
the discrete problem (53). Further it will be convenient to skip the superscript N in
this notation.

Lemma 3.4 There exist numbers N0 and δ1 such that for every N ≥ N0

〈∇ f h(ŵ), w − ŵ〉 ≥ αγ

64
h‖w − ŵ‖22 for every w ∈ K with ‖w − ŵ‖2 ≥ δ1

√
h

(α is the number from Assumption (A3) and γ ≥ 1/
√
32 is a modulus of strong

convexity of Z ).

Proof The following expression is obtained in [24] (see formula (4.5) there, applied
for t = ti+1):

B(ti+1)
� p̂Ni+1 + S(ti+1)

� x̂ Ni+1 = (Bi + hCi )
� p̂Ni+1 + B(ti )

�S(ti )
∫ ti+1

ti
u(s) ds

+ S(ti )
�(I + hA(ti ))x̂

N
i + hṠ(ti )

� x̂ Ni + O(h2),

where u = �h(ŵ). Comparing this with the expression (55) we see that

B(ti+1)
� p̂Ni+1 + S(ti+1)

� x̂ Ni+1 = ∇ui f
h(ŵ) + ∇vi f

h(ŵ) + O(h2).

Then using Theorem 3.1 we obtain that

|σ̂ (ti+1) − ∇ui f
h(ŵ) − ∇vi f

h(ŵ)|
≤

∣∣∣B(ti+1)
� p̂(ti+1) + S(ti+1)

� x̂(ti+1) − B(ti+1)
� p̂Ni+1 − S(ti+1)

� x̂ Ni+1

∣∣∣ ≤ c̄h2,

where c̄ is an appropriate constant. Written for the j th components of the vectors in
the left-hand side, the inequality becomes

|σ̂ j (ti+1) − ∇
u j
i
f h(ŵ) − ∇

v
j
i
f h(ŵ)| ≤ c̄h2, j = 1, . . . ,m. (59)

Assumption (A3) implies that there exist a natural number r and a real number
τ0 ∈ (0, τ ) such that every component σ̂ j of σ̂ has at most r zeros in [0, T ], and
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|σ̂ j (t)| ≥ ατ ′ every τ ′ ∈ (0, τ0] and for every t which does not belong to a τ ′-
neighborhood of a zero of σ̂ j .

Now, let us define δ1 := M
√
2mr/T , whereM is the diameter of the set Z (which is√

5). Moreover, define the natural number N0 as bigger than 4c̄T /α, so that c̄h ≤ α/4.
Let w = (w0, . . . , wN−1) with wi = (w1

i , . . . , w
m
i ) and w

j
i = (u j

i , v
j
i ) ∈ Z be

arbitrarily chosen. Due to the γ -strong convexity of Z we have that

y j
i := 1

2
(w

j
i − ŵ

j
i ) + γ

8
|w j

i − ŵ
j
i |2ζ j

i ∈ Z

for every ζ
j
i ∈ R

2 with |ζ j
i | ≤ 1. With the choice ζ

j
i = −∇

w
j
i
f h(ŵ)/|∇

w
j
i
f h(ŵ)|

(whenever the denominator is non-zero) we obtain exactly in the same way as in the
proof of Proposition 2.1 that

〈∇ f h(ŵ), w − ŵ〉 = 1

N

N−1∑
i=0

m∑
j=1

〈∇
w

j
i
f h(ŵ), w

j
i − ŵ

j
i

〉

= 2〈∇ f h(ŵ), y − ŵ〉 − γ

4N

N−1∑
i=0

m∑
j=1

|w j
i − ŵ

j
i |2

〈∇
w

j
i
f h(ŵ), ζ

j
i

〉

≥ γ

4N

N−1∑
i=0

m∑
j=1

|w j
i − ŵ

j
i |2

∣∣∇
w

j
i
f h(ŵ)

∣∣.

Denote by � j the set of all indexes i such that |∇
w

j
i
f h(ŵ)| < αh/8. Then

〈∇ f h(ŵ), w − ŵ〉 ≥ γ

4N

m∑
j=1

∑
i /∈� j

αh

8
|w j

i − ŵ
j
i |2

= γαh

32N

⎡
⎣ m∑

j=1

N−1∑
i=0

|w j
i − ŵ

j
i |2 −

m∑
j=1

∑
i∈� j

|w j
i − ŵ

j
i |2

⎤
⎦

= γαh

32

⎡
⎣‖w − ŵ‖22 − 1

N

m∑
j=1

∑
i∈� j

|w j
i − ŵ

j
i |2

⎤
⎦ . (60)

Consider an arbitrary i ∈ � j . Since |∇
w

j
i
f h(ŵ)| < αh/8, according to (59) we have

|σ̂ j (ti+1)| <
αh

4
+ c̄h2 ≤ αh

2
,

where we also use that c̄h ≤ α/4. Then ti+1 belongs to the h/2-neighborhood of some
zero of σ̂ j (see the paragraph after (59)). Then no other point tk �= ti+1 belongs to this
neighborhood. Since σ̂ j has at most r zeros, the set � j consists of at most r points.
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Then continuing (60) we obtain

〈∇ f h(ŵ), w − ŵ〉 ≥ γαh

32

[
‖w − ŵ‖22 − 1

N
rmM2

]

Now assume that ‖w − ŵ‖2 ≥ δ1
√
h = M

√
2mr/T

√
h. Then

〈∇ f h(ŵ), w − ŵ〉 ≥ γαh

32
‖w − ŵ‖22

[
1 − 1

(δ1)2h

rmM2

N

]
= γαh

64
‖w − ŵ‖22.

The proof is complete. ��
Lemma 3.5 There exists a constant ν1 > 0 such that

〈∇ f h(w) − ∇ f h(ŵ), w − ŵ〉 ≥ −ν1h
2(‖w − ŵ‖2 + h) for every w ∈ K . (61)

Proof As before, let û be the optimal control in the continuous-time problem (1)–(3).
Denote

w̃i =
(
1

h

∫ ti+1

ti
û(t) dt,

1

h2

∫ ti+1

ti
(t − ti )û(t) dt

)
.

Denote μi := meas{t ∈ [ti , ti+1] : �h(ŵ)(t) �= û(t)}. According to Theorem 3.1,∑N−1
i=0 μi ≤ ch2. Due to (49), we have

|w̃i − ŵi | ≤ c1
h

μi ,

hence

‖w̃ − ŵ‖1 = 1

N

N−1∑
i=0

|w̃i − ŵi | ≤ h

T

N−1∑
i=0

c1
h

μi ≤ c2h
2. (62)

Moreover,
‖w̃ − ŵ‖2 ≤

√
‖w̃ − ŵ‖∞ ‖w̃ − ŵ‖1 ≤ c3h. (63)

Now we denote the left-hand side of (61) by D and represent D = D1 + D2 + D3,
where

D1 := 〈∇ f h(w̃) − ∇ f h(ŵ), w − ŵ〉,
D2 := 〈∇ f h(w) − ∇ f h(w̃), w − w̃〉,
D3 := 〈∇ f h(w) − ∇ f h(w̃), w̃ − ŵ〉.

We shall estimate each of these terms separately. From Lemma 3.1 we obtain

D1 ≥ −c′‖w̃ − ŵ‖1 ‖w − ŵ‖1 − c′′h‖w̃ − ŵ‖2 ‖w − ŵ‖2
≥ −c′c2h2‖w − ŵ‖1 − c′′c3h2‖w − ŵ‖2 ≥ −c4h

2‖w − ŵ‖2.
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In order to estimate D2 we use Lemma 3.2 and the definition of w̃:

D2 ≥ 1

T

〈∇ f (�h(w)) − ∇ f (û), �h(w) − û
〉 − 2

T
c∗h2‖�h(w) − û‖1.

The first term in the right-hand side is non-negative due to (56). Hence, using also
(50), we obtain that

D2 ≥ −c5h
2‖�h(w) − û‖1 ≥ −c6h

2‖w − w̃‖1 ≥ −c6(‖w − ŵ‖1 + ‖ŵ − w̃‖1)
≥ −c6(‖w − ŵ‖1 + c2h

2).

For estimating D3 we use again Lemma 3.1, (62) and (63) :

D3 ≥ −c′‖w − w̃‖1 ‖w̃ − ŵ‖1 − c′′h‖w − w̃‖2 ‖w̃ − ŵ‖2
≥ −c7h

2‖w − w̃‖1 − c8h
2‖w − w̃‖2 ≥ −c9h

2(‖w − ŵ‖2 + ‖ŵ − w̃‖2)
≥ −c10h

2(‖w − ŵ‖2 + h).

Combining the estimations for D1, D2 and D3 we obtain (61). ��
Proposition 3.1 On the assumptions (A1)–(A3), the function f h is L-smooth on K
and there exist numbers N0, ν0 > 0 and δ0 such that for every N ≥ N0 condition (7)
in Proposition 2.1 (hence, also the assumptions in Proposition 2.2 and Theorems 2.1
and 2.2) is fulfilled for problem (53) with ν = ν0h and δ = δ0

√
h.

Proof The L-smoothness of f h on K was proved in Lemma 3.3. Now, take an arbitrary
w ∈ K and consider

〈∇ f (w),w − ŵ
〉 = 〈∇ f h(ŵ), w − ŵ〉 + 〈∇ f h(w) − ∇ f h(ŵ), w − ŵ〉.

Using Lemmas 3.4 and 3.5 we estimate

〈∇ f (w),w − ŵ
〉 ≥ αγ

64
h‖w − ŵ‖22 − ν1h

2(‖w − ŵ‖2 + h)

for every w ∈ K with ‖w − ŵ‖2 ≥ δ1
√
h. Then for such w it holds that

〈∇ f (w),w − ŵ
〉 ≥ αγ

64
h‖w − ŵ‖22 − ν1h2

δ1
√
h

‖w − ŵ‖22 − ν1h3

(δ1)2h
‖w − ŵ‖22

= h‖w − ŵ‖22
(

αγ

64
− ν1h1/2

δ1
− ν1h

(δ1)2

)
.

Then the claim of the proposition holds for all sufficiently small h. ��
Let us interpret the above proposition in view of Theorem 2.1 for convergence of

the gradient projection method (GPM) applied to the discrete problem (52) and (53).
The linear rate of convergence, μ, as estimated in this theorem, may approach 1 when
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ν approaches zero. In the same time, Proposition 3.1 estimates ν as proportional to h.
Thus, although the convergence is linear, its rate, μ, may be close to one. Even more,
this rate of convergence is valid only until an accuracy δ is achieved (see Theorem
2.1). The number δ in Proposition 3.1 is estimated as proportional to

√
h. Thus the

convergence of theGPMdoes not seem to be consistent with the O(h2)-approximation
that the discretization method provides. On the other hand, the fact that the GPM is
proved to converge (even linearly, in the sense of Theorem 2.1) is remarkable. Indeed,
if the Euler discretization scheme is applied to the original problem (1)–(3) (as in most
of the literature), the resulting discrete-time problem may fail to be convex, and no
results about the rate of convergence of the GPM are available in the literature, to the
authors’ knowledge.

We do not present the convergence analysis of the CGM for problem (52) and (53),
which is rather similar.

3.4 Implementation of the Gradient Methods

Now, we shall describe the implementation of the GPM and the CGM to the specific
mathematical programming problem defined by (53) and (52).

The twokey points in the implementation of the gradientmethods are: (i) calculation
of the gradient ∇ f h(w); calculation of projections on K (for the GPM) or solving a
linear optimization problem on K (for the CGM). We do not discuss here the issue of
the choice of the step sizes λk , for which numerous possibilities are known from the
literature.
1. Calculation of ∇ f h(w) Since f h represents the objective function of a discrete-
time optimal control problem as a function of the control variables (the state being
implicitly regarded as a function of the control), we employ the well known in control
theory way for calculating its gradient: ∇ f h(w) is the derivative of the Hamiltonian
with respect to the control, evaluated at the current control–trajectory pair, together
with the corresponding solution of the adjoint equation. The explicit formula is given
in (55), reproducing [24, Sect. 3.2].
2. Calculation of the projection on K

The set K is a product of m × N copies of the strongly convex set Z , thus the
projection of a vector w ∈ H onto K is represented by projections onto Z of the two-
dimensional components of w. Thus we have to only calculate projections, PZ (u, v)

on Z , where (u, v)� ∈ R
2.

The following representation of the normal cone to the set Z is obtained in [21,
Sect. 4]:

NZ (α, β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if (α, β) /∈ Z ,{
α (λ, μ − λ)� : μ ≥ 0, λ ≥ 0

}
if α ∈ {−1, 1} ,{

μ (ζ + α,−2ζ )� : μ ≥ 0
}

if α ∈ (−1, 1) ∧ β ∈ {ϕ1(α), ϕ2(α)} ,

{0} if α ∈ (−1, 1) ∧ β ∈ (ϕ1(α), ϕ2(α)) ,

(64)
where ζ = sgn(α − 2β).
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Now, take arbitrarily a vector ξ = (u, v)� ∈ R
2 and observe that PZ (ξ) is the

unique solution of the inclusion

PZ (ξ) ∈ ξ − NZ (PZ (ξ)). (65)

Therefore, using the formula (64), one can explicitly calculate PZ (ξ) as

PZ (u, v) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(u, v) if (u, v) ∈ Z ,

(1, 1
2 ) if u ≥ 1 and u + v ≥ 3

2 ,

(−1,− 1
2 ) if u ≤ −1 and u + v ≤ − 3

2 ,

(α1, ϕ1(α1)) if u > −1 and u + v < 3
2 and v < ϕ1(u),

(α2, ϕ2(α2)) if u < 1 and u + v < − 3
2 and v > ϕ2(u),

(66)

where the functions ϕ1 and ϕ2 are defined after (45), α1 is a solution in [−1, 1] of the
third order equation

α3 + 3α2 + (9 − 4v)α − 8u − 4v − 1 = 0, (67)

and α2 is a solution in [−1, 1] of the third order equation

α3 − 3α2 + (9 + 4v)α − 8u − 4v + 1 = 0. (68)

Indeed, the first three cases in the representation (66) are clear. In the fourth case

u > −1 and u + v <
3

2
and v < ϕ1(u),

thus PZ (u, v) has the form (α, ϕ1(α)) (see Fig. 1). From (64), we have

NZ ((α, ϕ1(α))) = μ(1 + α,−2)�.

Combining this with (65), one has

(
u − α

v − ϕ1(α)

)
= μ

(
1 + α

−2,

)

implying

u − α

v − ϕ1(α)
= 1 + α

2
,

which leads to (67). The last case is treated similarly.
3. Solving the auxiliary sub-problem in the CGM

Now,weconsider the subproblemminy∈K 〈∇ f h(w), y〉which appears in the imple-
mentation of the CGM (see (25)).
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Observe that, the necessary (and sufficient) optimality condition for this problem
reads as

0 ∈ ∇ f h(w) + NK (y).

Each component of this inclusion has the form (ξ1, ξ2) ∈ NZ ((α, β)), which, thanks
to (64), can be explicitly represented (see [21]) by the following simple formula:

(α, β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1,−1/2) if ξ1 ≤ 0 and ξ1 + ξ2 ≤ 0,

(1, 1/2) if ξ1 > 0 and ξ1 + ξ2 ≥ 0,

(−1 − 2ξ1/ξ2, ϕ1(α)) if ξ1 > 0 and ξ1 + ξ2 < 0,

(1 + 2ξ1/ξ2, ϕ2(α)) if ξ1 ≤ 0 and ξ1 + ξ2 > 0.

(69)

Therefore, the subproblem (25) can be solved explicitly without solving any third
order algebraic equation as in the GPM.

3.5 Numerical Examples

In this subsection, we present some numerical experiments for the example of an affine
linear-quadratic optimal control problem given in [24].

Example 3.1
minimize −by(1) + ∫ 1

0
1
2 (x(t))2 dt

subject to ẋ(t) = y(t), x1(0) = a
ẏ(t) = u(t), y(0) = 1.
u(t) ∈ [−1, 1].

(70)

For appropriate values of a and b, there is a unique optimal solution û with a switch
from −1 to 1 at time τ , which is a solution of the equation

−5τ 4 + 24τ 3 − (12a + 36)τ 2 + (24a + 20)τ + 24b − 12a − 3 = 0.

As in [24], we choose a = 1, b = 0.1, then τ = 0.492487520 is a simple zero of the
switching function, thus Assumption (A3) is fulfilled. The exact optimal control is

û(t) =
{

−1 if t ∈ [0, τ ]
1 if t ∈ (τ, 1].

For each N , the iterates {wk} generated by GPM or CGM converge linearly to the
unique (in this example) solution ŵh with rates μN and θN , respectively. The starting
control is chosen as u0(t) = 1, t ∈ [0, T ], for both algorithms. In the following tables,
we report these rates for some values of N . The stopping condition is ‖wk+1 −wk‖ ≤
10−6 for the GPM and ‖xk − wk‖ ≤ 10−6 for the CGM.

Table 1 indicates that the (numerically obtained) rate of linear convergence, μN , of
theGPMdepends on themesh size N : it ismonotone increasing and likely approaching
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Table 1 Convergence rates for the GPM

N 10 20 30 40 50 60 70 80 90 100

μN 0.2744 0.4687 0.5742 0.6477 0.6874 0.7166 0.7327 0.8038 0.8736 0.8778

Table 2 Convergence rates for the CGM

N 10 20 30 40 50 60 70 80 90 100

θN 0.8946 0.8999 0.9016 0.9023 0.9028 0.9030 0.9032 0.9034 0.9035 0.9036

1when N increases. This is to be expected, since according toTheorem2.1, the rateμN

of linear convergence approaches 1 when ν goes to zero, and according to Proposition
3.1 ν estimated as proportional to h. Actually, the convergence of μN to 1 is also
consistent with the fact, that the GPM applied (theoretically) to the continuous-time
problem (1)–(3) converges sub-linearly, as recently established in [22, Theorem 3.2].
We emphasize that due to the second order accuracy of discretization, the mesh size
N does not need to be taken large, therefore the rate of linear convergence may be
reasonably good (see Table 1 for N = 10–30).

Table 2 presents the rate of linear convergence of the CGM applied to the same
example. Although, as mentioned at the end of Sect. 3.4, the amount of computations
at each step of the CGM is slightly lower than that for the GPM, the rate of linear
convergence is worse.

4 Concluding Remarks

In this paper we obtain a number of new results about the convergence of gradient
methods for general optimization problems on strongly convex feasible sets. The
main motivation is the application of a recently developed discretization scheme [21,
24] for linear-quadratic affine optimal control problems, which results in discrete-
time problems of the same type, however, with strongly convex point-wise control
constraints having rather simple representations by means of quadratic inequalities.
This opens several directions of further research.

First, to developmore efficient (than gradient projection)methods using the specific
linear-quadratic structure of the objective function and of the constraints.

Second, to investigate the applicability of gradient projectionmethods to discretized
nonlinear optimal control problems with the control appearing linearly. As indicated
in [17], our discretization approach is also applicable to such problems, and results in
mathematical programming problems with strongly convex feasible sets. The general
convergence results obtained in the present paper are also applicable, in principle. The
main open problem here, is that the error analysis of the discretization is not developed
for nonlinear problems, which also creates problems to justify the applicability and
the convergence of gradient methods.
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