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Abstract In the paper we consider the problem of valuation of American options
written on dividend-paying assets whose price dynamics follow the classical multi-
dimensional Black and Scholes model. We provide a general early exercise premium
representation formula for options with payoff functions which are convex or satisfy
mild regularity assumptions. Examples include index options, spread options, call on
max options, put on min options, multiply strike options and power-product options.
In the proof of the formula we exploit close connections between the optimal stop-
ping problems associated with valuation of American options, obstacle problems and
reflected backward stochastic differential equations.
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1 Introduction

In the paper we study American options written on dividend-paying assets.We assume
that the underlying assets dynamics follow the classical multidimensional Black and
Scholes model. It is now well known that the arbitrage-free value of American options
can be expressed in terms of the optimal stopping problem (Bensoussan [4], Karatzas
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e-mail: rozkosz@mat.umk.pl

T. Klimsiak
e-mail: tomas@mat.umk.pl

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-015-9293-5&domain=pdf


100 Appl Math Optim (2016) 73:99–114

[20]; see also [21] for nice exposition and additional references), in terms of variational
inequalities (Jaillet et al. [19]) and in terms of solutions of reflected BSDEs (El Karoui
and Quenez [14]). Although these approaches provide complete characterization of
the option value (see Sect. 2 for a short review), the paper by Broadie and Detemple [7]
shows that it is of interest to provide alternative representation, which expresses the
value of an American option as the value of the corresponding European option plus
the gain from early exercise. Themain reason is that the representation, called the early
exercise premium formula, gives useful information on the determinants of the option
value. The formula was proved first by Kim [22] in the case of standard American put
option on a single asset. Another important contributions in the case of single asset
include Broadie and Detemple [6], El Karoui and Karatzas [13] and Jacka [18] (see
also [10,21] and the references therein). The case of options on multiply dividend-
paying assets is more difficult and has received rather little attention in the literature.
In the important paper [7] and next in Detemple et al. [11] (see also [10]) the early
exercise premium formula was established for concrete classes of options on multiply
assets. Note that in the last paper call on min option, i.e. option with nonconvex payoff
function is investigated. A subclass of call onmin options consisting of capped options
is studied in [6–8] (see also [10]).

In the present paper we provide a unifiedway of treating awide variety of seemingly
disparate examples. It allows us to prove a general exercise premium formula for
options with convex payoff functions satisfying the polynomial growth condition or
payoff function satisfying quite general condition considered in Laurence and Salsa
[26]. Verifying the last condition requires knowledge of the payoff function and the
structure of the exercise set. Therefore it is a complicated task in general. Fortunately,
in most interesting cases one can easily check convexity of the payoff function or
check some simpler condition implying the general condition from [26]. The class of
options covered by our formula includes index options, spread options, call on max
options, put onmin options, multiply strike options, power-product options and others.

In the proof of the exercise premium formula we rely on some results on reflected
BSDEs and their links with optimal stopping problems (see [14]) and with parabolic
variational inequalities established in Bally et al. [2]. We also use classical results on
regularity of the solution of the Cauchy problem for parabolic operator with constant
coefficients, and in case of convex payoffs, some fine properties of convex functions.
Perhaps it is worth mentioning that we do not use any regularity results on the free
boundary problem for an American option. The basic idea of the proof comes from our
earlier paper [25] devoted to standard American call and put options on single asset.

2 Preliminaries

We will assume that under the risk-neutral probability measure the underlying assets
prices Xs,x,1, . . . , Xs,x,n evolve on the time interval [s, T ] according to stochastic
differential equation of the form

Xs,x,i
t = xi +

∫ t

s
(r − di )X

s,x,i
θ dθ +

n∑
j=1

∫ t

s
σi j X

s,x,i
θ dW j

θ , t ∈ [s, T ]. (1)
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Here W = (W 1, . . . ,Wn) is a standard n-dimensional Wiener process, r ≥ 0 is the
rate of interest, di ≥ 0 is the dividend rate of the asset i and σ = {σi j } is the n-
dimensional volatility matrix. We assume that a = σ · σ ∗ is positive definite. Since
the distributions of the processes Xs,x,i depend σ only through a, we may and will
assume that σ is a symmetric square root of a. As for the payoff function ψ we will
assume that it satisfies the assumptions:

(A1) ψ is a nonnegative continuous function on R
n with polynomial growth,

(A2) For every t ∈ (0, T ), ψ is a smooth function on {ψ = u} ∩ Q̄t , i.e. there
exists an open set U ⊂ R

n such that {u = ψ} ∩ Q̄t ⊂ [0, t] ×U and ψ is smooth
on U (Here Qt ≡ [0, t) × R

n , Q̄t ≡ [0, t] × R
n and u is the value of an option

with payoff ψ ; see (5) and (9) below)

or

(A3) ψ is a nonnegative convex function on R
n with polynomial growth.

Note that convex functions are locally Lipschitz, so assumption (A3) implies (A1).
Assumption (A2) is considered in [26]. It is satisfied for instance if

(A2′) The region where ψ is strictly positive is the union of several connected
components in which ψ is smooth.

Following [26] let us also note that unlike (A2′) or (A3), condition (A2) cannot be
verified by appealing to the structure of the payoff alone. Verifying (A2) requires
additional knowledge of the structure of the exercise set {u = ψ}.

Let � = C([0, T ];Rn) and let X be the canonical process on �. For (s, x) ∈ QT

let Ps,x denote the law of the process Xs,x = (Xs,x,1, . . . , Xs,x,n) defined by (1)
and let {F s

t } denote the completion of σ(Xθ ; θ ∈ [s, t]) with respect to the family
{Ps,μ;μ a finite measure on B(Rn)}, where Ps,μ(·) = ∫

Rn Ps,x (·) μ(dx). Then for
each s ∈ [0, T ), X = (�, (F s

t )t∈[s,T ], X, Ps,x ) is a Markov process on [0, T ].
Let I = {0, 1}n . For ι = (i1, . . . , in) ∈ I we set Dι = {x ∈ R

n; (−1)ik xk > 0, k =
1, . . . , n}, P = ⋃

ι∈I Dι, PT = [0, T ) × P . By Itô’s formula,

Xs,x,i
t = xi exp

⎛
⎝(r − di − aii )(t − s) +

n∑
j=1

σi j (W
j
t − W j

s )

⎞
⎠ , t ∈ [s, T ]. (2)

Therefore if s ∈ [0, T ) and x ∈ Dι for some ι ∈ I then Ps,x (Xt ∈ Dι, t ≥ s) =
1. From this and the fact that a is positive definite it follows that if x ∈ PT then
det σ(Xt ) > 0, Ps,x -a.s. for every t ≥ s, where σ(x) = {σi j xi }i, j=1,...,n . Moreover,
[s, T ] 	 t 
→ σ−1(Xt ) is a continuous process. Therefore, if x ∈ PT then by Lévy’s
theorem the process Bs,· defined as Bs,t = ∫ t

s σ−1(Xθ ) dMθ , where Mi
t = Xi

t − Xi
0 −∫ t

0 (r − di )Xi
θ dθ , t ∈ [s, T ], is under Ps,x a standard n-dimensional {F s

t }-Wiener
process on [s, T ] and

Xi
t − xi =

∫ t

s
(r − di )X

i
θ dθ +

n∑
j=1

∫ t

s
σi j X

i
θ dB

j
s,θ , t ∈ [s, T ], Ps,x -a.s., (3)

i.e.
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Xi
t = xi exp

⎛
⎝(r − di − aii )(t − s) +

n∑
j=1

σi j Bs,t

⎞
⎠ , t ∈ [s, T ], Ps,x -a.s. (4)

The above forms of the assets price dynamics will be more convenient for us than
(1) or (2). Note that from the definition of the process Bs,· and (4) it follows that
σ(Xθ ; θ ∈ [s, t]) = σ(Bs,θ ; θ ∈ [s, t]) for s ∈ [0, T ), so for every s ∈ [0, T ) the
filtration {F s

t } is the completion of the Brownian filtration.
In Bensoussan [4] and Karatzas [20] (see also Sect. 2.5 in [21]) it is shown that

under (A1) the arbitrage-free value V of an American option with payoff function ψ

and expiration time T is given by the solution of the stopping problem

V (s, x) = sup
τ∈Ts

Es,x
(
e−r(τ−s)ψ(Xτ )

)
, (5)

where the supremum is taken over the set Ts of all {F s
t }-stopping times τ with values

in [s, T ].
From the results proved in [12] it follows that under (A1) for every (s, x) there exists

a unique solution (Y s,x , Zs,x , Ks,x ), on the space (�,F s
T , Ps,x ), to the reflectedBSDE

with terminal condition ψ(XT ), coefficient f : R → R defined as f (y) = −r y,
y ∈ R, and barrier ψ(X) (RBSDEs,x (ψ,−r y, ψ) for short). This means that the
processes Y s,x , Zs,x , Ks,x are {F s

t }-progressively measurable, satisfy some integra-
bility conditions and Ps,x -a.s.,

⎧⎨
⎩
Y s,x
t = ψ(XT ) − ∫ T

t rY s,x
θ dθ + Ks,x

T − Ks,x
t − ∫ T

t Zs,x
θ dBs,θ , t ∈ [s, T ],

Y s,x
t ≥ ψ(Xt ), t ∈ [s, T ],
Ks,x is increasing, continuous, Ks,x

s = 0,
∫ T
s (Y s,x

t − ψ(Xt )) dK
s,x
t = 0.

(6)
In [12] it is also proved that for every (s, x) ∈ QT ,

Y s,x
t = u(t, Xt ), t ∈ [s, T ], Ps,x -a.s., (7)

where u is a viscosity solution to the obstacle problem

{
min(u(s, x) − ψ(x),−us − LBSu(s, x) + ru(s, x)) = 0, (s, x) ∈ QT ,

u(T, x) = ψ(x), x ∈ R
n (8)

with

LBSu =
n∑

i=1

(r − di )xiuxi + 1

2

n∑
i, j=1

ai j xi x j uxi x j .

From [12,14] we know that V defined by (5) is equal to Y s,x
s . Hence

V (s, x) = Y s,x
s = u(s, x), (s, x) ∈ [0, T ] × R

n . (9)
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In the next section we analyze V via (9) but as a matter of fact instead of viscosity
solutions of (8) we consider variational solutions which provide more information on
the value function V .

3 Obstacle Problem for the Black and Scholes Equation

Assume that ψ : R
n → R+ is continuous and satisfies the polynomial growth

condition. Let L2
� = L2(Rn; �2 dx), H1

� = {u ∈ L2
� : ∑n

j=1 σi j xi ux j ∈
L2(Rn; �2 dx), i = 1, . . . , n} and W� = {u ∈ L2(0, T ; H1

� ) : ut ∈ L2(0, T ; H−1
� )},

where ut , uxi denote the partial derivatives in the distribution sense, �(x) = (1 +
|x |2)−γ and γ > 0 is chosen so that

∫
Rn �2(x) dx < ∞ and

∫
Rn ψ2(x)�2(x) dx < ∞.

Following [2,25] we adopt the following definition.

Definition (a) A pair (u, μ) consisting of u ∈ W� ∩ C(Q̄T ) and a Radon measure μ

on QT is a variational solution to (8) if

u(T, ·) = ψ, u ≥ ψ,

∫
QT

(u − ψ)�2 dμ = 0

and the equation

ut + LBSu = ru − μ

is satisfied in the strong sense, i.e. for every η ∈ C∞
0 (QT ),

〈ut , η〉�,T + 〈LBSu, η〉�,T = r〈u, η〉2,�,T −
∫
QT

η�2 dμ,

where

〈LBSu, η〉�,T =
n∑

i=1

〈(r − di )xi uxi , η〉2,�,T − 1

2

n∑
i, j=1

ai j 〈uxi , (xi x jη�2)x j 〉2,T .

Here 〈·, ·〉�,T stands for the duality pairing between L2(0, T ; H1
� ) and L2(0, T ; H−1

� ),

〈·, ·〉2,�,T is the usual scalar product in L2(0, T ; L2
�) and 〈·, ·〉2,T = 〈·, ·〉2,�,T with

� ≡ 1.
(b) If μ in the above definition admits a density (with respect to the Lebesgue

measure) of the form�u(t, x) = �(t, x, u(t, x)) for somemeasurable� : Q̄T ×R →
R+, then we say that u is a variational solution to the semilinear problem

ut + LBSu = ru − �u, u(T, ·) = ψ, u ≥ ψ. (10)

In our main theorems below we show that if ψ satisfies (A1) and (A2) or (A3) then
the measure μ is absolutely continuous with respect to the Lebesgue measure and its
density has the form �u(t, x) = 1{u(t,x)=ψ(x)}�−(x), where �− = max{−�, 0} and

123



104 Appl Math Optim (2016) 73:99–114

� is determined by ψ and the parameters r, d, a. In the next section we compute �

for some concrete options.

3.1 Payoffs Satisfying (A1), (A2)

Remark One can check that if u is a solution to (10) then v defined as

v(t, x) = u(T − t, (−1)i1ex1 , . . . , (−1)in exn ) ≡ u(T − t, ex )

for t ∈ [0, T ], x = (x1, . . . , xn) ∈ Dι, ι ∈ I (Dι is defined in Sect. 2) is a variational
solution of the Cauchy problem

vt − Lv = −rv + �̄, v ≥ ψ̄, v(0, ·) = ψ̄,

where

Lv =
n∑

i=1

(
r − di − 1

2
σ 2
i i

)
vxi + 1

2

n∑
i, j=1

ai jvxi x j

and �̄(t, x) = �u(T − t, ex ), ψ̄(t, x) = ψ(T − t, ex ). Furthermore, a simple calcu-
lation shows that if η is a smooth function on R

n with compact support and U ⊂ R
n

is a bounded open set such that supp[η] ⊂ U then ṽ = vη is a solution of the Cauchy-
Dirichlet problem

ṽt − L̃ ṽ = −r ṽ + f, ṽ(0, ·) = ψ̃, ṽ|[0,T ]×∂U = 0,

where ψ̃ = ψ̄η, L̃ is some uniformly elliptic operator with smooth coefficients not
depending on t and f ∈ L2(0, T ; L2(U )). By classical regularity results (see, e.g.,
Theorem 5 in Sect. 7.1 in [15]), ṽ ∈ L2(0, T ; H2(U )) ∩ L∞(0, T ; H1

0 (U )) and
ṽt ∈ L2(0, T ; L2(U )). From this and the construction of ṽ we infer that the regularity
properties of ṽ are retained by u. It follows in particular that

ut + LBSu = ru − �u a.e. on PT . (11)

Theorem 1 Assume (A1), (A2).

(i) u defined by (9) is a variational solution of the semilinear Cauchy problem

ut + LBSu = ru − �−
u , u(T, ·) = ψ (12)

with

�u(t, x) = 1{u(t,x)=ψ(x)}�(x), (t, x) ∈ QT ,

123
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where for x ∈ R
n such that (t, x) ∈ {u = ψ},

�(x) = −rψ(x) + LBSψ(x).

(ii) Set σ(x) = {σi j xi }i, j=1,...,n and

Ks,t =
∫ t

s
�−

u (θ, Xθ ) dθ, t ∈ [s, T ]. (13)

Then for every (s, x) ∈ PT the triple (u(·, X), σ (X)ux (·, X), Ks,·) is a unique
solution of RBSDEs,x (ψ,−r y, ψ).

Proof Fix (s, x) ∈ PT . Let (Y s,x , Zs,x , Ks,x ) be a solution of RBSDEs,x (ψ,−r y, ψ)

and let u be a viscosity solution of (8). For t0 ∈ (s, T ) let U ⊂ R
n be an open set

of assumption (A2). Then there exists η ∈ C∞(Rn) such that η ≥ 0, η ≡ 1 on
{u = ψ} ∩ Qt0 and η ≡ 0 on Uc (we make the convention that η(t, x) = η(x)).
Of course (Y s,x , Zs,x , Ks,x ) is a solution of RBSDEs,x (Y

s,x
t0 ,−r y, ψ) on [s, t0]. It is

also a solution of RBSDEs,x (Y
s,x
t0 ,−r y, ψ̃) on [s, t0]with ψ̃(x) = η(x)ψ(x), because

ψ̃ ≤ ψ and by (6) and (7),

∫ t0

s
(Y s,x

t − ψ̃(Xt )) dK
s,x
t =

∫ t0

s
(u(t, Xt ) − ψ̃(Xt ))1{u(t,Xt )=ψ(Xt )} dK

s,x
t

=
∫ t0

s
(u(t, Xt ) − ψ(Xt )) dK

s,x
t = 0.

Since ψ̃ is smooth, applying Itô’s formula yields

ψ̃(Xt ) = ψ̃(Xs) +
n∑

i=1

∫ t

s
ψ̃xi (Xθ ) dX

i
θ + 1

2

n∑
i, j=1

∫ t

s
ai j X

i
θ X

j
θ ψ̃xi x j (Xθ ) dθ.

From the above, (7) and [12, Remark 4.3] it follows that there exists a predictable
process αs,x such that 0 ≤ αs,x ≤ 1 and

dK s,x
t = α

s,x
t 1{u=ψ}(Xt )

⎛
⎝−rψ̃(Xt ) +

n∑
i=1

(r − di )X
i
t ψ̃xi (Xt )

+ 1

2

n∑
i, j=1

ai j X
i
t X

j
t ψ̃xi x j (Xt )

⎞
⎠

−
dt

on [s, t0]. Thus
dK s,x

t = α
s,x
t 1{u(t,Xt )=ψ(Xt )}�−(Xt ) dt (14)

on [s, t0] for every t0 ∈ [s, T ). Consequently, the above equation is satisfied on [s, T ].
Since the coefficients of the stochastic differential equation (3) satisfy the assumptions
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of the “equivalence of norm” result proved in [3] (see [3, Proposition 5.1]), it follows
from [2, Theorem 3] that there exists a function α on QT such that 0 ≤ α ≤ 1 a.e.
and for a.e. (s, x) ∈ QT ,

α
s,x
t = α(t, Xt ), dt ⊗ Ps,x -a.s. (15)

Moreover, u ∈ C(Q̄T ) by [12, Lemma 8.4] and from [2, Theorem 3] it follows that
u ∈ W� and u is a variational solution of the Cauchy problem

ut + LBSu = ru − α1{u=ψ}�−, u(T, ·) = ψ.

By the above and (11),

ut + LBSu = ru − α1{u=ψ}�− a.e. on QT ,

so by Lemma A.4 in Chapter II in [23],

ψt + LBSψ = rψ − α�− a.e. on {u = ψ}.

On the other hand, by the definition of �,

ψt + LBSψ = LBSψ = rψ + � on {u = ψ}.

Thus � = −α�− a.e. on {u = ψ}, which implies that α� = � a.e. on {u = ψ}, and
hence that

1{u=ψ}α�− = 1{u=ψ}�− a.e. (16)

Accordingly (12) is satisfied. From (2) it is clear that if s ∈ [0, T ) and x ∈ Dι for some
ι ∈ I then Ps,x (Xt ∈ Dι, t ≥ s) = 1 and for every t ∈ (s, T ] the random variable Xt

has strictly positive density on Dι under Ps,x . From this and (16) it follows that

1{u=ψ}(t, Xt )α(t, Xt )�
−(Xt ) = 1{u=ψ}(t, Xt )�

−(Xt ), dt ⊗ Ps,x -a.s. (17)

for every (s, x) ∈ PT . In [24] it is proved that the function 1{u=ψ}α is a weak limit
in L2(QT ) of some sequence {αn} of nonnegative functions bounded by 1 and such
that αn(t, Xt ) → α

s,x
t weakly in L2([0, T ] × �; dt ⊗ Ps,x ) for every (s, x) ∈ QT .

Therefore using once again the fact that for every (s, x) ∈ PT the process X has a
strictly positive transition density under Ps,x we conclude that (15) holds for every
(s, x) ∈ PT , which when combined with (17) implies (13). What is left is to prove
that for every (s, x) ∈ PT ,

Zs,x
t = σ(Xt )ux (t, Xt ), dt ⊗ Ps,x -a.s. (18)

From the results proved in [12, Sect. 6] it follows that for every (s, x) ∈ QT ,

Es,x sup
s≤t≤T

|Y s,x,n
t − Y s,x

t |2 + Es,x

∫ T

s
|Zs,x,n

t − Zs,x
t |2 dt → 0, (19)
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where (Y s,x,n, Zs,x,n) is a solution of the BSDE

Y s,x,n
t = ψ(XT ) −

∫ T

t
rY s,x,n

θ dθ

+
∫ T

t
n

(
Y s,x,n

θ − ψ(Xθ )
)−

dθ −
∫ T

t
Zs,x,n

θ dBs,θ . (20)

It is known (see [27]) that

Y s,x,n
t = un(t, Xt ), t ∈ [s, T ], Ps,x -a.s., (21)

where un is a viscosity solution of the Cauchy problem

(un)t + LBSun = −run + n(un − ψ)−, un(T, ·) = ψ.

We know that Ps,x (Xt ∈ Dι, t ≥ s) = 1 if x ∈ Dι. Moreover, by classical reg-
ularity results (see, e.g., [17, Theorem 1.5.9] and Remark preceding Theorem 1),
un ∈ C1,2(PT ). Therefore applying Itô’s formula shows that (20) holds true with
Zs,x,n

θ replaced by σ(Xθ )(un)x (θ, Xθ ). Since (20) has a unique solution (see [12,
Corollary 3.7]), it follows that

Zs,x,n
t = σ(Xt )(un)x (t, Xt ), dt ⊗ Ps,x -a.s. (22)

for every (s, x) ∈ PT . By (19) and (21), un → u pointwise in QT . Moreover, from
(21), (22) and standard estimates for solutions of BSDEs (see, e.g., [12, Sect. 6]) it
follows that there is C > 0 such that for any (s, x) ∈ PT ,

Es,x sup
s≤t≤T

|un(t, Xt )|2 + Es,x

∫ T

s
|σ(Xt )(un)x (t, Xt )|2 dt ≤ CEs,x |ψ(XT )|2,

(23)
while from (19), (22) it follows that

Es,x sup
s≤t≤T

∫ T

s
|σ(Xt )((un)x − (um)x )(t, Xt )|2 dt → 0 (24)

as n,m → ∞. From (23) one can deduce that un ∈ L2(0, T ; H�) and then, by using
(24), that un → u in L2(0, T ; H�) (see the arguments following (2.12) in the proof
of [25, Theorem 2.3]). From the last convergence and (19), (22) it may be concluded
that

Es,x

∫ T

s
|σ(Xt )(un)x (t, Xt ) − Zs,x

t |2 dt = 0

for (s, x) ∈ PT , which implies (18).
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3.2 Convex Payoffs

Assume that ψ : Rn → R is convex. Letm denote the Lebesgue measure onRn , ∇iψ

denote the usual partial derivative with respect to xi , i = 1, . . . , n, and let E be set of
all x ∈ R

n for which the gradient

∇ψ(x) = (∇1ψ(x), . . . ,∇nψ(x))

exists. Since ψ is locally Lipschitz function, m(Ec) = 0 and ∇ψ = (ψx1 , . . . , ψxn )

a.e. (recall thatψxi stands for the partial derivative in the distribution sense).Moreover,
for a.e. x ∈ E there exists an n-dimensional symmetric matrix {H(x) = {Hi j (x)} such
that

lim
E	y→x

∇ψ(y) − ∇ψ(x) − H(x)(y − x)

|y − x | = 0, (25)

i.e. Hi j (x) are defined as limits through the set where ∇iψ exists (see, e.g., [1, Sect.
7.9]). By Alexandrov’s theorem (see, e.g., [1, Theorem 7.10]), if x ∈ E is a point
where (25) holds then ψ has second order differential at x and H(x) is the hessian
matrix of ψ at x , i.e. H(x) = {∇2

i jψ(x)}.
The second order derivative of ψ in the distribution sense D2ψ = {ψxi x j } is a

matrix of real-valued Radon measures {μi j } on R
n such that μi j = μ j i and for each

Borel set B, {μi j (B)} is a nonnegative definite matrix (see, e.g., [16, Sect. 6.3]). Let
μi j = μa

i j +μs
i j be the Lebesgue decomposition of μi j into the absolutely continuous

and singular parts with respect to m. By Theorem 1 in Sect. 6.4 in [16],

μa
i j (dx) = ∇2

i jψ(x) dx . (26)

For R > 0 set DR = P ∩ {x ∈ R
n : |x | < R} and τR = inf{t ≥ s : Xt /∈ DR}.

Let L̃ BS denote the operator formally adjoint to LBS . By [28, Theorem 4.2.5] for a
sufficiently large α > 0 there exist the Green’s functions Gα

R , G̃
α
R for α − LBS and

α − L̃ BS on DR . Let A be a continuous additive functional of X and let ν denote the
Revuz measure of A (see, e.g., [29]). By the theorem proved in Sect. V.5 of [29], for
every nonnegative f ∈ C0(R

d),

Es,x

∫ τR

s
e−αt f (Xt ) d A

ν
t =

∫
Rn

Gα
R(x, y) f (y) ν(dy).

Since Gα
R(x, y) = G̃α

R(y, x) by [28, Corollary 4.2.6], it follows that

Es,g·m
∫ τR

s
e−αt f (Xt ) d A

ν
t =

∫
Rn

G̃α
Rg(y) f (y) ν(dy) (27)

for any nonnegative g ∈ C0(DR), where Es,g·m denotes the expectation with respect
to the measure Ps,g·m(·) = ∫

Ps,x (·)g(x) dx and

G̃α
Rg(y) =

∫
GR

G̃α
R(y, x)g(x) dx .
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Note that if g is not identically equal to zero then G̃α
Rg is strictly positive (see [28,

Theorem 4.2.5]).
Set

LBS =
n∑

i=1

(r − di )xi∇i + 1

2

n∑
i, j=1

ai j xi x j∇2
i j .

Theorem 2 Assume (A3). Then assertions (i), (ii) of Theorem 1 hold true with LBS

replaced by LBS.

Proof We use the notation of Theorem 1. Fix s ∈ [0, T ). Sinceψ is a continuous con-
vex function, from Itô’s formula proved in [5] it follows that there exists a continuous
increasing process A such that for x ∈ R

n ,

ψ(Xt ) = ψ(Xs) + At +
∫ t

s
∇ψ(Xθ ) dXθ , t ∈ [s, T ], Ps,x -a.s. (28)

From (28) it follows that A is a positive continuous additive functional (PCAF for short)
ofX. Let ν denote the Revuz measure of A. We are going to show that 1P · ν = 1P ·μ
where μ is the measure on Rn defined as

μ(dx) =
n∑

i, j=1

ai j xi x j μi j (dx).

To this end, let us set

με
i j = ∂2ψ

∂xi∂x j
∗ ρε , με(dx) =

n∑
i, j=1

ai j xi x j μ
ε
i j (dx),

where {ρε}ε>0 is some family of mollifiers. Fix a nonnegative g ∈ C0(DR) such that
g(x) > 0 for some x ∈ DR and denote by Aε the PCAF ofX in Revuz correspondence
with με. Then for a sufficiently large α > 0,

Es,g·m
∫ τR

s
e−αt f (Xt ) d A

ε
t =

∫
Rn

G̃α
Rg(y) f (y) με(dy) (29)

for all nonnegative f ∈ C0(R
d). By [9, Theorem 2], Es,x supt≥s |Aε

t∧τR
−At∧τR | → 0

as ε ↓ 0 for every x ∈ R
d . Hence

∫ τR
s e−αt f (Xt ) d Aε

t → ∫ τR
s e−αt f (Xt ) d At weakly

under Ps,x for x ∈ R
d . Since

Aε
t∧τR

= ψε(Xt∧τR ) − ψε(Xs) −
∫ t∧τR

s
∇ψε(Xθ ) dXθ

and supε>0 sup|x |≤R |∇ψε(x)| ≤ C(R) < ∞ by Lemma in [9], it follows that for
every compact subset K ⊂ R

n , supx∈K supε>0 Es,x |Aε
t∧τR

|2 < ∞. Therefore
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Es,g·m
∫ τR

s
e−αt f (Xt ) d A

ε
t → Es,g·m

∫ τR

s
e−αt f (Xt ) d At (30)

as ε ↓ 0. On the other hand, since με
i j → μi j weakly∗ for i, j = 1, . . . , n and, by

[28, Theorem 4.2.5], f G̃α
Rg ∈ C0(GR), we have

n∑
i, j=1

∫
Rn

G̃α
Rg(y) f (y)ai j yi y j μ

ε
i j (dy) →

n∑
i, j=1

∫
Rn

G̃α
Rg(y) f (y) ai j yi y jμi j (dy).

Combining this with (27), (29), (30) we see that for every f ∈ C0(R
n),

∫
Rn

G̃α
Rg(y) f (y)μ(dy) =

∫
Rn

G̃α
Rg(y) f (y) ν(dy).

Since G̃α
Rg is strictly positive on DR , we conclude from the above that μ = ν on DR

for each R > 0. Consequently, μ = ν on P . For x ∈ P , Ps,x (Xt ∈ R
n \ P) = 0 for

t ≥ s. Hence

Aν
t =

∫ t

s
1P (Xs) d A

ν
s = A1P ·ν

t = A1P ·μ
t , t ≥ s, Ps,x -a.s. (31)

for x ∈ P . Letμa denote the absolutely continuous part in theLebesgue decomposition
of 1P · μ. By (26), μa(dx) = ∑n

i, j=1 1P (x)ai j xi x j∇2
i jψ(x) dx . Hence

Aμa

t =
n∑

i, j=1

∫ t

s
ai j X

i
θ X

j
θ ∇2

i jψ(Xθ ) dθ, t ≥ s, Ps,x -a.s. (32)

for x ∈ P . From (28), (31), (32) and [12, Remark 4.3] it follows that

dK s,x
t = α

s,x
t 1{u =ψ}(Xt )

(
−rψ(Xt ) +

n∑
i=1

(r − di )X
i
t∇iψ(Xt )

+ 1

2

n∑
i, j=1

ai j X
i
t X

j
t ∇2

i jψ(Xt )

⎞
⎠

−
dt.

Let u be a viscosity solution of (8). From the above and the results proved in [2]
(see the reasoning following (14)) we conclude that u ∈ W� ∩ C(Q̄T ) and there is
a function α on QT such that 0 ≤ α ≤ 1 a.e., (15) is satisfied and u is a variational
solution of the Cauchy problem

ut + LBSu = ru − α1{u=ψ}�−, u(T, ·) = ψ (33)

with
� = −rψ + LBSψ on {u = ψ}. (34)
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By Remark preceding Theorem 1, u(t, ·) ∈ H2
loc(R

n). Therefore by Remark (ii) fol-
lowing Theorem 4 in Sect. 6.1 in [16] the distributional derivatives uxi , uxi x j are a.e.
equal to the approximate derivatives ∇ap

i u, (∇ap)2i j u. Let L
ap
BS denote the operator

defined as LBS but with ∇i , ∇i j replaced by ∇ap
i , (∇ap)2i j . Then u is a variational

solution of (33) with LBS replaced by Lap
BS and (11) holds with LBS replaced by Lap

BS .
Hence

ut + Lap
BSu = ru − α1{u=ψ}�− a.e. on QT .

On the other hand, since ψ is convex, ψ ∈ BVloc(Rn) as a locally Lipschitz continu-
ous function and, by Theorem 3 in Sect. 6.3 in [16], ψxi ∈ BVloc(Rn), i = 1, . . . , n.
Therefore ψ is twice approximately differentiable a.e. by Theorem 4 in Sect. 6.1 in
[16]. It follows now from Theorem 3 in Sect. 6.1 in [16] that Lapu = Lapψ a.e. on
{u = ψ}. Consequently,

Lap
BSψ = rψ − α�− a.e. on {u = ψ}. (35)

Moreover, since ψ is convex, LBSψ = Lap
BSψ a.e. on R

n by Remark (i) follow-
ing Theorem 4 in Sect. 6.1 in [16]. Therefore combining (34) with (35) we see that
� = −α�− a.e. on {u = ψ} from which as in the proof of Theorem 1 we get (17).
To complete the proof it suffices now to repeat step by step the arguments following
(17) in the proof of Theorem 1. ��

4 The Early Exercise Premium Representation

Let ξ denote the payoff process for an American option with payoff function ψ , i.e.

ξt = e−r(t−s)ψ(Xt ), t ∈ [s, T ],

and let η denote the Snell envelope for ξ , i.e. the smallest supermartingale which
dominates ξ . It is known (see, e.g., Sect. 2.5 in [21]) that

ηt = e−r(t−s)V (t, Xt ), t ∈ [s, T ].

Assume (A1), (A2) or (A3). Applying Itô’s formula and using Theorem 1 or 2 we get

ηt = e−r(t−s)Y s,x
t = e−r(T−s)ψ(XT ) +

∫ T

t
e−r(θ−s)�−(Xθ ,Y

s,x
θ ) dθ

−
∫ T

t
e−r(θ−s)Zs,x

θ dWθ , t ∈ [s, T ], Ps,x -a.s.,

which leads to the following corollary.
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Corollary 3 For every (s, x) ∈ QT the Snell envelope admits the representation

ηt = Es,x

(
e−r(T−s)ψ(XT ) +

∫ T

t
e−r(θ−s)�−(Xθ ,Y

s,x
θ ) dθ |Ft

)
, t ∈ [s, T ].

(36)

Taking t = s in (36) and using (7) we get the early exercise premium representation
for the value function.

Corollary 4 For every (s, x) ∈ QT the value function V admits the representation

V (s, x) = V E (s, x) + Es,x

∫ T

s
e−r(t−s)1{V (t,Xt )=ψ(Xt )}�−(Xt ) dt,

where

V E (s, x) = Es,x
(
e−r(T−s)ψ(XT )

)

is the value of the European option with payoff function ψ and expiration time T .

In closing this sectionwe showby examples that formany options�− can be explicitly
computed.Using results of Sects. 4 and 5 in [30] one can check that the payoff functions
ψ in examples 1–4 below satisfy (A3). It is also easy to see that the payoff function ψ

in example 5 satisfies (A2′). Note that the payoff function in example 1 also satisfies
(A2′) and, by [7,26], the payoff functions in examples 2–4 satisfy (A2). We would
like to stress that the last assertion is by no means evident. On the other hand, the
convexity of ψ in examples 2–4 is readily checked.

In all the exampleswe have computed the corresponding functions�− on the region
{u = ψ}. When computing � we keep in mind that {u = ψ} ⊂ [0, T ] × {ψ > 0}.
1. Index options and spread options

ψ(x) =
(

n∑
i=1

wi xi − K

)+
, �−(x) =

(
n∑

i=1

wi di xi − r K

)+
(call)

ψ(x) =
(
K −

n∑
i=1

wi xi

)+
, �−(x) =

(
r K −

n∑
i=1

wi di xi

)+
(put)

(Here wi ∈ R for i = 1, . . . , n).
2. Max options

ψ(x) = (max{x1, . . . , xn} − K )+ (call on max)

�−(x) =
(

n∑
i=1

di1Bi (x)xi − r K

)+
,

where Bi = {x ∈ R
n; xi > x j , j �= i}.
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3. Min options

ψ(x) = (K − min{x1, . . . , xn})+ (put on min)

�−(x) =
(
r K −

n∑
i=1

di1Ci (x)xi

)+
,

where Ci = {x ∈ R
n; xi < x j , j �= i}.

4. Multiple strike options

ψ(x) = (max{x1 − K1, . . . , xn − Kn})+,

�−(x) =
(

n∑
i=1

1Bi (x − K )(di xi − r Ki )

)+
,

where K = (K1, . . . , Kn).
5. Power-product options

ψ(x) = (|x1 · . . . · xn|γ − K )+ for some γ > 0.

If x ∈ Dι with ι = (i1, . . . , in) ∈ {0, 1}n then

�−(x) =
⎛
⎝

⎛
⎝r − γ

n∑
i=1

(r − di − aii ) − γ 2
n∑

i, j=1

ai j

⎞
⎠ f (x) − r K

⎞
⎠

+
,

where f (x) = ((−1)|ι| x1 · . . . · xn)γ and |ι| = i1 + · · · + in .
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