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Abstract We prove an existence and uniqueness result for a class of subdifferential
inclusions which involve a history-dependent operator. Then we specialize this result
in the study of a class of history-dependent hemivariational inequalities. Problems of
such kind arise in a large number of mathematical models which describe quasistatic
processes of contact. To provide an example we consider an elastic beam in contact
with a reactive obstacle. The contact is modeled with a new and nonstandard condition
which involves both the subdifferential of a nonconvex and nonsmooth function and a
Volterra-type integral term. We derive a variational formulation of the problem which
is in the form of a history-dependent hemivariational inequality for the displacement
field. Then, we use our abstract result to prove its unique weak solvability. Finally, we
consider a numerical approximation of the model, solve effectively the approximate
problems and provide numerical simulations.
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1 Introduction

The goal of this paper is to study a mechanical contact problem for beams with non-
convex and nonsmooth superpotentials. Contact problems have been recently inves-
tigated in the literature for various classes of processes. Considerable progress has
been achieved in their modeling, mathematical analysis and numerical simulations,
and, as a result, a general Mathematical Theory of Contact Mechanics is currently
emerging. It is concerned with the mathematical structures which underly general
contact problems with different constitutive laws, i.e., materials, various geometries
and different contact conditions, see for instance [7,8,14,16,17,19] and the references
therein. An important number of contact problems arising in Mechanics, Physics and
Engineering Science lead to mathematical models expressed in terms of subdifferen-
tial inclusions, and variational and hemivariational inequalities. For this reason the
mathematical literature dedicated to Contact Mechanics is extensive and the progress
made in the last two decades is impressive. The analysis of nonlinear inclusions and
hemivariational inequalities, including existence and uniqueness results, can be found
in [3,4,13,14,17].

The interest in contact problems involving beams lies in the fact that their mathe-
matical analysismay provide insight into the possible types of behavior of the solutions
and on occasions leads to decoupling of some of the equations, thus simplifying the
approach. Moreover, one may use such models as tests and benchmarks for com-
puter schemes meant for simulation of complicated multidimensional contact prob-
lems. Models, analysis and simulations of contact problems for beams can be found
in [2,6,10,11,18] and the references therein. In [2], a mathematical model which
describes the unilateral contact of a beam between two deformable obstacles was con-
sidered. The unique weak solvability of the model was obtained by using the control
variational method and numerical simulation related to this method were presented,
as well.

This paper is a continuation of [2,13]. Its aim is to complete [13] with a new
existence and uniqueness results in the study of a class of subdifferential inclusions and
hemivariational inequalities, and to apply these results in the analysis of a quasistatic
contact model for elastic beams, which extends the contact model considered in [2]. A
brief comparison between the results obtained in this current paper and those in [2,13]
is the following.

In the proof of the unique solvability of the inclusions we use the method already
used in [13], based on a surjectivity result for pseudomonotone multivalued operators.
Nevertheless, we note that the inclusion formulated in this paper is more general than
that in [13] and, moreover, it is studied under different hypotheses on the data. More
precisely, the sign condition for the superpotential, considered in [13], is replaced in
this paper by the smallness assumption on constants involved in the problem. Also we
deal with operators between a reflexive Banach space and its dual without introducing
an additional intermediate space as in [13]. The uniqueness of solution is proved,
analogously as in [13], under the hypothesis on the regularity of the superpotential.
Next,we specialize our existence and uniqueness result in the study of a timedependent
hemivariational inequality. In contrast with the hemivariational inequality considered
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in [13], where the superpotential was defined on the boundary of a domain, in the
current paper the superpotential is defined inside the domain under consideration.

The mathematical model we consider in this paper describes the contact between
an Euler–Bernoulli beam and a reactive obstacle. We model the contact with a new
and nonstandard boundary condition which involves both the subdifferential of a non-
convex function and a Volterra-type integral term. This contact condition includes as
a particular case the normal compliance condition and takes into account the memory
effects of the obstacle, too. In a variational formulation, the model leads to a history-
dependent hemivariational inequality for the displacement field. We prove the unique
weak solvability of the problem. With respect to [2], the main novelty of the model
studied in this paper lies in the contact conditionweuse.As a consequence, the problem
we study here is time-dependent and, therefore, neither the arguments on stationary
variational inequalities nor the arguments on the control variational method used in [2]
work in this case. For this reason we use the arguments on history-dependent hemi-
variational inequalities we develop previously in that paper. In this way we exemplify
one of the main features of the Mathematical Theory of Contact Mechanics which
consists in the cross fertilization between modeling and applications on the one hand,
and nonlinear mathematical analysis on the other hand. Indeed, within the setting of
equilibrium process of an elastic beam, we show how new models of contact lead to a
new type of hemivariational inequalities and, conversely, we show how new abstract
results on hemivariational inequalities can be applied to prove the solvability of new
contact problems.

The rest of the paper is structured as follows. In Sect. 2 we provide the existence and
uniqueness of the solution to a class of the history-dependent subdifferential inclusions
and inSect. 3we specialize this result in the study of history-dependent hemivariational
inequalities. We proceed with Sect. 4, in which we describe the model of contact
between the elastic beam and the reactive obstacle. Then we list the assumptions on
the data, derive the variational formulation of the problem and prove an existence and
uniqueness result, Theorem 12. Finally, in Sect. 5 we provide numerical algorithm and
simulations for the problem under consideration.

2 History-Dependent Subdifferential Inclusions

In this section we deal with a nonlinear abstract inclusion of subdifferential type which
depends on the time variable being a parameter in the problem. The main goal is to
provide a result on the unique solvability of this subdifferential inclusion involving a
history-dependent operator. We start with a basic notation and preliminary results on
the abstract history-dependent subdifferential inclusions. For additional details on the
material presented in this section we refer to [3–5,13–15,17].

Let (E, ‖ · ‖E ) be a Banach space and h : E → R be a locally Lipschitz function
on E . The generalized directional derivative of h at x ∈ E in the direction v ∈ E ,
denoted by h0(x; v), is defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv) − h(y)

λ
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and the generalized gradient of h at x , denoted by ∂h(x), is a subset of a dual space
E∗ given by

∂h(x) = { ζ ∈ E∗ | h0(x; v) ≥ 〈ζ, v〉E∗×E for all v ∈ E },
where 〈·, ·〉E∗×E is the duality pairing of E and E∗. A locally Lipschitz function h
is called regular (in the sense of Clarke) at x ∈ E if for all v ∈ E the one-sided
directional derivative h′(x; v) exists and satisfies h0(x; v) = h′(x; v) for all v ∈ E .
The symbol w-E is used for the space E endowed with the weak topology. The space
of all linear and continuous operators from a normed space E to a normed space F is
denoted by L(E, F).

We consider the reflexive Banach space V and its dual, V ∗. Given 0 < T < +∞,
we introduce the spaces V = L2(0, T ; V ), and V∗ = L2(0, T ; V ∗). Let X be a
separable reflexive Banach space and M : V → X be a linear continuous operator.
We denote by ‖M‖ the norm of the operator M in L(V, X) and by M∗ : X∗ → V ∗
the adjoint operator to M .

Let A : (0, T )× V → V ∗, S : V → V∗, J : (0, T )× X → R and ˜f : (0, T ) → V ∗
be given. We consider the following time dependent abstract subdifferential inclusion.

Problem 1 Find u ∈ V such that

A(t, u(t)) + (Su)(t) + M∗ ∂ J (t, Mu(t)) � ˜f (t) a.e. t ∈ (0, T ).

The symbol ∂ J (t, ·) denotes the Clarke generalized gradient of J (t, ·) for t ∈
(0, T ).

Definition 2 A function u ∈ V is called a solution to Problem 1 if and only if there
exists ζ ∈ V∗ such that

A(t, u(t)) + (Su)(t) + ζ(t) = ˜f (t) a.e. t ∈ (0, T )

ζ(t) ∈ M∗∂ J (t, Mu(t)) a.e. t ∈ (0, T ).

}

In order to provide a result on the solvability of Problem 1, we need the following
hypotheses on the data.

A : (0, T ) × V → V ∗ is such that
(a) A(·, v) is measurable on (0, T ) for all v ∈ V .

(b) A(t, ·) is pseudomonotone and coercive with
constant α > 0, i.e., 〈A(t, v), v〉V ∗×V ≥ α‖v‖2V
for all v ∈ V, for a.e. t ∈ (0, T ).

(c) A(t, ·) is strongly monotone for a.e. t ∈ (0, T ), i.e.,
〈A(t, v1) − A(t, v2), v1 − v2〉V ∗×V ≥ m1‖v1 − v2‖2V
for all v1, v2 ∈ V, a.e. t ∈ (0, T ) with m1 > 0.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(1)

S : V → V∗ is such that

‖(Su1)(t) − (Su2)(t)‖V ∗ ≤ LS
∫ t

0
‖u1(s) − u2(s)‖V ds

for all u1, u2 ∈ V, a.e. t ∈ (0, T ) with LS > 0.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2)
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J : (0, T ) × X → R is such that
(a) J (·, u) is measurable on (0, T ) for all u ∈ X.

(b) J (t, ·) is locally Lipschitz on X for a.e. t ∈ (0, T ).

(c) ‖∂ J (t, u)‖X∗ ≤ c0(t) + c1 ‖u‖X for all u ∈ X,

a.e. t ∈ (0, T ) with c0 ∈ L2(0, T ), c0(t), c1 ≥ 0.
(d) 〈z1 − z2, u1 − u2〉X∗×X ≥ −m2‖u1 − u2‖2X

for all zi ∈ ∂ J (t, ui ), zi ∈ X∗, ui ∈ X, i = 1, 2,
a.e. t ∈ (0, T ) with m2 ≥ 0.

⎫
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⎪

⎪
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⎪
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⎪

⎪

⎪

⎭

(3)

M ∈ L(V, X) is compact. (4)
˜f ∈ V∗. (5)

max{ c1, m2 } ‖M‖2 < min{ α, m1 }. (6)

Following the terminology introduced in [20], an operator which satisfies condition
(2) is called a history-dependent operator. For this reason, we refer to Problem 1 as
a history-dependent subdifferential inclusion.

In order to establish the existence and uniqueness for Problem 1, we start with an
auxiliary result on the unique solvability of subdifferential inclusion in which the time
variable plays the role of a parameter.

Lemma 3 Assume that the hypotheses (1) and (3)–(6) hold. Then the problem

A(t, u(t)) + M∗∂ J (t, Mu(t)) � ˜f (t) a.e. t ∈ (0, T ) (7)

has a unique solution u ∈ V which satisfies

‖u‖V ≤ c
(

1 + ‖ ˜f ‖V∗
)

(8)

with some constant c > 0.

Proof We define the operator B : (0, T ) × V → 2V ∗
by

B(t, v) = M∗ ∂ J (t, Mv) for all v ∈ V, a.e. t ∈ (0, T ).

We will establish the following properties of the operator B.
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(a) B(·, v) is measurable for all v ∈ V .

(b) ‖B(t, v)‖V ∗ ≤ ‖M‖ (c0(t) + c1‖M‖‖v‖V ) for all v ∈ V,

a.e. t ∈ (0, T ).

(c) for all v ∈ V and a.e. t ∈ (0, T ), B(t, v) is nonempty, convex,
weakly compact subset of V ∗.

(d) 〈B(t, v), v〉V ∗×V ≥ −c1 ‖M‖2‖v‖2V − c0(t) ‖M‖‖v‖V for all
v ∈ V, a.e. t ∈ (0, T ).

(e) the graph of B(t, ·) is closed in (w−V ) × (w−V ∗) topology
for a.e. t ∈ (0, T ), (i.e., for fixed t ∈ (0, T ) if ζn ∈ B(t, vn)

with vn, v ∈ V, vn → v weakly in V and ζn, ζ ∈ V ∗, ζn → ζ

weakly in V ∗, then ζ ∈ B(t, v)) and lim 〈ζn, vn − v〉V ∗×V = 0.
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⎪

⎪

⎪

⎪
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⎪
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⎪
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⎪

⎪

⎪

⎪
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(9)

Using the separability of X , by Proposition 3.44 in [14], and hypothesis (3)(a), (b),
we deduce that ∂ J (·, v) is a measurable multifunction on (0, T ) for all v ∈ X . From
Lemma 5.10 of [14] and (4), we have that the map M∗∂ J (·, Mv) is measurable for
all v ∈ X . Hence, for all v ∈ V , B(·, v) is measurable, i.e., (9)(a) holds.

Next, from (3)(c) and the continuity of the operator M , we obtain

‖B(t, v)‖V ∗ ≤ ‖M∗‖ ‖∂ J (t, Mv)‖X∗ ≤ ‖M‖ (c0(t) + c1 ‖M‖ ‖v‖V ) (10)

for all v ∈ V , a.e. t ∈ (0, T ), which proves (9)(b).
In order to establish (9)(c), we recall that the values of ∂ J (t, ·) are nonempty,

convex, and weakly compact subsets of X∗ for a.e. t ∈ (0, T ). Let v ∈ V and
t ∈ (0, T ) be fixed. Then B(t, v) is a nonempty and convex subset in V ∗. To show
that B(t, v) is weakly compact in V ∗, we prove that it is closed in V ∗. Indeed, let
{ζn} ⊂ B(t, v) be such that ζn → ζ in V ∗. Since ζn ∈ M∗ ∂ J (t, Mv) and the latter
is a closed subset of V ∗, we get ζ ∈ M∗ ∂ J (t, Mv) which implies that ζ ∈ B(t, v).
Therefore, the set B(t, v) is closed and convex in V ∗, so it is also weakly closed in V ∗.
Since B(t, v) is a bounded set in a reflexive Banach space V ∗, we obtain that B(t, v)

is weakly compact in V ∗, which shows (9)(c).
To prove (9)(d), let v ∈ V and t ∈ (0, T ). Using (10), we have

|〈B(t, v), v〉V ∗×V | ≤ ‖B(t, v)‖V ∗‖v‖V

≤ ‖M‖ (c0(t) + c1 ‖M‖ ‖v‖V ) ‖v‖V .

Hence

〈B(t, v), v〉V ∗×V ≥ −c1 ‖M‖2 ‖v‖2V − c0(t) ‖M‖ ‖v‖V

and (9)(d) holds.
For the proof of (9)(e), let t ∈ (0, T ) be fixed, ζn ∈ B(t, vn), where vn , v ∈ V ,

vn → v weakly in V , ζn , ζ ∈ V ∗ and ζn → ζ weakly in V ∗. Then ζn = M∗zn and
zn ∈ ∂ J (t, Mvn). The compactness of the operator M (cf. (4)) implies Mvn → Mv in
X and the bound (3)(c) gives that, at least for a subsequence, we have zn → z weakly
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in X∗ with some z ∈ X∗. Hence,

lim 〈ζn, vn − v〉V ∗×V = lim 〈zn, Mvn − Mv〉X∗×X = 0.

Moreover, from the equality ζn = M∗zn , we easily obtain ζ = M∗z. Since the
graph of ∂ J (t, ·) is closed in X × (w-X) topology, from zn ∈ ∂ J (t, Mvn), we get
z ∈ ∂ J (t, Mv), and subsequently ζ ∈ M∗ ∂ J (t, Mv), i.e., ζ ∈ B(t, v). The proof of
all conditions of (9) is complete.

Next, we define themultivaluedmapF : (0, T )×V → 2V ∗
byF(t, v) = A(t, v)+

B(t, v) for all v ∈ V and a.e. t ∈ (0, T ). From (1)(a) and (9)(a), it is clear that F(·, v)

is a measurable multifunction for all v ∈ V . We show that F(t, ·) is pseudomonotone
(cf. Definition 6.3.63 of [5]) and coercive for a.e. fixed t ∈ (0, T ). To this end, we
use the fact (cf. Definition 3.58 of [14]) that a generalized pseudomonotone operator
which is bounded and has nonempty, closed and convex values, is pseudomonotone.
From the property (9)(c), we know thatF(t, ·) has nonempty, convex and closed values
in V ∗. Since A(t, ·) is pseudomonotone, it is bounded (see Definition 3.65 in [14]).
Thus, by (9)(b), it follows that F(t, ·) is a bounded map, i.e., it maps bounded subsets
of V into bounded subsets of V ∗.

We prove thatF(t, ·) is a generalized pseudomonotone operator for a.e. t ∈ (0, T ).
To this end, let t ∈ (0, T ) be fixed, vn , v ∈ V , vn → vweakly in V , v∗

n , v
∗ ∈ V ∗, v∗

n →
v∗ weakly in V ∗, v∗

n ∈ F(t, vn) and assume that lim sup 〈v∗
n , vn − v〉V ∗×V ≤ 0. We

show that v∗ ∈ F(t, v) and 〈v∗
n , vn〉V ∗×V → 〈v∗, v〉V ∗×V .Wehave v∗

n = A(t, vn)+ζn

with ζn ∈ B(t, vn). By the boundedness of B(t, ·) for fixed a.e. t ∈ (0, T ) (cf. (9)(b)),
passing to a subsequence, if necessary, we have

ζn → ζ weakly in V ∗ with some ζ ∈ V ∗. (11)

From (9)(e) and (11), since ζn ∈ B(t, vn), we infer immediately that ζ ∈ B(t, v).
Furthermore, exploiting the equality

〈v∗
n , vn − v〉V ∗×V = 〈A(t, vn), vn − v〉V ∗×V + 〈ζn, vn − v〉V ∗×V ,

we obtain

lim sup 〈A(t, vn), vn − v〉V ∗×V = lim sup 〈v∗
n , vn − v〉V ∗×V ≤ 0.

Using the pseudomonotonicity of A(t, ·), by Proposition 3.66 of [14], we deduce that

A(t, vn) → A(t, v) weakly in V ∗ (12)

and
lim 〈A(t, vn), vn − v〉V ∗×V = 0. (13)

Therefore, passing to the limit in the equation v∗
n = A(t, vn) + ζn , we obtain v∗ =

A(t, v)+ζ which, togetherwith ζ ∈ B(t, v), implies v∗ ∈ A(t, v)+B(t, v) = F(t, v).
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Next, from convergences (11)–(13) and (9)(e), we get

lim 〈v∗
n , vn〉V ∗×V = lim 〈A(t, vn), vn − v〉V ∗×V + lim 〈A(t, vn), v〉V ∗×V

+ lim 〈ζn, vn〉V ∗×V

= 〈A(t, v), v〉V ∗×V + 〈ζ, v〉V ∗×V = 〈v∗, v〉V ∗×V .

This, according to Definition 3.57 of [14], shows that F(t, ·) is a gener-
alized pseudomonotone operator and, consequently, completes the proof of the
pseudomonotonicity of F(t, ·) for a.e. t ∈ (0, T ).

Next, by hypothesis (1)(a) and property (9)(d), we have

〈F(t, v), v〉V ∗×V = 〈A(t, v), v〉V ∗×V + 〈B(t, v), v〉V ∗×V

≥ (α − c1‖M‖2)‖v‖2V − c0(t) ‖M‖ ‖v‖V

for all v ∈ V and a.e. t ∈ (0, T ) which, by hypothesis (6), implies that the operator
F(t, ·) is coercive.

Applying the surjectivity result (cf. e.g. Theorem 6.3.70 of [5]), since F(t, ·) is
pseudomonotone and coercive for a.e. t ∈ (0, T ), it follows that F(t, ·) is surjective
which implies that for a.e. t ∈ (0, T ), there exists a solution u(t) ∈ V of problem (7).
Furthermore, using the coercivity of F(t, ·), we deduce

(

(α − c1‖M‖2)‖u(t)‖V − c0(t)‖M‖
)

‖u(t)‖V ≤ ‖ ˜f (t)‖V ∗‖u(t)‖V ,

which implies the following estimate

‖u(t)‖V ≤ 1

α − c1‖M‖2
(‖ ˜f (t)‖V ∗ + c0(t)‖M‖) for a.e. t ∈ (0, T ). (14)

We prove now that the solution to problem (7) is unique. Let t ∈ (0, T ) and
u1(t), u2(t) ∈ V be solutions to problem (7). Then, there exist zi (t) ∈ X∗ and
zi (t) ∈ ∂ J (t, Mui (t)) such that

A(t, ui (t)) + M∗zi (t) = ˜f (t) for i = 1, 2. (15)

Subtracting the above two equations, multiplying the result by u1(t)−u2(t) and using
the strong monotonicity of A(t, ·), we obtain

m1‖u1(t) − u2(t)‖2V + 〈M∗z1(t) − M∗z2(t), u1(t) − u2(t)〉V ∗×V ≤ 0.

Next, by the relaxed monotonicity of ∂ J (t, ·) (cf. (3)(d)), we deduce

〈M∗z1(t)−M∗z2(t), u1(t)−u2(t)〉V ∗×V =〈z1(t)−z2(t), Mu1(t)−Mu2(t)〉X∗×X

≥ −m2 ‖Mu1(t) − Mu2(t)‖2X ≥ −m2 ‖M‖2 ‖u1(t) − u2(t)‖2V .
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Hence

m1‖u1(t) − u2(t)‖2V − m2 ‖M‖2 ‖u1(t) − u2(t)‖2V ≤ 0

which, in view of hypothesis m1 > m2 ‖M‖2 (cf. (6)), implies u1(t) = u2(t). Fur-
thermore, from (15), we deduce that z1(t) = z2(t). This completes the proof of the
uniqueness of the solution.

Next, we prove that the solution u(t) to problem (7) is a measurable function of
t ∈ (0, T ). To this end, given g ∈ V ∗, we denote by w ∈ V a unique solution of the
following auxiliary problem

A(t, w) + M∗ ∂ J (t, Mw) � g a.e. t ∈ (0, T ). (16)

Since A and J depend on the parameter t , the solution w is also a function of t , i.e.,
w = w(t). We claim that for a.e. t ∈ (0, T ) the solution w depends continuously on
the right hand side g. Indeed, let g1, g2 ∈ V ∗ and w1, w2 ∈ V be the corresponding
solutions to (16). We have

A(t, w1) + ζ1 = g1 a.e. t ∈ (0, T ),

A(t, w2) + ζ2 = g2 a.e. t ∈ (0, T ),

ζ1 ∈ M∗ ∂ J (t, Mw1), ζ2 ∈ M∗ ∂ J (t, Mw2) a.e. t ∈ (0, T ).

Subtracting the above two equations, multiplying the result by w1 − w2, we obtain

〈A(t, w1) − A(t, w2), w1 − w2〉V ∗×V

+〈ζ1 − ζ2, w1 − w2〉V ∗×V = 〈g1 − g2, w1 − w2〉V ∗×V

for a.e. t ∈ (0, T ). Since ζi = M∗zi with zi ∈ ∂ J (t, Mwi ) for a.e. t ∈ (0, T ) and
i = 1, 2, by the strongmonotonicity of A(t, ·) (cf. (1)(c)) and the relaxedmonotonicity
of ∂ J (t, ·) (cf. (3)(d)), we have

m1‖w1 − w2‖2V − m2 ‖M‖2‖w1 − w2‖2V ≤ ‖g1 − g2‖V ∗ ‖w1 − w2‖V .

Exploiting hypothesis (6), we obtain

‖w1 − w2‖V ≤ c̃ ‖g1 − g2‖V ∗ ,

where c̃ = (m1 − m2‖M‖2)−1 > 0 is independent of t . Hence, for a.e. t ∈ (0, T ),
the mapping V ∗ � g �→ w = w(t) ∈ V is continuous, which proves the claim.
Now, using the continuous dependence of the solution of (16) on the right hand side,
and the measurability of ˜f , we deduce that the unique solution u(·) of problem (7) is
measurable on (0, T ). Since ˜f ∈ V∗, from the estimate (14), we conclude that u ∈ V
and, moreover (8) holds. This completes the proof of the lemma. ��
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In order to prove the existence and uniqueness result for Problem 1, we recall the
following result (cf. Lemma 7 in [9]) which is a consequence of the Banach contraction
principle.

Lemma 4 Let (E, ‖ · ‖E ) be a Banach space and T > 0. Let � : L2(0, T ; E) →
L2(0, T ; E) be an operator satisfying

‖(�η1)(t) − (�η2)(t)‖E ≤ c
∫ t

0
‖η1(s) − η2(s)‖E ds

for every η1, η2 ∈ L2(0, T ; E), a.e. t ∈ (0, T ) with a constant c > 0. Then � has
a unique fixed point in L2(0, T ; E), i.e. there exists a unique η∗ ∈ L2(0, T ; E) such
that �η∗ = η∗.

The following existence and uniqueness result is the main theorem of this paper.

Theorem 5 Assume that (1)–(6) hold. Then Problem 1 has a unique solution.

Proof We use a fixed point argument. Let η ∈ V∗. We denote by uη ∈ V the solution
of the following problem

A(t, uη(t)) + M∗ ∂ J (t, Muη(t)) � ˜f (t) − η(t) a.e. t ∈ (0, T ). (17)

It is clear from Lemma 3 that uη ∈ V exists and it is unique. We consider the operator
� : V∗ → V∗ defined by

(�η)(t) = (Suη)(t) for all η ∈ V∗, a.e. t ∈ (0, T ). (18)

We prove that the operator � has a unique fixed point. To this end, let η1, η2 ∈ V∗ and
let u1 = uη1 and u2 = uη2 be the corresponding unique solutions to (17). We have
u1, u2 ∈ V and

A(t, u1(t)) + ζ1(t) = ˜f (t) − η1(t) a.e. t ∈ (0, T ), (19)

A(t, u2(t)) + ζ2(t) = ˜f (t) − η2(t) a.e. t ∈ (0, T ), (20)

ζ1(t) ∈ M∗∂ J (t, Mu1(t)), ζ2(t) ∈ M∗∂ J (t, Mu2(t)) a.e. t ∈ (0, T ).

Subtracting (20) from (19), multiplying the result by u1(t) − u2(t) and using (1)(c),
(3)(d) and (6), we infer

‖u1(t) − u2(t)‖V ≤ c̃ ‖η1(t) − η2(t)‖V ∗ for a.e. t ∈ (0, T ), (21)

where c̃ = (m1 − m2 ‖M‖2)−1 > 0. From (2), (18) and (21), we deduce

‖(�η1)(t)−(�η2)(t)‖V ∗ ≤ LS
∫ t

0
‖u1(s)−u2(s)‖V ds ≤ c

∫ t

0
‖η1(s)−η2(s)‖V ∗ ds
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for a.e. t ∈ (0, T ) with a positive constant c. Applying Lemma 4, we obtain that there
exists η∗ ∈ V∗ the unique fixed point of �. Thus uη∗ is a solution to Problem 1, which
concludes the existence part of the theorem.

The uniqueness part follows from the uniqueness of the fixed point of�. Indeed, let
u ∈ V be a solution to Problem 1 and define the element η ∈ V∗ by η(t) = Su(t) for
a.e. t ∈ (0, T ). It follows that u is the solution to problem (17) and, by the uniqueness
of solutions to (17), we obtain u = uη. This implies �η = Suη = Su = η and by the
uniqueness of the fixed point of � we have η = η∗, so u = uη∗ , which completes the
proof. ��

3 History-Dependent Hemivariational Inequalities

In this section we deal with a hemivariational inequality involving a history-dependent
operator.

Let� ⊂ R
d be anopen, bounded subset ofRd with aLipschitz continuous boundary

∂�. Let V be a reflexive Banach space, V ∗ be its dual, s ≥ 1, and let M : V →
L2(�;Rs) be an embedding operator satisfying (4).

The problem under consideration reads as follows.

Problem 6 Find u ∈ V such that

〈A(t, u(t)), v〉V ∗×V + 〈(Su)(t), v〉V ∗×V +
∫

�

ϕ0(x, t, M(u(t))(x); Mv(x)) dx

≥ 〈 ˜f (t), v〉V ∗×V for all v ∈ V and a.e. t ∈ (0, T ). (22)

We refer to Problem 6 as a history-dependent hemivariational inequality. In its study,
in addition to assumptions (1), (2) and (5), we need the following hypothesis.

ϕ : � × (0, T ) × R
s → R is such that

(a) ϕ(·, ·, ξ) is measurable on � × (0, T ) for all ξ ∈ R
s and

ϕ(·, ·, e(·)) ∈ L1(� × (0, T )) with e ∈ L2(�;Rs).

(b) ϕ(x, t, ·) is locally Lipschitz on R
s for a.e. (x, t) ∈ � × (0, T ).

(c) ‖∂ϕ(x, t, ξ)‖Rs ≤ c0(t) + c1 ‖ξ‖Rs for a.e. (x, t) ∈ � × (0, T ),

all ξ ∈ R
s with c0(t), c1 ≥ 0, c0 ∈ L2(0, T ).

(d) (ζ1 − ζ2) · (ξ1 − ξ2) ≥ −m2‖ξ1 − ξ2‖2Rs for all ζi , ξi ∈ R
s,

ζi ∈ ∂ϕ(x, t, ξi ), i = 1, 2, a.e. (x, t) ∈ � × (0, T )

with m2 ≥ 0.

⎫

⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(23)

In condition (23)(d) the dot denotes the inner product in R
s .

We have the following existence and uniqueness result.

Theorem 7 Assume that hypotheses (1), (2), (5), (23) are satisfied, the embeding
operator M : V → L2(�;Rs) is compact and, moreover,

max{ √
3 c1, m2 }‖M‖2 < min{ α, m1 }. (24)

123



82 Appl Math Optim (2016) 73:71–98

Then Problem 6 has a solution u ∈ V . If, in addition,

either ϕ(x, t, ·) or − ϕ(x, t, ·) is regular on R
s for a.e. (x, t) ∈ � × (0, T ), (25)

then the solution of Problem 6 is unique.

Toprovide the proof ofTheorem7we start by introducing the functional J : (0, T )×
L2(�;Rs) → R defined by

J (t, v) =
∫

�

ϕ(x, t, v(x)) dx for v ∈ L2(�;Rs), a.e. t ∈ (0, T ). (26)

The following result on the properties of the functional J represents a direct con-
sequence of Theorem 3.47 of [14].

Lemma 8 Assume that (23) holds. Then the functional J given by (26) satisfies the
following properties.

(a) J (·, v) is measurable on (0, T ) for all v ∈ L2(�;Rs).
(b) J (t, ·) is locally Lipschitz on L2(�;Rs) for a.e. t ∈ (0, T ).
(c) ‖∂ J (t, v)‖L2(�;Rs ) ≤ √

3meas(�) c0(t) + √
3 c1 ‖v‖L2(�;Rs ) for all v ∈

L2(�;Rs), a.e. t ∈ (0, T ).
(d) (z1− z2, w1−w2)L2(�;Rs ) ≥ −m2‖w1−w2‖2L2(�;Rs )

for all zi , wi ∈ L2(�;Rs),
zi ∈ ∂ J (t, wi ), i = 1, 2, a.e. t ∈ (0, T ).

(e) for all u, v ∈ L2(�;Rs) and a.e. t ∈ (0, T ), we have

J 0(t, u; v) ≤
∫

�

ϕ0(x, t, u(x); v(x)) dx

where J 0(t, u; v) denotes the generalized directional derivative of J (t, ·) at a
point u ∈ L2(�;Rs) in the direction v ∈ L2(�;Rs).

Moreover, if (25) holds, then either J (t, ·) or −J (t, ·) is regular on L2(�;Rs) for a.e.
t ∈ (0, T ), respectively, and (e) holds with equality.

Proof of Theorem 7 We apply Theorem 5 with X = L2(�;Rs) and the functional J
defined by (26). FromLemma8we know that J satisfies hypothesis (3). ByTheorem5,
we deduce that there exists a unique solution u ∈ V of the operator inclusion

A(t, u(t)) + (Su)(t) + M∗∂ J (t, Mu(t)) � ˜f (t) a.e. t ∈ (0, T ).

Exploiting condition (e) of Lemma 8, it follows that u ∈ V is also a solution to
Problem 6. Indeed, according to Definition 2, there exists ζ ∈ L2(0, T ; X∗), ζ(t) ∈
∂ J (t, Mu(t)) for a.e. t ∈ (0, T ) such that

A(t, u(t)) + (Su)(t) + M∗ζ(t) = ˜f (t) a.e. t ∈ (0, T ).
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Hence, we obtain

〈 ˜f (t) − A(t, u(t)) − (Su)(t), v〉V ∗×V = 〈M∗ζ(t), v〉V ∗×V

= 〈ζ(t), Mv〉X∗×X ≤ J 0(t, Mu(t); Mv)

≤
∫

�

ϕ0(x, t, M(u(t))(x); Mv(x)) dx

for all v ∈ V , a.e. t ∈ (0, T ). It follows from the last inequality that u ∈ V is a solution
to Problem 6.

Next, we assume the regularity condition (25). In order to prove uniqueness of
solutions to Problem 6, let u ∈ V be a solution to Problem 6. By Lemma 8, we know
that either J (t, ·) or −J (t, ·) is regular for a.e. t ∈ (0, T ), and condition (e) of that
lemma holds with equality. Therefore, using this equality, we have

〈A(t, u(t)) + (Su)(t) − ˜f (t), v〉V ∗×V + J 0(t, M(u(t)); Mv) ≥ 0

for all v ∈ V , a.e. t ∈ (0, T ). Also, by Proposition 2.1(i) of [12], we obtain

〈 ˜f (t) − A(t, u(t)) − (Su)(t), v〉V ∗×V ≤ (J ◦ M)0(t, u(t); v)

for all v ∈ V , a.e. t ∈ (0, T ). Subsequently, using the definition of the Clarke subdif-
ferential and Proposition 2.1(ii) of [12], the previous inequality implies

˜f (t) − A(t, u(t)) − (Su)(t) ∈ ∂(J ◦ M)(t, u(t)) = M∗∂ J (t, Mu(t))

for a.e. t ∈ (0, T ). Therefore, we deduce that u ∈ V is a solution to Problem 1. The
uniqueness of solution to Problem 6 is now a consequence of the uniqueness part in
Theorem 5. This concludes the proof of the theorem. ��

4 A Contact Model for an Elastic Beam

The physical setting and the process are as follows. An elastic beam occupies in the
reference configuration the interval [0, L] of the Ox axis, it is clamped at its left
end and the right end is free. The beam is acted upon by an applied force of (linear)
density f = f (x, t) where x is the spatial variable and t represents the time variable.
Here t ∈ [0, T ] with T > 0 and [0, T ] represents the time interval of interest. For
x ∈ [0, L], and t ∈ [0, T ] we denote by u = u(x, t) the vertical displacement of the
beam. Everywhere in what follows, when the meaning is clear, we do not indicate
explicitly the dependence of various variables on x or both on x and t . The beam may
arrive in contact with an obstacle S, parallel to the axis Ox , situated below the beam,
at the level g ≤ 0. Note that g may depend on the spatial variable x but, for simplicity,
we assume in what follows that it is a given constant. The obstacle is deformable and
reactive. Therefore, the penetration is allowed and it arises when g−u ≥ 0. Otherwise,
when g − u < 0, the beam is not in contact with the obstacle. The physical setting is
depicted in Fig. 1.
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Fig. 1 A beam in potential
contact with an obstacle

We use the Euler–Bernoulli model for the beam and we denote Ae = E I , where I
is the beam moment of inertia and E is its Young modulus. We have

d2

dx2

(

Ae
d2u

dx2
(x, t)

)

= f (x, t) + ξ(x, t) in (0, L) × (0, T ) (27)

which is the classical equilibrium equation of the beam, where ξ represents the contact
force. We assume that this force has an additive decomposition of the form

ξ(x, t) = ξ D(x, t) + ξ M (x, t) for (x, t) ∈ (0, L) × (0, T ), (28)

where

−ξ D(x, t) ∈ ∂ j (x, t, g − u(x, t)) for (x, t) ∈ (0, L) × (0, T ), (29)

−ξ M (x, t) =
∫ t

0
b(t − s) (g − u(x, s))+ ds for (x, t) ∈ (0, L) × (0, T ) (30)

with r+ = max{r, 0}. Here and below the quantity g − u(x, t), when positive, repre-
sents a measure of the penetration of the point x of the beam inside the obstacle, at
the time moment t . The part ξ D of the force ξ describes the reaction of the obstacle
due to its current deformability; it follows a normal compliance condition of Clarke-
subdifferential type, as shown in (29). Concrete examples of such condition can be
found in [14]. The part ξ M of the force ξ describes the memory of effects of the
obstacle and satisfies condition (30), in which b is a given function. It follows from
here that the memory effects of the obstacle depend on the history of the penetration.
If b > 0 then ξ M > 0 and, therefore, ξ M describes a pressure towards the beam. If
b < 0 then ξ M < 0 and, therefore, ξ M describes a force which pulls down the beam.
Such kind of behavior could arise in the case of an adhesive contact, for instance.

Finally, since the beam is rigidly attached at its left, we impose the condition

u(0, t) = du

dx
(0, t) = 0 for t ∈ (0, T ) (31)
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and, since no moments act on the free end of the beam, we have

d2u

dx2
(L , t) = d3u

dx3
(L , t) = 0 for t ∈ (0, T ). (32)

We collect the equations and conditions above to obtain the following classical
formulation of the contact problem.

Problem 9 Find a displacement field u : [0, L]×[0, T ] → Rwhich satisfies relations
(27)–(30), together with the boundary conditions (31) and (32).

We now turn to derive a weak or variational formulation of Problem 9. To this end,
we assume in what follows that

Ae ∈ L∞(0, L), there is m A > 0 such that Ae(x) ≥ m A a.e. x ∈ (0, L). (33)

f ∈ L2(0, T ; L2(0, L)). (34)

b ∈ L∞(0, T ). (35)

g ≤ 0. (36)

Also, the contact potential j satisfies the following hypothesis.

j : (0, L) × (0, T ) × R → R is such that
(a) j (·, ·, r) is measurable on (0, L) × (0, T ) for all r ∈ R and there

exists e1 ∈ L2(0, L) such that j (·, ·, e1(·)) ∈ L1((0, L) × (0, T )).

(b) j (x, t, ·) is locally Lipschitz on R for a.e. (x, t) ∈ (0, L) × (0, T ).

(c) |∂ j (x, t, r)| ≤ d0(t) + d1|r | for all r ∈ R, a.e. (x, t) ∈ (0, L) × (0, T )

with d0(t), d1 ≥ 0, d0 ∈ L2(0, T ).

(d) (ζ1 − ζ2)(r1 − r2) ≥ −m|r1 − r2|2 for all ζi ∈ ∂ j (x, t, ri ),

ri ∈ R, i = 1, 2, a.e. (x, t) ∈ (0, L) × (0, T ) with m ≥ 0.

⎫
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⎪
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⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(37)

In what follows we use the subscripts x and xx to denote the first and the sec-
ond derivatives with respect to x , respectively. We introduce the closed subspace of
H2(0, L) given by

V = { v ∈ H2(0, L) | v(0) = vx (0) = 0 }. (38)

We note that there exists c > 0 such that ‖v‖L2(0,L) ≤ c ‖vx‖L2(0,L) for all v ∈
H1(0, L) satisfying v(0) = 0, thus,

‖v‖H2(0,L) ≤ c ‖vxx‖L2(0,L) for all v ∈ V . (39)

We consider now the inner product on V given by (u, v)V = (uxx , vxx )L2(0,L) and
let ‖ · ‖V be the associated norm. Using (39) we find that ‖ · ‖H2(0,L) and ‖ · ‖V are
equivalent norms on V and, therefore, (V, (·, ·)V ) is a real Hilbert space.

Next lemma gives a simple estimate on the embedding constant for V ⊂ L2(0, L).
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Lemma 10 We have ‖v‖L2(0,L) ≤ L2

3 ‖v‖V for all v ∈ V .

Proof Let v ∈ V . For all y ∈ [0, L] we have
∫ y

0
|vxx (r)| dr ≤

(∫ y

0
dr

) 1
2
(∫ y

0
|vxx (r)|2 dr

) 1
2 ≤ √

y ‖vxx‖L2(0,L).

Hence, for all x ∈ [0, L], we obtain

|v(x)| =
∣

∣

∣

∣

∫ x

0

(∫ y

0
vxx (r) dr

)

dy

∣

∣

∣

∣

≤
∫ x

0

(∫ y

0
|vxx (r)| dr

)

dy

≤
∫ x

0

√
y ‖vxx‖L2(0,L) dy = 2

3
x

3
2 ‖vxx‖L2(0,L).

It follows that

‖v‖2L2(0,L)
=

∫ L

0
|v(x)|2 dx ≤ 4

9
‖vxx‖2L2(0,L)

∫ L

0
x3 dx = L4

9
‖vxx‖2L2(0,L)

,

whence the assertion follows. ��

In addition, we consider the bilinear form a : V × V → R, and the operator
S : V → V∗ given by

a(u, v) =
∫ L

0
Ae uxxvxx dx for all u, v ∈ V, (40)

〈(Su)(t), v〉V ∗×V =
∫ L

0

(∫ t

0
b(t − s) (g − u(x, s))+ ds

)

v(x) dx (41)

for all u ∈ V, v ∈ V, a.e. t ∈ (0, T ).

We note that by (33) and (35), it follows that the integrals in (40) and (41) are well
defined. Moreover, a is a bilinear continuous symmetric and coercive on V .

Assume now that u is a sufficiently smooth solution of Problem 9, let v be an
arbitrary element in V and let t ∈ [0, T ]. Then, it follows from (27) that

∫ L

0

d2

dx2

(

Ae
d2u

dx2
(x, t)

)

v(x) dx =
∫ L

0
f (x, t) v(x) dx +

∫ L

0
ξ(x, t) v(x) dx .

Performing two integrations by parts and using the boundary conditions (31) and (32),
we have

∫ L

0
Aeuxx (x, t) vxx (x) dx =

∫ L

0
f (x, t) v(x) dx +

∫ L

0
ξ(x, t) v(x) dx . (42)
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On the other hand, using (28)–(30) and the definition of the Clarke subdifferential, we
deduce that

∫ L

0
ξ(x, t) v(x) dx ≥ −

∫ L

0
j0(x, t, g − u(x, t); v(x)) dx

−
∫ L

0

(∫ t

0
b(t − s) (g − u(x, s))+ ds

)

v(x) dx . (43)

We combine now (42) and (43), then we use notation (40) and (41), and skip the
dependence of various functions on x . As a result, we obtain the following variational
formulation of Problem 9.

Problem 11 Find a displacement field u : (0, T ) → V such that

a(u(t), v) + 〈(Su)(t), v〉V ∗×V +
∫ L

0
j0(t, g − u(t); v) dx ≥

∫ L

0
f (t) v dx

for all v ∈ V , a.e. t ∈ (0, T ).

Our main result in the study of Problem 11 is the following.

Theorem 12 Assume that (33)–(37) hold and

max{ √
3 d1, m }L4 < 9m A. (44)

Then Problem 11 has at least one solution u ∈ V . If, in addition,

either j (x, t, ·) or − j (x, t, ·) is regular on R

for a.e. (x, t) ∈ (0, L) × (0, T ),

}

(45)

then the solution of Problem 11 is unique.

Proof We apply Theorem 7 with � = (0, L), s = 1 and V defined by (38). It is clear
that the embedding operator M : V → L2(0, L) is compact. We define the operator
A : V → V ∗ by

〈Au, v〉V ∗×V = a(u, v) for all u, v ∈ V, (46)

the function ϕ : (0, L) × (0, T ) × R → R by

ϕ(x, t, r) = j (x, t, g − r) for all r ∈ R, a.e. t ∈ (0, T ) (47)

and we introduce the function ˜f : (0, T ) → V ∗ by

〈 ˜f (t), v〉V ∗×V =
∫ L

0
f (t) v dx for all v ∈ V, a.e. t ∈ (0, T ). (48)

First, since the form a defined by (40) is bilinear, continuous and coercive, the operator
A given by (46) satisfies hypothesis (1) with α = m1 = m A. This follows from the
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fact that every bounded, hemicontinuous and monotone operator is pseudomonotone
(cf. Proposition 27.6 of [21]).

Next, we show that the operator S defined by (41) satisfies condition (2). Let u1,
u2 ∈ V . For v ∈ V and a.e. t ∈ (0, T ), we have

〈(Su1)(t) − (Su2)(t), v〉V ∗×V

=
∫ L

0

(∫ t

0
b(t − s) [(g − u1(x, s))+ − (g − u2(x, s))+] ds

)

v(x) dx

≤ c ‖
∫ t

0
b(t − s) [(g − u1(s))

+ − (g − u2(s))
+] ds‖L2(0,L) ‖v‖V

with c > 0. Hence and from the elementary inequality |a+ − b+| ≤ |a − b| for all a,
b ∈ R, it follows that

‖(Su1)(t) − (Su2)(t)‖V ∗ ≤ c ‖b‖L∞(0,T )‖
∫ t

0
|u1(s) − u2(s)| ds‖L2(0,L)

≤ c ‖b‖L∞(0,T )

∫ t

0
‖u1(s) − u2(s)‖V ds.

Since S0 = 0, we easily infer that ‖Su‖V∗ ≤ c T ‖b‖L∞(0,T )‖u‖V for all u ∈ V . This
implies that the operator S is well defined, takes values in V∗ and condition (2) holds
with LS = c ‖b‖L∞(0,T ).

Subsequently, we prove that the function ϕ given by (47) satisfies hypothesis (23).
Indeed, from (a) and (b) of (37), it is clear that (a) and (b) of (23) hold. Since
∂ϕ(x, t, r) = −∂ j (x, t, g − r) for all r ∈ R, a.e. (x, t) ∈ (0, L) × (0, T ), we
infer that condition (23)(c) is satisfied with c0(t) = d0(t) + d1|g| and c1 = d1.

Let ri , si ∈ R, si ∈ ∂ϕ(x, t, ri ), i = 1, 2 with (x, t) ∈ (0, L) × (0, T ). Thus
si = −ζi , ζi ∈ ∂ j (x, t, g − ri ) and condition (37)(d) implies (ζ1 − ζ2)(r2 − r1) ≥
−m|r1 − r2|2. Hence

(s1 − s2)(r1 − r2) = (−ζ1 + ζ2)(r1 − r2) = (ζ1 − ζ2)(r2 − r1) ≥ −m|r1 − r2|2

which proves (23)(d) with m2 = m. Hence condition (23) follows.
It is obvious that the function ˜f defined by (48) satisfies the inequality ‖ ˜f ‖V∗ ≤

‖ f ‖L2(0,T ;L2(0,L)), so it satisfies condition (5). For the embedding operator, by

Lemma 10, we have ‖M‖ ≤ L2

3 . Thus, condition (44) implies hypothesis (24). We
deduce from Theorem 7 that Problem 11 has a solution u ∈ L2(0, T ; V ).

Finally, if, in addition, the regularity hypothesis (45) holds, then by Proposition
3.37 of [14], we conclude that the function ϕ given by (47) satisfies condition (25).
Therefore the uniqueness of solution is a consequence of Theorem 7. This concludes
the proof of the theorem. ��
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5 Numerical Approximation

In this section we formulate the Galerkin scheme for Problem 11 and describe the
primal-dual active set technique that is used to solve effectively the approximate prob-
lem.

Let 0 = x0 < x1 < · · · < xN = L be a partition of the interval [0, L] such that
xi = ih for i = 0, . . ., N and h = L/N . Let In = (xn−1, xn) for n = 1, . . ., N . We
define the following finite element space

Vh = { v ∈ C1([0, L]) | v|In ∈ P3(In) for all n = 1, . . . , N , v(0) = vx (0) = 0 },

where Pm(K ) denotes the space of polynomials of degree ≤ m on an interval K . The
basis of this space consists of the functions

vn ∈ Vh such that vn(xi ) = δni , v′
n(xi ) = 0 for i, n = 1, . . . , N ,

vn+N ∈ Vh such that vn(xi ) = 0, v′
n(xi ) = δni for i, n = 1, . . . , N ,

where δni denotes the Kronecker delta. We also introduce the space

Wh = { w : [0, L] → R | w|In ∈ P0(In) for all n = 1, . . . , N }

and the projection operator �h : L1(0, L) → Wh given by

�h(v)(x) = 1

h

∫ xn

xn−1

v(y) dy for x ∈ In, n = 1, . . . , N .

The basis of the space Wh consists of the characteristic functions of intervals Ii for
i = 1, . . ., N .We are now in a position to define the semidiscrete version of Problem11.

Problem 13 Find adisplacementuh : [0, T ] → Vh and a reaction force ξ D
h : [0, T ] →

Wh such that

a(uh(t), vh) +
∫ t

0

∫ L

0
b(t − s)(�h(g − uh(s)))+vh dx ds

=
∫ L

0
ξ D

h (t)vh dx +
∫ L

0
f (t)vh dx

for all vh ∈ Vh , all t ∈ [0, T ], where

−ξ D
h (x, t) ∈ ∂ j (t,�h(g − uh(t))(x)) for all (x, t) ∈ [0, L] × [0, T ].

In what follows, for the convenience of the reader we assume that in Problem 13, the
function j does not depend on x .

Now we pass to the fully discrete formulation. To this end we introduce the time
mesh 0 = t0 < t1 < · · · < tM = T , where tk = kτ for k = 0, . . ., M and τ = T/M .
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The time integrals will be approximated by the trapezoidal rule

∫ tk

0
h(t) dt � τ

2
h(0) + τ

k−1
∑

j=1

h(t j ) + τ

2
h(tk) for k = 1, . . . , M.

For a function h : {t0, t1, . . . , tM } → Y , where Y is a vector space, we denote h j =
h( jτ) for j = 0, . . ., M . The fully discrete problem corresponding to Problem 13
reads as follows.

Problem 14 Find (uk
hτ , ξ

Dk
hτ ) ∈ Vh × Wh for k = 0, . . . , M such that

a(u0
hτ , vh) −

∫ L

0
ξ D0

hτ vh dx =
∫ L

0
f 0 vh dx for all vh ∈ Vh (49)

and

a(uk
hτ , vh) + τ

2

∫ L

0
b0(�h(g − uk

hτ ))
+vh dx −

∫ L

0
ξ Dk

hτ vh dx

= −τ

2

∫ L

0
bk(�h(g − u0

hτ ))
+vh dx − τ

k−1
∑

j=1

∫ L

0
bk− j (�h(g − u j

hτ ))
+vh dx

+
∫ L

0
f k vh dx for all vh ∈ Vh, for all k = 1, . . . , M, (50)

where

−ξ Dk
hτ (x) ∈ ∂ j (tk,�h(g − uk

hτ )(x)) for all x ∈ [0, L], k = 0, . . . , M.

Note that, in the time step k, the terms on the left-hand side of (50) depend on the
unknown functions uk

hτ and ξ Dk
hτ , and the terms on the right-hand side of (50) depend

on the history values u j
hτ for j = 0, . . . , k − 1 and the function f k . Hence, in the first

time step, we need to calculate u0
hτ and ξ D0

hτ from (49), and next, solve (50) recursively
to obtain the values uk

hτ and ξ Dk
hτ in consecutive points on the time mesh. The solution

of (49), (50) in each time step can be obtained by means of the primal-dual active set
strategy.

We now describe the primal-dual active set strategy in the case the superpotential
j : R → R is given by

j (s) =

⎧

⎪

⎨

⎪

⎩

0 for s ≤ 0,

− 1
2 λ s2 for s ∈ (0, R),

− 1
2 λ R2 for s ≥ R,

(51)

where R > 0 is the threshold above which the obstacle breaks and no reaction occurs
any more and λ > 0 is the foundation compliance coefficient. We remark that this
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method can be easily generalized into the case where the graph of ∂ j consists of finite
number of line segments. It is clear that the Clarke subdifferential of the function j
defined by (51) is of the form

∂ j (s) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

{0} for s ≤ 0,

{−λs} for s ∈ (0, R),

[−λR, 0] for s = R,

{0} for s > R.

(52)

Clearly, j defined by (51) satisfies (37)(a), (b). From (52), it follows that (37)(c) holds
with d1 = 0 and d2 ≡ λR. Moreover, (37)(d) holds with m = λ. Indeed, if we define
j1(s) = j (s)+ 1

2λs2 then it is easy to see that j1 is convex and ∂ j1(s) = ∂ j (s)+{λs}
for all s ∈ R. Now, condition (37)(d) with constant m = λ is a consequence of the
fact that ∂ j1 is monotone.

We put Ae ≡ 1. Then a(u, v) = ∫ L
0 uxxvxx dx and m A = 1 in (33). Futhermore,

we assume the following smallness condition on the beam length

λL4 < 9.

Then condition (44) holds and we can apply Theorem 12.
To solve the discretized problem (49), (50) in a given time step it is required to

know the relation between �h(g − uk
hτ ) and −ξ Dk

hτ on every interval of the space
mesh. It is enough to know which of the four segments in the graph of (52), the pair
(�h(g − uk

hτ ),−ξ Dk
hτ ) belongs to. Therefore, we divide the set {1, . . . , N } into four

disjoint subsets {1, . . . , N } = ∪4
j=1A j , where

i ∈ A1 ⇔ �h(g − uk
hτ )(x) ≤ 0 and ξ Dk

hτ (x) = 0,

i ∈ A2 ⇔ �h(g − uk
hτ )(x) ∈ (0, R) and ξ Dk

hτ (x) = λ �h(g − uk
hτ )(x),

i ∈ A3 ⇔ �h(g − uk
hτ )(x) = R and ξ Dk

hτ (x) ∈ [0, λR],
i ∈ A4 ⇔ �h(g − uk

hτ )(x) > R and ξ Dk
hτ (x) = 0,

for x ∈ Ii , i = 1, . . . , N . If the above division is known, then the solution consists in
solving a set of 3N linear equations in which 2N unknowns are coefficients of uk

hτ in
the basis of Vh and the remaining N unknowns are the values of ξ Dk

hτ on corresponding
intervals. However, since we do not know this division a priori, we need to apply the
following iterative procedure to find it.

Step 0. In the first time step A(0)
1 := {1, . . . , N }, A(1)

1 = A(2)
1 = A(3)

1 := ∅, l := 1.
In the following time steps initialize the sets by taking them from the previous time
step.

Step 1. A(l)
1 := A(l−1)

1 , A(l)
2 := A(l−1)

2 , A(l)
3 := A(l−1)

3 , A(l)
4 := A(l−1)

4 .
Step 2. Solve the following auxiliary linear problem (here only the case k ≥ 1 is

considered, the case k = 0 is analogous).
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Problem 15 Find (uk(l)
hτ , ξ

Dk(l)
hτ ) ∈ Vh × Wh such that

a(uk(l)
hτ , vh) + τ

2

∫

[0,L]\⋃
i∈A(l)

1
Ii

b0(�h(g − uk(l)
hτ ))+ vh dx −

∫ L

0
ξ

Dk(l)
hτ vh dx

= −τ

2

∫ L

0
bk(�h(g − u0

hτ ))
+vh dx − τ

k−1
∑

j=1

∫ L

0
bk− j (�h(g − u j

hτ ))
+vh dx

+
∫ L

0
f k vh dx for all vh ∈ Vh (53)

with

ξ
Dk(l)
hτ (x) = 0 for x ∈ Ii and i ∈ A(l)

1 ∪ A(l)
4 , (54)

ξ
Dk(l)
hτ (x) = λ�h(g − uk(l)

hτ )(x) for x ∈ Ii and i ∈ A(l)
2 , (55)

�h(g − uk(l)
hτ )(x) = R for x ∈ Ii and i ∈ A(l)

3 . (56)

After representing uk(l)
hτ in the basis of Vh and ξ

Dk(l)
hτ in the basis of Wh and substi-

tuting basis functions of Vh in place of vh the equation (53) leads to a set of 2N linear
equations. The next N linear equations are obtained from (54)–(56) for i = 1, . . . , N .

Step 3. Sets update. The sets in each iteration step are updated according to the
following rules. For i = 1, . . . , N

• if i ∈ A(l−1)
1 and �h(g − uk(l)

hτ )(x) > 0 for x ∈ Ii , then A(l)
1 := A(l)

1 \ {i} and
A(l)
2 := A(l)

2 ∪ {i},
• if i ∈ A(l−1)

2 and �h(g − uk(l)
hτ )(x) < 0 for x ∈ Ii , then A(l)

2 := A(l)
2 \ {i} and

A(l)
1 := A(l)

1 ∪ {i},
• if i ∈ A(l−1)

2 and �h(g − uk(l)
hτ )(x) > R for x ∈ Ii , then A(l)

2 := A(l)
2 \ {i} and

A(l)
1 := A(l)

1 ∪ {i},
• if i ∈ A(l−1)

3 and ξ
Dk(l)
hτ (x) > λR for x ∈ Ii , then A(l)

3 := A(l)
3 \ {i} and A(l)

2 :=
A(l)
2 ∪ {i},

• if i ∈ A(l−1)
3 and ξ

Dk(l)
hτ (x) < 0 for x ∈ Ii , then A(l)

3 := A(l)
3 \ {i} and A(l)

4 :=
A(l)
4 ∪ {i},

• if i ∈ A(l−1)
4 and �h(g − uk(l)

hτ )(x) < R for x ∈ Ii , then A(l)
4 := A(l)

4 \ {i} and
A(l)
3 := A(l)

3 ∪ {i}.
Step 4. If A(l)

1 = A(l−1)
1 and A(l)

2 = A(l−1)
2 and A(l)

3 = A(l−1)
3 and A(l)

4 = A(l−1)
4 ,

then STOP, else l := l + 1, and go to Step 1.
From the construction of the above algorithm, it follows that after it stops, the

obtained solution (uk(l)
hτ , ξ

Dk(l)
hτ ) is the solution of Problem 14.

We now provide numerical simulations for the following data: R = 0.5, λ = 1,
g = −0.1, L = 1, T = 5 and f (x) = −5 for all x ∈ [0, 1]. Five examples of the
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memory function b were considered:

b1(s) = 0, b2(s) = −1, b3(s) = −e−s, b4(s) = 1, b5(s) = e−s

for all s ∈ [0, 5]. The history terms in the right-hand side of (50) were recorded and
updated in consecutive time steps according to the following formulas. For b2, we put

Bk
2 = τ

2

∫ L

0
(�h(g − u0

hτ ))
+vh dx + τ

k−1
∑

j=1

∫ L

0
(�h(g − u j

hτ ))
+vh dx

and hence we have the recursive scheme

B1
2 = τ

2

∫ L

0
(�h(g − u0

hτ ))
+vh dx, Bk+1

2 = Bk
2 + τ

∫ L

0
(�h(g − uk

hτ ))
+vh dx .

For b3, we put

Bk
3 = τ

2

∫ L

0
ekτ (�h(g − u0

hτ ))
+vh dx + τ

k−1
∑

j=1

∫ L

0
e(k− j)τ (�h(g − u j

hτ ))
+vh dx

which leads to the recursive scheme

B1
3 = τ

2

∫ L

0
eτ (�h(g − u0

hτ ))
+vh dx, Bk+1

3 = eτ Bk
3

+τ

∫ L

0
eτ (�h(g − uk

hτ ))
+vh dx .

The above formulas allow to save storage for remembering the history values of
solution needed to compute the right-hand side of (50).

The space interval [0, 1] was divided into 30 elements of equal length, which
resulted in 60 base functions of Vh (30 for the value of the function and 30 for
the value of its derivative). The length of the time step was assumed to be equal
to 0.1. The deformed configuration of the beam after respectively 0, 10, 20, 30, 40
and 50 time steps (which corresponds to t = 0, 1, 2, 3, 4 and 5) is shown in
Fig. 2.

A quick analysis of the results presented in this figure leads to the following com-
ments.

First, Fig. 2a corresponds to the case when the memory function b vanishes. In
this case the obstacle does not provide memory effects and, therefore, the process is
stationary. The solutions are plotted for various values of λ. Note that for the case
λ = 0 the exact solution is given by the expression u(x) = − 5

24 x4 + 5
6 x3 − 5

4 x2

for x ∈ [0, 1]. Figure2b corresponds to the case when the memory function b is
negative which introduces a reaction from the obstacle towards the beam. The process
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Fig. 2 The deformed configuration of the beam for the memory functions b1, . . . , b5 for time instants
t = 0, 1, 2, 3, 4, 5. For the memory function b1, the solutions, which are time independent, are plotted for
various values of λ
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Fig. 2 continued
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Fig. 2 continued

is evolutionary and the penetration at the right extremity of the beam (say at the point
x = 1) is decreasing in time, since the beam is pushing up. This case corresponds to
a hardening of the obstacle. A similar behavior of the solution is obtained in Fig. 2c
which, again, corresponds to a negativememory functionb and describes the hardening
of the obstacle. Figure2d and e correspond to the case when the memory function b
is positive. In these cases the process is evolutionary but the penetration at the right
extremity of the beam (say at the point x = 1) is increasing in time, since the beam is
pulling down. This situation corresponds to a softening of the obstacle. We conclude
from above that our model of contact describes both the hardening and the softening
of the obstacle’s surface.

Moreover, we note that the penetration at x = 1 is more important in the case
(b) in comparison with that case (c), at each time moment. The reason arises in the
inequality

e−s ≤ 1,

valid for all s ∈ [0, 5], which shows that the part of the reaction of the obstacle that is
due to thememory, is more important in the case (b) than in the case (c). Consequently,
the surface hardening is more important in the case (b) than in the case (c). We have
a similar comment concerning the cases (d) and (e): the penetration at x = 1 is more
important in the case (d) in comparison with that in the case (e), at each time moment.
This shows that the softening of the obstacle is more important in the case (d) than in
the case (e).
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Table 1 Cardinalities of sets A1, . . . , A4 for five space meshes

h N |A1| |A2| |A3| |A4|
0.0500 20 6 (0.3000) 11 (0.5500) 0 (0.0000) 3 (0.1500)

0.0250 40 12 (0.3000) 23 (0.5750) 0 (0.0000) 5 (0.1250)

0.0167 60 17 (0.2833) 35 (0.5833) 0 (0.0000) 8 (0.1333)

0.0125 80 23 (0.2875) 47 (0.5875) 0 (0.0000) 10 (0.1250)

0.0100 100 29 (0.2900) 58 (0.5800) 0 (0.0000) 13 (0.1300)

The data for the simulations were R = 0.5, g = −0.1, L = 1, λ = 1 and f (x) = −6 for x ∈ [0, 1]. In
parenthesis the fraction of interval [0, L] belonging to the corresponding set is given

Finally, we note that in the cases (c) and (e) the penetration at x = 1 seems to
stabilize to a limit value, as time converges to infinity. The reason arises in the limit

lim
s→∞ e−s = 0

which implies that, for large time intervals, the variation of the memory effects of
the contact is very small. Therefore, these effects do no produce extra hardening or
softening.

We conclude this sectionwith some remarks on the convergence of proposed numer-
ical scheme. We run the simulation for the case without memory (b ≡ b1) and with
λ = 1, L = 1 and f (x) = −6 for x ∈ [0, 1] for various meshes to see if the contact
area does converge. The results are presented in Table 1. Clearly, the results provide
the numerical evidence that the contact area converges with the decreasing space step
length.

The problem of convergence of solutions to the fully discretized problems to the
solution of the original problem, as well as the derivation of error estimates and
convergence order remain open. We expect that the proof of error estimates can be
done using the generalization of methods from [1]. Since there are no time derivatives
present in the considered problem and the time stepping scheme is implicit, we expect
that the convergence holds without any additional relations between the time step τ

and space step h.
The number of the steps of primal-dual active set algorithm, required for conver-

gence was always no greater than four. For finer meshes, to decrease the number of
active set algorithm steps required for convergence, instead of starting from the config-
uration which assumed that all edges belong to A1, we started from the configuration
obtained from the solution on the sparser mesh.
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