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Abstract
Orphan genes, lacking detectable homologs in outgroup species, typically represent 10–30% of eukaryotic genomes. Efforts 
to find the source of these young genes indicate that de novo emergence from non-coding DNA may in part explain their 
prevalence. Here, we investigate the roots of orphan gene emergence in the Drosophila genus. Across the annotated proteomes 
of twelve species, we find 6297 orphan genes within 4953 taxon-specific clusters of orthologs. By inferring the ancestral 
DNA as non-coding for between 550 and 2467 (8.7–39.2%) of these genes, we describe for the first time how de novo emer-
gence contributes to the abundance of clade-specific Drosophila genes. In support of them having functional roles, we show 
that de novo genes have robust expression and translational support. However, the distinct nucleotide sequences of de novo 
genes, which have characteristics intermediate between intergenic regions and conserved genes, reflect their recent birth 
from non-coding DNA. We find that de novo genes encode more disordered proteins than both older genes and intergenic 
regions. Together, our results suggest that gene emergence from non-coding DNA provides an abundant source of mate-
rial for the evolution of new proteins. Following gene birth, gradual evolution over large evolutionary timescales moulds 
sequence properties towards those of conserved genes, resulting in a continuum of properties whose starting points depend 
on the nucleotide sequences of an initial pool of novel genes.
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Introduction

Taxonomically restricted ‘orphans’, which constitute up 
to 30% of genes in some eukaryotes (Wissler et al. 2012; 
Van Oss and Carvunis 2019), are defined by their lack of 
homologs outside a given phylogenetic distribution. While 
a definitive explanation for their abundance remains to be 

found, gene emergence from non-coding DNA may offer at 
least a partial answer. Now known to occur across eukary-
otes, cases of de novo gene emergence have been found in 
insect, yeast, primate and plant species (McLysaght and 
Hurst 2016; Schmitz and Bornberg-Bauer 2017; Van Oss 
and Carvunis 2019). As greater numbers of de novo genes 
are discovered, questions are raised as to their evolutionary 
origins, as well as the structural and functional properties 
of the proteins they encode (McLysaght and Hurst 2016; 
Schmitz and Bornberg-Bauer 2017; Van Oss and Carvunis 
2019).

The first step in identifying de novo-emerged genes is 
generally to enumerate the set of orphan genes in a given 
phylogeny. Typically, clusters of orthologous genes (COGs) 
are identified based on protein sequence homology and 
defined as taxonomically restricted by lack of homolo-
gous proteins in one or more outgroup species. Age is 
subsequently assigned via phylostratigraphy (Tautz and 
Domazet-Lošo 2011). However, far fewer studies define the 
mechanism of origin of each orphan cluster, which requires 
identification of syntenic DNA in one or more closely 
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related outgroup species (McLysaght and Hurst 2016). 
While de novo emergence is one explanation for an orphan’s 
taxonomic restriction, other possibilities include horizon-
tal gene transfer (HGT), N-terminal frameshift mutation, 
and rapid sequence divergence causing loss of homology 
signal (Wissler et al. 2013). Distinguishing truly ‘de novo-
emerged’ genes from rapidly diverging ones is particularly 
important because homology, even if hardly recognisable 
in the face of strong divergence, indicates that an encoded 
protein has evolved gradually and may have retained struc-
tural and functional information (Moyers and Zhang 2017; 
Casola 2018).

In Drosophila, while a number of studies have investi-
gated gene emergence by identifying orphan genes (Chen 
et al. 2010; Palmieri et al. 2014; Basile et al. 2017), a clade-
wide exploration of true de novo gene emergence is still 
lacking. De novo genes were first discovered in D. mela-
nogaster (Begun et al. 2006, 2007; Levine et al. 2006), and 
while they have since been comprehensively studied in the 
testis transcriptome (Zhao et al. 2014; Witt et al. 2019), 
and a handful of orphans confirmed as de novo in D. mel-
anogaster (Zhou et al. 2008; Reinhardt et al. 2013; Zhao 
et al. 2014; Witt et al. 2019), many studies have stopped 
short of identifying non-coding DNA in an outgroup and 
therefore only identify orphan genes, even if sometimes 
termed ‘de novo’. Furthermore, while a number of stud-
ies have combined searches of proteomes and genomes 
in order to increase the sensitivity of their search (Chen 
et al. 2010; Palmieri et al. 2014; Basile et al. 2019), the de 
novo genes they identify have been annotated by exclusion 
of all homology at the genome level, thereby identifying 
sequences with unknown origin. By extension, conclusions 
as to the evolutionary dynamics and sequence properties of 
de novo-emerged genes based on these gene sets should be 
treated with caution. In this study, we, therefore, aim to (i) 
systematically investigate the origins of orphan genes across 
the Drosophila clade and confirm cases of genuine de novo 
emergence from non-coding DNA, (ii) place the properties 
of this set of de novo genes in the context of existing knowl-
edge of young proteins in Drosophila and other species, and 
(iii) infer the evolutionary trajectories of proteins emerged 
from non-coding DNA.

While there are a number of outstanding questions to be 
addressed in the field of de novo gene emergence, themati-
cally they can be divided into two broad categories. The first 
debate centres on how non-coding regions of the genome 
acquire protein-coding capacity. This transition requires at a 
minimum the gain of an open reading frame (ORF), as well 
as stable transcription, ribosome binding and translation (Cai 
et al. 2008; Schmitz and Bornberg-Bauer 2017). Transcript-
level expression may be a key factor in gene emergence; 
here, we refer to stable transcription as that which can be 
distinguished from noise. Orphan genes in D. melanogaster 

have previously been shown to be expressed at a higher level 
than intergenic regions (Palmieri et al. 2014). Also appar-
ent is the abundance of ‘pervasive’ or ‘spurious’ expression 
which has been shown to expose entire genomes to expres-
sion over short evolutionary timescales (Neme and Tautz 
2016). In light of this genome-wide spurious transcriptional 
activity, it appears that the gain of transcription is unlikely 
to be a rate-limiting step in the gene birth equation (Neme 
and Tautz 2016). In addition, the potential of non-coding 
RNA (ncRNA) to form a functional intermediate may shield 
a locus from being purged by neutral drift (Ruiz-Orera et al. 
2014), making a transcription-first model of gene emergence 
an attractive hypothesis. A ‘proto-gene’ model of gene birth 
has also been proposed, where transcription and ORF struc-
ture mature in a cooperative process (Carvunis et al. 2012). 
The most recent evidence indicates that, at least in rice, gain 
of transcription is frequently the first step in the gene birth 
process (Zhang et al. 2019). If this is the case, a ‘transcript 
first’ emergence model may reflect stochastic transcript and 
ORF turnover, with the higher turnover of transcription mak-
ing it more likely to occur first.

The second major theme concerns the structural and 
biophysical properties of the proteins encoded by de novo 
genes. Central to this are varied findings on the level of 
structural disorder associated with de novo proteins. 
While elevated disorder relative to conserved proteins 
has been found for new domains in Drosophila (Bitard-
Feildel et al. 2015), evidence in yeast and rodents is dis-
cordant. In yeast, Lachancea de novo genes were found 
to be more disordered than conserved genes (Wilson 
et al. 2017), while Saccharomyces de novo genes have 
been found to have both comparable (Ekman and Elofs-
son 2010; Vakirlis et al. 2018) and higher disorder rela-
tive to conserved genes (Wilson et al. 2017). Similarly, 
in mouse, orphan and de novo genes have been found to 
have higher (Wilson et al. 2017) and comparable (Schmitz 
et al. 2018) levels of disorder, calling into question the 
claims for strong adaptive causes for trends in disorder 
and other biophysical properties. One such theory posits 
that the primary selection on newly born proteins is the 
avoidance of aggregation (the ‘do no harm’ hypothesis), 
and that genes may undergo ‘preadaptation’ before fixa-
tion, so that only those proteins with the least harmful 
effect on the cell become fully fledged genes (Ángyán 
et al. 2012; Wilson et al. 2017). Whether elevated disor-
der in newly born proteins reflects selection for disorder, 
against aggregation, or is instead a neutral consequence 
of the processes of gene birth and fixation remains to be 
clarified (Nielly-Thibault and Landry 2019). However, the 
confounding effect of GC-content on protein disorder and 
aggregation propensity, due to the GC richness of codons 
for disorder-promoting amino acids, further complicates 
matters. Basile et al. (2017) have shown that in many 
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taxa, the higher disorder seen in young proteins can be 
attributed to elevated GC-content, while in rodent spe-
cies, Casola (2018) concluded that higher disorder was 
driven by a small number of orphans found to overlap 
older genes in an alternate reading frame. This view is 
also supported by recent findings in Lachancea yeast that 
de novo genes emerge preferentially from high GC-con-
tent regions, explaining their elevated disorder in com-
parison to intergenic regions (Vakirlis et al. 2018).

In this study, we systematically investigate the origins 
of a large number of orphan genes in the Drosophila clade 
and find evidence that up to 39% of the 6297 orphan 
genes may have originated from ancestrally non-coding 
regions of the genome. By comparing the annotated 
proteomes of twelve Drosophila species and three out-
group species, and mapping orphan proteins to outgroup 
genomic sequences, we exploit the short divergence times 
between species to identify their mechanism of origin. 
In doing so, we identify a more reliable set of de novo 
genes than those that have been found to date, given that 
previous clade-wide studies have identified orphan genes 
without investigating their roots. We then make use of 
this set of de novo genes to investigate expression pat-
terns, evolutionary rate, and sequence properties of their 
encoded proteins, finding evidence that annotated de novo 
proteins have strong signatures of transcription and abun-
dant translational evidence. Furthermore, we show that 
their sequence properties appear to fall midway along an 
evolutionary continuum ranging from the least gene-like 
sequences to the most conserved sequences—demonstrat-
ing for the first time a continuum model of gene emer-
gence in Drosophila, as has previously been observed in 
yeast (Carvunis et al. 2012).

Results and Discussion

Orphan Genes form a Significant Fraction 
of Drosophila Genomes

Starting from the annotated proteomes of twelve Drosophila 
species and three outgroup species (Table 1), we clustered 
sequences by all-vs-all BLASTP, before filtering against 
the NCBI non-redundant database to remove ancient genes. 
Using a phylostratigraphic method (Domazet-Loso et al. 
2007), we assigned ages to each cluster of orthologs (COG) 
restricted to the Drosophila clade. In this way, a minimum 
age is assigned parsimoniously, assuming that gene gain 
occurred along the branch leading to the common ances-
tor of the species with orthologs in a given COG. Given 
our aim to identify de novo genes, at this point, we also 
excluded orphan genes with annotated Pfam domains, which 
would most likely result from divergence from a conserved 
(i.e., old) protein. Shown in Table 1 are the total number 
of protein-coding and orphan genes in the twelve species. 
Figure 1a illustrates the rates of orphan gain on each branch, 
along with the proportion of genes gained by each emer-
gence mechanism (see next subsection). The rate of gene 
gain is seen to be highest on the youngest branches of the 
tree, pointing to a high rate of gene birth at the time around 
speciation events, followed by gradual loss of the majority 
of these genes over the course of millions of years (Tautz 
and Domazet-Lošo 2011; Schmitz et al. 2018). As seen in 
Fig. 1b, the total number of orphan genes found in each spe-
cies is variable, which we hypothesise to be due to a combi-
nation of lineage-specific gene loss and variable annotation 
quality. However, adaptive gene gain may also play a role 
and could offer a partial explanation for the high number 

Table 1  Summary statistics 
for orphan genes found in 
the Drosophila clade and 
their inferred mechanism of 
origination based on sensitive 
mapping to outgroup genomes 
using TBLASTN

Species Proteome Orphans De novo 
(inter-
genic)

De novo 
(intronic)

Putative Divergent Total 
de novo 
(all)

% De novo (all)

D. ana 14,365 455 34 27 323 71 61 13.4
D. yak 14,824 393 42 54 165 132 96 24.4
D. ere 13,605 196 19 21 93 63 40 20.4
D. mel 13,907 246 38 28 130 50 66 26.8
D. sim 14,179 445 84 75 136 150 159 35.7
D. sec 16,465 1133 383 327 102 321 710 62.7
D. pse 14,574 588 231 79 205 73 310 52.7
D. per 16,874 1294 437 293 324 240 730 56.4
D. wil 13,783 217 2 6 179 30 8 3.7
D. vir 13,620 335 39 30 216 50 69 20.6
D. moj 13,425 333 31 28 221 53 59 17.7
D. gri 14,982 662 108 51 438 65 159 24.0
Total 174,603 6297 1448 1019 2532 1298 2467 39.2
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of species-specific orphans found in D. sechellia, given the 
recent adaptation to its toxic host Morinda citrifolia (Lav-
ista-Llanos et al. 2014).

De Novo Emergence Contributes to the Prevalence 
of Orphan Genes in Drosophila

Following identification of orphan genes across the Dros-
ophila clade, we investigated their origins by sensitive 
mapping the proteins from each orphan COG to the twelve 
Drosophila and three outgroup genomes using TBLASTN 
(Camacho et al. 2009). COGs were annotated as intergenic 
de novo, intronic de novo, putative de novo, or divergent 
based on the set of annotated features overlapping with any 
of the hits in outgroup genomes. We annotated de novo 
emergence conservatively, with intergenic de novo genes 
mapping exclusively to gene-free regions in all outgroup 
species. Intronic de novo genes mapped to at least one 
intronic region across outgroup mappings, while divergent 
orphans mapped to one or more exonic features. Strand and 
frame information was not considered, meaning that some 
divergent orphans result from out-of-frame or opposite 
strand exon-overlap (Schmitz et al. 2018). However, a frac-
tion also encompasses rapidly diverging conserved proteins 
which escape homology detection at the protein level; esti-
mates of the percentage of Drosophila genes which may go 
undetected outside the clade by chance range from 2 to 4%, 
depending on the E value threshold used (Moyers and Zhang 
2015). Accordingly, the 1298 (20.6%) orphans we classify 
as divergent appear to be a reasonable estimate and is also 
in agreement with synteny-based estimates of ‘divergence 

beyond recognition’ which suggest a contribution of diver-
gence for up to 20% of orphans (Vakirlis et al. 2020).

In cases where no outgroup hit was found using 
TBLASTN, COGs were annotated as putative de novo. 
These unmapped orphan genes may still represent genuine 
cases of emergence from non-coding DNA, with rapid drift 
of non-coding DNA in outgroup species explaining the lack 
of homology signal. However, given their unclear origins, 
we categorise putative de novo genes separately to avoid 
including divergent orphans that have lost homology signal 
at both the nucleotide and protein level. The proportion of 
orphans gained by de novo emergence along each branch in 
the Drosophila clade is illustrated in Fig. 1a and in total for 
each species in Fig. 1b. Overall, on the basis of mapping to 
outgroup non-coding DNA, we find evidence that up to 2467 
(39%) of orphans may have emerged de novo, in addition to 
a comparable number (2532, 40%) of putative de novo genes 
with unclear evolutionary origin (Table 1).

Divergence of Outgroup Genomic Regions Limits 
Inference of the Mechanism of Orphan Gene 
Emergence

To investigate the high number of putative de novo genes 
found on some branches, we looked at the effects of branch 
age, branch length, and distance from the root of a branch 
to its closest extant outgroup species. We find that the total 
divergence time from the root of a branch to the closest out-
group species to that branch provides the best explanation 
for differential mapping using TBLASTN. As illustrated 
by Fig. 2a, the proportion of unmapped orphans shows a 
strong positive correlation with divergence time (r = 0.88, 

a b

Fig. 1  De novo gene emergence is prevalent in the Drosophila clade 
and may explain the abundance of orphan genes. a Starting from the 
annotated proteomes of twelve Drosophila species, we identify 6297 
orphan genes within 4953 taxon-restricted clusters. Of these orphans, 
we estimate that up to 39% may have emerged from non-coding 

DNA. Inferred emergence mechanisms for orphans gained on each 
branch are illustrated with pie charts. Numbers indicate total orphan 
gain along each branch. b Bars illustrate the total number of orphan 
genes in each species aggregated along branches
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p = 1.6e−7). This is reflected in the variable percentage of 
orphans assigned as de novo by our pipeline in each species 
(Table 1); D. willistoni, with only two de novo genes, is 
the species with the greatest divergence from any outgroup 
genome available for mapping (see Fig. 1a). We hypoth-
esise that sequence divergence of syntenic genomic regions 
in outgroup species underlies this loss of homology signal, 
possibly driven by the fast divergence of insect genomes 
(Zdobnov et al. 2002). Additionally, a high rate of outgroup 
sequence divergence may be best explained by non-coding 
status in that species, which might point to a majority of 
putative de novo genes being genuine and therefore not hav-
ing diverged from an existing gene. Given that a stringent 
de novo gene identification requires identification of non-
coding orthologous DNA (McLysaght and Hurst 2016), our 
results highlight that the investigation of orphan gene emer-
gence requires a dense phylogeny with as little divergence 
time as possible between species (Khalturin et al. 2009; 
Tautz and Domazet-Lošo 2011).

High Chromosomal GC‑Content May Promote Gene 
Emergence

In light of evidence that GC-rich regions of the genome have 
higher rates of de novo gene gain (Vakirlis et al. 2018; Wu 

and Knudson 2018), we next investigated the relationship 
between mean chromosomal GC-content and the number 
of orphans per chromosome arm, looking at only the major 
chromosome arms (> 1000 Mb) in each species. We find a 
positive correlation between GC-content and the density of 
orphan genes on a chromosome (r = 0.56, p = 3.2e−17), as 
shown in Fig. 2b. The strongest individual relationship is 
seen for intergenic de novo genes (r = 0.56, p = 3.6e−17), 
but weaker positive correlations are seen for other orphan 
genes (r = 0.18–0.51). Since overall gene density is known to 
correlate with GC-content in mammalian species (Versteeg 
et al. 2003), we also investigated the relationships between 
conserved genes and intergenic ORFs with chromosomal 
GC-content (Fig. S1); in agreement with mammalian spe-
cies, we find a weak (but non-significant) positive correlation 
for gene density of genes conserved across Drosophila with 
GC-content (r = 0.19, p = 0.23). However, the strength of this 
correlation does not explain the stronger correlation seen for 
de novo genes (Fisher r-z transformation p = 1.8e−5), which 
we suggest may stem from a higher rate of gene birth in 
regions of higher GC-content, in agreement with findings in 
yeast where de novo gene emergence appears to be promoted 
near recombination hotspots (Vakirlis et al. 2018; Wu and 
Knudson 2018). Accordingly, we investigated the role of 
recombination on Drosophila orphans (Fig. S9), finding no 

a b

Fig. 2  Outgroup genome divergence limits inference of the mecha-
nism of gene emergence. a The fraction of orphan genes gained by 
each mechanism are shown for each branch, with divergence time 
(x-axis) calculated from the root of each branch to the closest leaf; 
unmapped ‘putative’ de novo genes make up a larger fraction of the 
most genetically isolated orphans. b Orphan gene density correlates 
with chromosomal GC-content. Orphan gene occurrence is shown for 

all major Drosophila chromosome arms, revealing positive linear cor-
relations with chromosomal GC-content for all classes of gene. The 
trend for intergenic de novo genes to be found on higher-GC arms 
(r = 0.56, p = 3.6e−17) is significantly stronger than that seen for con-
served genes (r = 0.19, p = 0.02; Fig. S1); Fisher r-z transformation 
p = 1.8e−5
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significant difference between de novo and conserved genes 
or intergenic ORFs.

Lack of ORF Conservation Provides Independent 
Confirmation of De Novo Gene Emergence

To further investigate the role of outgroup divergence on our 
ability to identify cases of de novo emergence, we exam-
ined syntenic regions using a whole genome alignment of 
27 insect species (see Materials and Methods). Figure 3 
shows the pattern of ORF conservation for single exon de 
novo genes found in D. melanogaster. We find that align-
ment quality quickly deteriorates as the divergence time to 
a given species increases, in agreement with the results of 
TBLASTN mapping. Analysis of ORF conservation also 
provides further evidence for de novo gene emergence. We 
used the pattern of ORF presence and absence across the 
alignment to conservatively infer the point of ORF emer-
gence; where an ORF is present in any of the descendants 

of a potential non-coding outgroup, the whole group was 
assigned as coding. We restricted our analysis to single exon 
de novo genes in order to avoid ambiguity over the splicing 
of multi-exonic genes in outgroup genomes and additionally 
only considered genomic regions well aligned to D. mela-
nogaster (see Materials and Methods). Summarised in Fig. 
S2a, we find that of the 46 single exon de novo genes in D. 
melanogaster, 20 lack a syntenic ORF in at least one out-
group branch. We here define ORF presence as alignment 
of a syntenic ORF with 50% or more of the D. melanogaster 
ORF. Thirteen genes lack an ORF in more than one out-
group, representing the most confident cases of recent ORF 
formation, while five genes lack aligned syntenic ORFs in 
more than two outgroups. Importantly, identifying the point 
of ORF emergence provides additional evidence of de novo 
gene gain, irrespective of annotation status or expression 
level (Vakirlis and McLysaght 2019). We note that for genes 
with only one ORF-lacking outgroup, equal weighting of the 
likelihood of ORF gain and ORF loss would suggest that just 

Fig. 3  Lack of ORF conservation confirms de novo emergence inde-
pendently of transcriptional status in outgroups. For single exon de 
novo genes present in D. melanogaster, we extracted syntenic blocks 
from a 27-way whole genome alignment and searched for ORF pres-
ence, scoring species with an ORF overlapping with more than 50% 
of the D. melanogaster ORF as ORF harbouring. Where the align-

ment was ambiguous (more than 50% gaps), no conclusion as to ORF 
presence or absence was made (grey). Annotation status in the initial 
set of twelve Drosophila species is shown in light blue. Inference of 
ORF gain by Dollo parsimony finds 20/46 genes examined to have at 
least one ORF-lacking outgroup (Color figure online)
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as many ORFs have been lost as gained. Furthermore, while 
multiple independent losses offer an alternate explanation 
for the presence of two or more ORF-lacking outgroups, 
we find ORF gain to be the most parsimonious explanation 
for our data.

We subsequently extended our analysis of syntenic ORFs 
by investigating the aligned genomic regions of the 771 sin-
gle exon de novo genes (from a total of 1063 single exon de 
novo genes) for which an aligned block of more than one 
species could be extracted, using a genome alignment of 
the twelve Drosophila species. Taking the same threshold 
of 50% overlap with the focal ORF to define ORF presence, 
we are able to identify 172 (22.3%) de novo genes with one 
or more clear ORF-lacking outgroups, despite the shallower 
phylogenetic depth of the twelve-way alignment (Fig. S2b). 
However, given the short length of de novo genes, 50% of 
the focal ORF length represents a low barrier, and there-
fore, a stringent test for ORF presence which is likely to 
capture many short pre-existing ORFs present across the 
alignment. Using a more relaxed threshold of 80% overlap 
with the focal ORF, the number of genes with ORF-lacking 
outgroups increases to 302 (39.2%). Applying the same 
analysis to intergenic ORFs, we find comparable results, 
with 580/2439 (23.7%) ORFs having a clear ORF-lacking 
outgroup using a 50% threshold (Fig. S2b).

We note that identification of an ORF-lacking outgroup 
is the most stringent test for de novo emergence, since it 
ignores transcriptional status in outgroup species. Given 
that our comparative genomics approach to identifying ORF 
emergence is hampered by the rapid divergence of non-cod-
ing syntenic regions in insects (Zdobnov et al. 2002), we 
chose to keep the full set of 2467 de novo genes classified 
by TBLASTN mapping, taking into account the non-coding 
annotation status in outgroup genomes which reflects tran-
scription status in addition to ORF presence or absence. To 
validate this decision, we later partitioned de novo genes 
based on ORF synteny (see Fig. S13), finding that the 
sequence properties of genes with or without an ORF-lack-
ing outgroup do not differ significantly. Additionally, given 
that the pattern of syntenic ORF presence and absence is 
comparable for de novo genes and random intergenic ORFs 
(Fig. S2b), we suggest that the availability of one ORF-
lacking outgroup is in this case a reasonable criterion for de 
novo emergence. Accordingly, we suggest that our figure of 
2467 genes is an upper bound for the true number of de novo 
genes in Drosophila. To calculate a conservative estimate 
for this number, it may be reasonable to extrapolate from the 
22.3% of single exon de novo genes found to lack a syntenic 
ORF; taking this percentage, we arrive at a lower number of 
550 de novo genes (0.223 × 2467), or 8.7% or all orphans.

De Novo Genes Show Robust but Specific Expression

We next focused on orphan genes present in D. mela-
nogaster to investigate gene expression at the transcript 
level. In light of the low and generally tissue-specific 
expression reported for de novo genes (Zhao et al. 2014; 
Palmieri et al. 2014), we made use of a recent meta-anal-
ysis of 14,423 D. melanogaster RNA-Seq samples from 
the Sequence Read Archive (SRA) (Leinonen et al. 2011). 
The wealth of data across tissues and developmental 
stages allows us to assess the expression of de novo genes 
without limitation from low numbers of biological repli-
cate, which may cause transient or weak expression to be 
missed entirely, as recently demonstrated for orphan genes 
in yeast (Li et al. 2019). Using transcripts per million 
(TPM) thresholds of 5 TPM and 100 TPM, for each gene, 
we calculated the number of samples in which expression 
exceeded the respective threshold (Fig. 4a, b). We find 
that, while conserved genes typically exceed both thresh-
olds in many more samples than do the 66 D. melanogaster 
de novo genes, de novo genes exhibit robust expression 
well separated from intergenic regions. In particular, using 
a threshold of 5 TPM, we find that 59/66 (89%) de novo 
genes are expressed in at least 100 samples, and that 32/66 
(52%) are expressed at or above this level in at least 711 
(5%) of the 14,423 samples. We also note that 5 TPM rep-
resents a stringent threshold (Kanitz et al. 2015); taking a 
more lenient 1 TPM cutoff indicates 54/66 (82%) de novo 
genes to be expressed in at least 5% of samples. As well as 
analysing expression on a per-sample basis, we calculated 
cumulative TPM across all 14,423 RNA-Seq samples for 
each de novo gene, comparing results to random subsets 
of 2000 old genes and 2000 intergenic regions. Strikingly, 
Fig. 4c shows that the median cumulative TPM across 
all samples for de novo genes is well above the level of 
intergenic regions, confirming that de novo genes in D. 
melanogaster are unlikely to be flukes of annotation and 
have the potential to play functional roles. The distribution 
of final cumulative TPMs for de novo genes illustrates a 
range of expression levels, with de novo genes generally 
expressed at a lower level than conserved genes, reflecting 
their recent birth.

We also analysed a subset of 29 modENCODE mRNA-
Seq tissue samples in order to investigate expression strength 
and tissue specificity. Taking the sum of reads per kilobase 
per million reads (RPKM) values across these samples con-
firms that orphan genes show weaker overall expression 
relative to conserved genes (Fig. S3a, b). As a measure of 
tissue-specific expression, a Tau score was calculated for 
each gene, with a value of 1.0 representing expression in 
only one tissue (Yanai et al. 2005); Figs. S3c and S3d show 
that orphan genes have more specific expression than con-
served genes, in agreement with findings that de novo genes 
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in D. melanogaster typically show testis-biased expression 
(Levine et al. 2006; Zhao et al. 2014; Palmieri et al. 2014). 
We note that we also identify a higher proportion of de novo 
genes with testis-biased expression relative to that of the 
annotated proteome (Mikhaylova et al. 2008), with 8/66 
(12%) de novo genes having over 50% of expression biased 
to testis samples (Fig. S4).

When examining changes in expression with gene age, 
while no clear trends in expression strength or specificity 
are for de novo genes over the time span of the Drosophila 
clade (Figs. S3a and S3c), the specificity of older putative 
orphans is higher than younger, species-specific putative 
orphans. This is in agreement with the findings of Palmieri 
et al. (2014) that orphan genes in Drosophila with biased 

a

c

b

Fig. 4  RNA-Seq evidence for de novo genes in D. melanogaster 
across 14,423 RNA-Seq samples. a Number of samples in which 
genes are expressed above a stringent baseline threshold of 5 TPM: 
32/66 (48%) de novo genes are found to be expressed in at least 5% 
of the 14,423 samples. b Number of samples in which genes exceed a 
high expression level of 100 TPM: 34/66 (52%) de novo genes exceed 
100 TPM in 10 or more samples. c Distribution of cumulative sums 

of TPM values across all samples: de novo genes are compared to 
random subsets of 2000 intergenic regions and 2000 old genes. Lines 
show (median) central tendency for each sequence class within 68% 
confidence intervals. The total expression of de novo genes across 
all samples is typically lower than that of conserved genes, but well 
above background transcription of intergenic regions
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expression are more likely to be conserved. As expected, 
divergent orphans show distributions of strength and spec-
ificity values most similar to those of old proteins; given 
that they overlap with outgroup coding sequence (CDS) 
regions, many should be found on the same transcripts 
as those of old genes, explaining their similar expression 
patterns.

Given the importance of untranslated regions (UTRs) in 
transcriptional and translational regulation (Moore 2005), 
we investigated the annotated 5′ and 3′ UTR lengths of 
orphan genes found in D. melanogaster (Fig. S5). We find 
that the transcripts of de novo genes have shorter 5′ and 3′ 
UTRs relative to those of old genes (Mann–Whitney U for 
5′ p = 2.4e−7; 3′ p = 2.5e−6), while divergent orphans show 
similar UTR lengths to old genes, in support of their more 
ancient origins. In summary, the overall weaker expres-
sion and less mature transcript structure of de novo genes 
may be a consequence of their recent evolutionary origin 
and suggests that expression strength of de novo genes is 
typically low at the point of gene birth, as suggested by the 
low expression level of orphan genes in general (Wolf et al. 
2009; Carvunis et al. 2012; Palmieri et al. 2014; Li et al. 
2019).

De Novo Genes are Under Weaker Selective 
Constraint Than Conserved Genes

Orphan genes in D. melanogaster have previously been 
found to be under purifying selection (Palmieri et al. 2014). 
We therefore searched for signals of selection in the set of 
de novo genes found in D. melanogaster by calculating the 
ratio of non-synonymous to synonymous codon substitu-
tion (dN/dS), from which it is possible to infer selection 
on protein-coding sequences. We calculated pairwise dN/

dS values for all single exon focal ORFs, by aligning them 
to the least diverged orthologous ORF available (see Mate-
rials and Methods). This approach was chosen to allow 
comparison of de novo and conserved genes to the subset 
of intergenic ORFs which have an aligned ORF in a sis-
ter species (n = 4522). Figure 5a shows the distributions of 
dN/dS value for each sequence class. We find that de novo 
genes have a marginally lower median dN/dS compared to 
intergenic ORFs, but both classes appear to be under selec-
tive constraint. Interpretation is complicated by the fact that 
the intergenic ORFs sampled here are also under purify-
ing selection (median dN/dS ca. 0.55). However, at least in 
D. melanogaster, the whole genome has been shown to be 
subjected to purifying selection (Sella et al. 2009), offering 
an explanation for the apparent evolutionary constraint on 
intergenic ORFs. Additionally, a subset of intergenic ORFs 
may represent emerging de novo genes, in line with a pic-
ture of frequent gene emergence from a pool of translated 
ORFs, as has been evidenced in yeast and mouse (Carvunis 
et al. 2012; Ruiz-Orera et al. 2018). To help interpret these 
findings, we carried out an integrative McDonald-Kreitman 
(iMKT) test for the same sequences, which integrates pop-
ulation-level variation with species divergence to test for 
adaptive evolution (Murga-Moreno et al. 2019). The iMKT 
estimate for ɑ, the proportion of non-synonymous sites fixed 
by positive selection, is intermediate for de novo genes when 
compared to old genes and intergenic ORFs, but lacks sig-
nificance (Table S3).

De Novo Genes in D. melanogaster Have Abundant 
Translational Evidence

We next looked for translational evidence supporting de 
novo genes as being protein coding, and not just the product 

a b c

Fig. 5  High coding potential for de novo genes found in D. mela-
nogaster. a The distribution of dN/dS values for de novo genes pre-
sent in D. melanogaster and at least one other species (single exon 
only) suggests that de novo genes experience lower levels of selective 
constraint than conserved genes. b Aggregated translational evidence 

for orphan genes in D. melanogaster; combining evidence from MS 
studies and literature sources provides translational support for 39/66 
(59%) of de novo genes, compared to ca. 50% of conserved genes. c 
Hexamer scores for de novo genes fall midway between those of ran-
dom intergenic ORFs and conserved proteins
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of spurious transcriptional activity. We searched three D. 
melanogaster ribosome profiling (Ribo-Seq) datasets for 
translational support. Due to relatively weak RNA expres-
sion, the majority of orphan genes do not appear in these 
datasets, making it difficult to conclude as to the presence or 
absence of ribosome binding. However, for those genes pre-
sent in the RNA-Seq data accompanying the Ribo-Seq data-
sets (23/66 de novo genes; 359/393 old genes), we searched 
for evidence of bound and elongating ribosomes. As seen in 
Fig. S6a, de novo genes have a lower coverage of elongat-
ing ribosomes relative to conserved genes, with a distribu-
tion of ribosome density similar to that of intergenic ORFs. 
However, despite having average ribosome density similar 
to intergenic ORFs, de novo genes are more than twice as 
likely as intergenic ORFs to have at least one ribosome 
bound (50.0% vs. 17.9%; Fig. S6b). While ribosome asso-
ciation alone does not confirm functional translation, it may 
promote translational activity and participate in the gene 
birth process, as has been demonstrated in yeast (Wilson and 
Masel 2011). We next searched for mass spectrometry (MS) 
evidence from two comprehensive D. melanogaster prot-
eomics studies (Brunner et al. 2007; Casas-Vila et al. 2017), 
as well from the SmProt database which includes MS and 
literature support (Hao et al. 2018) (Fig. S7). We combined 
evidence from these three sources with the subset of genes 
found to have non-zero coverage of elongating ribosomes, 
in total finding 39/66 (59%) of de novo genes to have at least 
one form of translational support (Fig. 5b; Table S4). Our 
finding is in agreement with the 36.6% of de novo genes in 
rice found to have MS evidence by Zhang et al. (2019) and 
suggests that de novo genes in D. melanogaster have strong 
potential to be translated—although we also note that the 
level of translational support for the annotated de novo genes 

studied here may not entirely reflect unannotated de novo 
genes, of which there are likely many more. To confirm that 
inclusion of those de novo genes lacking translational evi-
dence or evidence of high transcript expression did not bias 
our later analysis of sequence properties, we additionally 
partitioned sequences by high and low expression level (Fig. 
S12), finding that their properties do not change significantly 
in either case.

Taking in hand their robust but specific transcription 
(Fig. 3, S3d), their appearance in Ribo-Seq and proteomics 
databases (Fig. 5b), and their deviation in hexamer usage 
from that of intergenic ORFs (next section; Fig. 5c), we infer 
that many de novo genes are subject to translation and that 
a proportion may carry out functional cellular roles which 
remain to be discovered.

Nucleotide Sequence Properties Reflect the Recent 
Evolutionary Origin of De Novo Genes

We next analysed the sequence properties of each orphan 
gene category. As has been shown previously in rice (Zhang 
et al. 2019), mouse (Schmitz et al. 2018), yeast (Vakirlis 
et al. 2018) and human (McLysaght and Guerzoni 2015), 
we find that de novo genes are shorter than conserved pro-
teins, with a median length of 81 residues, but longer than 
intergenic ORFs (median length 47 residues) (Fig. S10). 
We subsequently considered nucleotide sequence proper-
ties, first analysing hexamer score for the same sequence 
sets, a measure of similarity of dicodon usage to a set of 
established genes in a given species (Wang et al. 2013). We 
find that de novo genes have intermediate hexamer scores 
relative to old genes and intergenic ORFs, supporting their 
young age and indicating a gradual process of sequence 

a b c

Fig. 6  De novo genes in Drosophila have higher GC-content than 
intergenic ORFs and encode more disordered proteins. a Inter-
genic ORFs have markedly lower GC-content than de novo genes 
(Cohen’s d = 1.38, p = 1.37e−18), which distribute similarly to con-
served genes. b Prediction of protein disorder indicates that de novo 
genes encode more disordered polypeptides than both intergenic 

ORFs (Cohen’s d = 0.63, p = 0.0002) and conserved genes (Cohen’s 
d = 0.67, p = 1.5e−159). c Predicted aggregation propensity reveals 
that intergenic ORFs encode polypeptides more likely to aggregate 
than de novo proteins (Cohen’s d = 0.64, p = 1.4e−308) and conserved 
proteins
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maturation towards the preferred dicodon usage of Dros-
ophila (Fig.  5c). Next, we examined CDS GC-content, 
finding that all orphan classes show similar levels of GC to 
conserved genes (Fig. 6a). However, de novo genes show 
significantly higher GC-content than the set of intergenic 
ORFs (Cohen’s d = 1.38, p = 1.4e−18). In light of the higher 
rate of orphan gain on GC-rich chromosome arms (Fig. 2b), 
it is possible that biased emergence from regions of higher 
GC-content may contribute to this trend. Taken together, de 
novo genes appear to have properties that reflect their young 
age, being short and more weakly expressed than conserved 
genes (Figs. S10 and 4), and showing a lower degree of 
selective constraint (Fig. 5a).

De Novo Genes Encode More Disordered Proteins 
Than Both Older Genes and Intergenic ORFs

Having examined the nucleotide sequences of de novo genes, 
we next predicted the properties of their encoded proteins, 
examining intrinsic disorder, aggregation propensity, and 
secondary structure. We find that de novo proteins show 
elevated disorder when compared to both random inter-
genic ORFs (Cohen’s d = 0.63, p = 1.5e−4) and conserved 
proteins (Cohen’s d = 0.67, p = 1.5e−159). GC-content is 
known to have a strong influence on disorder, given that 
GC-rich codons are also disorder promoting (Ángyán et al. 
2012; Basile et al. 2017). However, despite comparable GC-
content distributions of de novo and old proteins (Fig. 6a), 
we see higher disorder in the de novo set (Fig. 6b). We next 
predicted the aggregation propensity for the same sequence 
sets. The distribution of aggregation scores is similar for 
de novo and old proteins (Cohen’s d = 0.11, p = 5.7e−19), 
whereas intergenic ORFs show elevated aggregation relative 
to de novo genes (Cohen’s d = 0.64, p = 1.4e−308) (Fig. 6c). 
However, the inherent negative correlation between aggre-
gation and disorder makes it hard to draw conclusions here, 
and disorder may act as a confounding variable (Ángyán 
et al. 2012). Lastly, we predicted secondary structure, find-
ing that all gene classes show similar helical and sheet pro-
pensity, including random intergenic ORFs (Fig. S11g–i). 
This is in agreement with findings that secondary structure is 
already present in random polypeptides (Tretyachenko et al. 
2017), and suggests that newly born proteins may represent 
promising starting points for the evolution of structured and 
foldable proteins (Bungard et al. 2017).

To control for the effects of nucleotide sequence proper-
ties on protein disorder or aggregation propensity, we took 
subsets of intergenic ORFs and conserved genes matched 
to the length (Fig. S16) and GC-content (Fig. S17) distri-
butions of the combined set of intergenic and intronic de 
novo genes (see Materials and Methods). While controlling 
for length has no major effect on the properties of either 
sequence class relative to those of de novo genes, when 

controlling for GC-content, the disorder of intergenic ORFs 
is seen to increase (Fig. S17d; comparing to Fig. 6b). In 
other words, the disorder level of intergenic ORFs with the 
same GC-content as de novo genes is closer to (Cohen’s d 
for GC-matched sets = 0.15; GC-unmatched sets = 0.63), but 
still lower than, that of de novo genes. This result is indica-
tive of a disorder-promoting effect of the GC-content of de 
novo genes, and also suggests that a degree of selection may 
be acting to further increase disorder, or reduce aggregation 
propensity, in newly born genes (Ángyán et al. 2012; Basile 
et al. 2017; Wilson et al. 2017).

Conclusion

Our results represent the first systematic characterisation of 
de novo gene emergence in the Drosophila clade and con-
firm previous suggestions that de novo gene emergence is 
an important underlying cause for the large number of taxo-
nomically restricted orphan genes. Where previous studies 
have identified a large number of orphans in Drosophila, 
they did not carry out the important additional step of iden-
tifying non-coding DNA in one or more outgroup genomes, 
which provides the best evidence for de novo gain. Here, 
from over six thousand orphans found across twelve species 
of fly, we find evidence that de novo birth may explain up 
to 39% of these genes (Table 1). For the remaining orphans, 
we categorise the majority as putative de novo genes on 
the basis of their unknown emergence mechanism. In the 
absence of identifiable non-coding DNA in an outgroup spe-
cies, it remains possible that these sequences are rapidly 
evolving homologs which escape detection at both the pro-
tein and nucleotide level. However, we cannot rule out the 
alternative that many of these genes may too have emerged 
from non-coding DNA, especially in light of the similarities 
seen between the putative and de novo genes in terms of 
length, expression and sequence properties (Figs. S3, S10, 
S11). However, we here consider putative de novo genes 
separately to avoid drawing false conclusions regarding the 
properties of true de novo genes.

Examination of syntenic genomic regions for de novo 
genes across the clade shows that for up to 40% of de novo 
genes we can identify at least one outgroup that lacks a 
syntenic ORF, depending on the alignment depth available 
(Fig. 3, S2). For these genes, pinpointing ORF formation 
supports a scenario of de novo emergence without reli-
ance on annotation quality, or knowledge of the expression 
status in outgroup species (Vakirlis and McLysaght 2019). 
For the remaining genes, we are unable to unambiguously 
identify ORF emergence and are therefore reliant on anno-
tation to infer non-coding status in outgroup species. Our 
figure of 2467, therefore, represents an upper bound for 
the number of genes classed as de novo. As a lower bound, 
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extrapolating from the 22.3% of single exon genes found to 
lack a syntenic ORF, we suggest a conservative figure of 
550 de novo genes (8.7% of all orphans). However, given 
our sensitive mapping to outgroup genomes, stringent 
requirements for orphan classification, and the robustness 
of gene properties to partitioning based on ORF emer-
gence (Fig. S13), we here classify our set of 2467 mapped 
de novo genes as likely having emerged from non-coding 
DNA. While for a subset of these novel genes, we can infer 
the point of ORF formation, for others it remains ambigu-
ous, likely due to rapid divergence of non-coding syntenic 
regions—but also suggesting that precursor ORFs may act 
as a starting point for gradual gene maturation from proto-
gene to established gene (Carvunis et al. 2012).

Having identified a clade-wide set of up to 2467 de 
novo genes, we tried to answer open questions regarding 
the biophysical characteristics of their encoded proteins, 
and how they change over evolutionary time. Comparing 
the sequence properties of de novo genes to those of a 
set of unannotated intergenic ORFs, we are able to test 
the null hypothesis that de novo genes remain unchanged 
from a set of neutrally fixed ORFs. As has been consist-
ently seen before, we find de novo genes to be shorter than 
older genes. In Drosophila, we find that de novo genes 
do encode proteins with elevated disorder relative to con-
served proteins. However, given the high GC-content of 
de novo genes, elevated disorder is to be expected due to 
the link between GC-rich codons and disordered amino 
acids (Basile et al. 2017). In agreement, we find that the 
higher GC-content of de novo genes relative to inter-
genic ORFs does appear to promote disorder, but does 
not alone provide a complete explanation. We, therefore, 
suggest that selection may act to further increase disorder 
(or reduce aggregation) at the time of gene birth, beyond 
that expected for random sequences of a given GC-con-
tent (Ángyán et al. 2012; Wilson et al. 2017). Aside from 
uncertainty over the relationship between GC-content, dis-
order and aggregation propensity, we find many sequence 
properties of de novo genes to be intermediate to those 
of intergenic ORFs and conserved genes. In particular, 
the distributions of sequence length, hexamer usage and 
expression level are indicative of the random-sequence 
origins of de novo genes and lead us to support a model 
of gradual evolution from an initial pool of novel genes, 
as has been previously proposed in yeast (Carvunis et al. 
2012). We suggest that this reservoir of emerging genes 
may provide an important source of new proteins in Dros-
ophila, a fraction of which gain function and with it the 
evolutionary stability necessary to avoid loss by genetic 
drift.

Materials and Methods

Scripts and data from this study are available online at: https 
://zivgi tlab.uni-muens ter.de/ag-ebb/de-novo/droso _de_novo.
git

Orphan Gene Annotation

Genomes, proteomes, CDSs and annotations for twelve 
species of Drosophila (D. grimshawi, D. mojavensis, D. 
virilis, D. willistoni, D. persimilis, D. pseudoobscura, D. 
sechellia, D. simulans, D. melanogaster, D. erecta and D. 
yakuba) were acquired from FlyBase (r2016_03) (Thur-
mond et al. 2019). Equivalent data for the three outgroup 
species (Anopheles gambiae, Lucilia cuprina and Ceratitis 
capitata) were downloaded from Ensembl Metazoa and the 
I5K project. For full details of input data and accessions 
see Table S1. Clusters of orthologous proteins were identi-
fied by all-vs-all BLASTP (E value cutoff 1e−5) (Altschul 
et al. 1990). Phylostratigraphy was then performed, assign-
ing gene age based on the phylogenetic distribution of each 
ortholog cluster (Domazet-Loso et al. 2007). Divergence 
times for the input species were taken from timet ree.org  
(Hedges et al. 2006). Clusters with an age greater than 
50 Mya were discarded, leaving COGs restricted to only 
Drosophila species and not present in outgroups. Remaining 
clusters were searched by DIAMOND (Buchfink et al. 2015) 
(E value cutoff 1e−3) against the NCBI non-redundant data-
base (Wheeler et al. 2003) to filter out those with ancient 
homologs. Finally, the Pfam database (Bernsel et al. 2008) 
was queried to remove any clusters containing proteins with 
annotated domains, which were considered highly unlikely 
to have evolved de novo. A list of 50 Drosophila-specific 
Pfam domains were whitelisted (see additional methods 
accompanying scripts online).

Outgroup Genome Mapping

The mechanism of origin for each orphan cluster was 
assigned by identifying non-coding homologous genomic 
regions in outgroup species to a given cluster. TBLASTN 
(Camacho et al. 2009) was used to map all protein sequences 
from each orphan cluster to the genomes of all study spe-
cies. Where a protein was successfully mapped to an out-
group genome, outgroup status was conservatively anno-
tated by selecting the highest ranked feature intersecting 
with the mapped coordinates of the protein, on either strand. 
Default setting for TBLASTN with a protein query against 
a nucleotide database were used, with a E value threshold 
of 1e-3. Hits across all genomes were subsequently filtered 
to include only alignments of 20 amino acids or longer. We 
subsequently analysed all hits remaining in species outside 

https://zivgitlab.uni-muenster.de/ag-ebb/de-novo/droso_de_novo.git
https://zivgitlab.uni-muenster.de/ag-ebb/de-novo/droso_de_novo.git
https://zivgitlab.uni-muenster.de/ag-ebb/de-novo/droso_de_novo.git
http://timetree.org
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a given orphan COG, assigning an emergence mechanism 
for each COG in the most conservative way; mapping of 
any hit from any of the cluster’s sequences to a region anno-
tated as exonic in an outgroup species assigned the cluster as 
having diverged from an ancestral protein-coding sequence 
(‘divergent’ orphans). Alternately, if one or more members 
of the cluster mapped to an intergenic or intronic region 
of an outgroup genome, it was annotated as intergenic de 
novo or intronic de novo, respectively. If no homologous 
outgroup DNA was identified, the cluster was labelled as 
‘putative de novo’.

Preparation of Conserved and Random Control 
Sequence Sets

We used ORFfinder (Wheeler et al. 2003) to extract all ORFs 
of 30 nt and longer (with canonical start and stop codons) 
from all twelve Drosophila genomes (> 12 M ORFs). From 
this set, 12,000 ORFs were picked at random to form a con-
trol group. After filtering for ORFs with a whole number of 
codons, and for those annotated as intergenic in the focal 
species as well as in all aligned regions across a whole 
genome alignment of the Drosophila clade, we were left 
with a set of 6763 intergenic ORFs. In a similar fashion, a 
representative set of old (i.e., conserved) protein sequences 
was selected from the set of twelve Drosophila proteomes by 
random selection of 6851 proteins, excluding those already 
annotated as orphans in this study.

Analysis of Syntenic Genomic Regions

To examine ORF conservation for de novo genes found in 
D. melanogaster, we first used the BioPython AlignIO mod-
ule (Cock et al. 2009) to extract syntenic alignments from 
the UCSC 27-way insect whole genome alignment (Rosen-
bloom et al. 2015). For each locus, the focal species’ CDS 
coordinates were extended by 2 Kbp (up- and downstream) 
and were used to extract a multiple sequence alignment 
of these syntenic regions. To avoid unreliable splicing of 
outgroup genomes in silico based on the splice sites of the 
focal gene, only single exon focal genes were considered. 
We then searched for all ORFs across the alignment. ORFs 
in the correct orientation and having nucleotide overlap with 
the focal ORF were kept for further analysis. To account 
for unreliable alignment, regions with more than half of the 
alignment gapped relative to D. melanogaster were ignored. 
Species with an overlapping ORF longer than 50% of the 
D. melanogaster ORF were denoted as ORF harbouring. 
To generate a set of syntenic ORFs for evolutionary rate 
analysis, the same methodology was applied to a twelve-way 
whole genome alignment of the Drosophila clade (König 
et al. 2016). In this case, the syntenic regions corresponding 
to all Drosophila single exon orphan genes, old genes and 

intergenic ORFs in the study set were extracted and syntenic 
ORFs were identified as before. Syntenic alignments from 
both the 27-way and twelve-way alignments were subse-
quently used to calculate pairwise dN/dS values and to iden-
tify ORF-lacking outgroups to provide additional evidence 
for de novo gene emergence. To infer the number of non-
coding (ORF-lacking) outgroups, we applied a conserva-
tive parsimony approach as has been used before (Zhang 
et al. 2019); we first mapped unambiguous ORF presence 
and absence to the Drosophila phylogeny, before tracing 
back from the focal species to identify potential outgroup 
branches which could be assigned as ORF lacking. Where 
one or more descendant species in a given outgroup branch 
was ORF harbouring, the whole branch was conservatively 
assumed to be ORF harbouring.

Transcriptional Evidence

Initial D. melanogaster expression data were downloaded 
from with precomputed RPKM values per gene from Fly-
Base, extracted from the modENCODE tissues project data 
(SRA accession SRP003905) which include RNA-Seq 
across 29 tissue samples at a number of life stages. Expres-
sion strength was calculated as the sum of RPKM values 
across samples, while expression specificity was estimated 
by calculating a Tau score, with a score of 1.0 indicating 
expression in only a single sample (Yanai et al. 2005). To 
gain a broader view of expression level across multiple bio-
logical replicates, we subsequently made use of a meta-anal-
ysis of 14,423 D. melanogaster RNA-Seq samples from the 
SRA database (Leinonen et al. 2011), available for down-
load on the Gene Expression Omnibus (GEO) (accession 
GSE117217) (Barrett et al. 2013). Raw read counts were 
converted to transcripts per million (TPM) values to allow 
comparability across samples, and mean and maximum TPM 
values were calculate for each D. melanogaster gene across 
all 14,423 samples. Additionally, we calculated cumula-
tive sums of TPM value for each gene across all samples, 
distributions of which are visualised with median central 
tendency and 68% confidence intervals computed from 500 
bootstrap samples.

Translational Evidence

Ribosome profiling data from the three available D. mel-
anogaster datasets (Dunn et al. 2013; Kronja et al. 2014; 
Aspden et al. 2014) were downloaded from the GWIPS-viz 
browser (Michel et al. 2014). In order to find read intersec-
tion with the current dm6 D. melanogaster gene coordinates, 
binary files were converted from bigWig to wig format 
using bigWigtoWig (https ://www.encod eproj ect.org/softw 
are/bigwi gtowi g/), before conversion to BED format using 
bedtools (Quinlan and Hall 2010). Finally, BED coordinates 

https://www.encodeproject.org/software/bigwigtowig/
https://www.encodeproject.org/software/bigwigtowig/
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were remapped from dm3 to dm6 using UCSC’s liftOver 
executable (Rosenbloom et al. 2015). Read counts for bound 
and elongating ribosomes were then calculated using the 
HTSeq python module (Anders et al. 2015), and normalised 
by CDS length to give values of read count per kilobase. In 
addition to analysing Ribo-Seq data, we searched for evi-
dence of translation in three additional sources: proteomics 
evidence was taken from two recent D. melanogaster MS 
studies focused on the whole and developmental proteomes, 
respectively (Brunner et al. 2007; Casas-Vila et al. 2017), 
and the SmProt database (Hao et al. 2018), which collates 
translational evidence for proteins shorter than 100 residues, 
was parsed for additional MS, Ribo-Seq and literature evi-
dence. These three sources were pooled to identify the full 
set of D. melanogaster protein-coding genes with proteom-
ics evidence, resulting in a list of 6833 unique FlyBase gene 
identifiers, against which we compared our sets of D. mela-
nogaster orphan and conserved genes.

Evolutionary Rate Analysis

Selective pressure was analysed using PAML’s codeml pack-
age (Yang 1997), using the yn00 model (Yang and Nielsen 
2000). The analysis was carried out only on D. melanogaster 
single exon orphans, to allow comparison to both older 
genes as well as intergenic ORFs. Evolutionary rate was 
calculated in a pairwise manner for each ORF, by alignment 
of the focal CDS with the least diverged ORF available. The 
MEGA implementation of MUSCLE (Edgar 2004; Tamura 
et al. 2007) was then used to generate codon alignments. 
dN, dS and dN/dS were subsequently calculated for each 
pairwise codon alignment using the BioPython codeml 
module (Cock et al. 2009). To handle high values of dN/
dS calculated in the case of very low dS, values above 99.8 
were discarded. Additionally, we examined population-level 
selection for D. melanogaster genes using the integrative 
McDonald-Kreitman test (iMKT) (Murga-Moreno et al. 
2019). Coordinates for single exon de novo genes, as well 
as a sample of conserved genes and intergenic ORFs, were 
remapped to dm5 gene coordinates using FlyBase’s coordi-
nate converter. Variation data were downloaded from PopFly 
(https ://popfl y.uab.cat) (Hervas et al. 2017) for the Equato-
rial Africa metapopulation (EQA), and fasta alignments gen-
erated using the supplied script (https ://githu b.com/jmurg a/
iMKTD ata/blob/maste r/src/subse tMult iFast a.py) using the 
FlyBase r5.57 D. melanogaster genome as a reference and 
D. simulans as an outgroup. The iMKT server (https ://imkt.
uab.cat) was subsequently used to carry out an extended 
MKT to assess adaptive evolution as well as the fractions of 
neutral, weakly and strongly deleterious mutations.

Sequence Property Analysis

Unless otherwise stated, tools were run using default set-
tings. Comparison between sequence sets was made after 
selection of one protein isoform per gene, and one gene per 
ortholog cluster. Isoforms were chosen randomly so as to not 
bias the distribution of sequence lengths, and a representa-
tive sequence was taken for each COG by picking the D. 
melanogaster ortholog if present, or else at random. As such, 
sequence distributions represent distinct evolutionary gains 
and are not biased by duplication via speciation. Lengths 
were calculated using an in-house script. GC-content was 
calculated using the EMBOSS program geecee (Rice et al. 
2000). Protein disorder was predicted using IUPred2A 
(short algorithm) (Mészáros et al. 2018); the number of 
residues with a disorder score above the recommended 
threshold of 0.5 was divided by sequence length, to give 
a proportional disorder score for each protein. Aggrega-
tion propensity was calculated using TANGO version 2.3.1 
(Fernandez-Escamilla et al. 2004); the number of aggregat-
ing residues (with a score above 5%) in stretches of five or 
more consecutive amino acids was summed and divided by 
sequence length to give a proportional aggregation score. 
To calculate hexamer scores, CPAT version 1.2.2 was used 
with the supplied logistic model for fruit fly (Wang et al. 
2013). Protein secondary structure was predicted using the 
SPIDER3 package (Heffernan et al. 2017). The script ‘SPI-
DER3-Single_np’ was used without homology assistance, to 
ensure comparability between sets with varying availability 
of homologous protein sequences. Repeat content was calcu-
lated at the amino acid level using the SEG algorithm (pack-
aged with SLIDER (Peng et al. 2014)). For all sequence 
properties, outliers more than two standard deviations from 
the mean were removed. To generate length and GC-content 
matched subsets of sequences, bins were generated at inter-
vals of 10 amino acids or 5% GC-content, respectively. For 
each de novo gene, one intergenic ORF and one conserved 
gene (in the same bin) were selected at random to gener-
ate subsets with matching distributions of each sequence 
property.

Recombination Rate

Recombination rates for all D. melanogaster orphans was 
calculated using the Recombination Rate Calculator (RRC) 
(Fiston-Lavier et al. 2010), utilising the experimentally 
determined crossover rates published by Comeron et al. 
(2012). Gene start and end coordinates were taken for each 
D. melanogaster orphan, as well as the subset of D. mela-
nogaster intergenic ORFs and conserved genes, converted 
to dm5 coordinates using the FlyBase Coordinate Converter 
(flybase.org/cgi-bin/coord_converter.pl), and the midpoint 
recombination rate was found using the RRC server.

https://popfly.uab.cat
https://github.com/jmurga/iMKTData/blob/master/src/subsetMultiFasta.py
https://github.com/jmurga/iMKTData/blob/master/src/subsetMultiFasta.py
https://imkt.uab.cat
https://imkt.uab.cat
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Statistical Tests

All statistical testing was carried out in python. Strength of 
linear correlations are reported as Pearson’s r throughout. To 
assess the significance of the difference between independ-
ent r values, a Fisher r-z transformation was used (avail-
able at https ://vassa rstat s.net/rdiff .html). To test for similar-
ity between distributions of various sequence properties, a 
Mann–Whitney U test was carried out, with the likelihood 
that randomly selected values from one population will dif-
fer from a second population reported as a p value. Given the 
large number of data points in many categories, we also cal-
culated effect sizes as an independent measure of similarity 
between distributions; Cohen’s d is reported, ranging from 
0 to 2, with 0 indicating no difference in distributions and 2 
indicating the most extreme difference. Asterisks are used 
to illustrate p values: **** indicates < 0.0001; *** indicates 
0.0001 to 0.001; ** indicates 0.001 to 0.01; and * indicates 
0.01 to 0.05.

Acknowledgements Open Access funding provided by Projekt DEAL. 
This work received funding from the EU under the Horizon 2020 
Research and Innovation Framework Programme No. 722610.

Author Contributions EBB and JS conceived the experiment. BH and 
JS conducted the study and analysed the results. BH prepared and 
edited the manuscript. All authors reviewed and approved the man-
uscript. The authors would like to thank Daniel Dowling and April 
Kleppe for helpful comments at all stages of the study, and Marta 
Coronado-Zamora for technical advice regarding the iMKT package. 
We also thank the reviewers for their thorough reading and feedback.

Compliance with Ethical Standards 

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Altschul SF, Gish W, Miller W et al (1990) Basic local alignment 
search tool. J Mol Biol 215:403–410. https ://doi.org/10.1016/
S0022 -2836(05)80360 -2

Anders S, Pyl PT, Huber W (2015) HTSeq—A Python framework 
to work with high-throughput sequencing data. Bioinformatics 
31:166–169. https ://doi.org/10.1093/bioin forma tics/btu63 8

Ángyán AF, Perczel A, Gáspári Z (2012) Estimating intrinsic struc-
tural preferences of de novo emerging random-sequence proteins: 
is aggregation the main bottleneck? FEBS Lett 586:2468–2472. 
https ://doi.org/10.1016/j.febsl et.2012.06.007

Aspden JL, Eyre-Walker YC, Phillips RJ et al (2014) Extensive trans-
lation of small open reading frames revealed by Poly-Ribo-Seq. 
eLife 3:e03528. https ://doi.org/10.7554/eLife .03528 

Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive 
for functional genomics data sets—Update. Nucleic Acids Res 
41:D991–D995. https ://doi.org/10.1093/nar/gks11 93

Basile W, Sachenkova O, Light S, Elofsson A (2017) High GC content 
causes orphan proteins to be intrinsically disordered. PLOS Com-
put Biol 13:e1005375. https ://doi.org/10.1371/journ al.pcbi.10053 
75

Basile W, Salvatore M, Elofsson A (2019) The classification of 
orphans is improved by combining searches in both proteomes 
and genomes. BioRxiv. https ://doi.org/10.1101/18598 3

Begun DJ, Lindfors HA, Thompson ME, Holloway AK (2006) Recently 
evolved genes identified from Drosophila yakuba and D. erecta 
accessory gland expressed sequence tags. Genetics 172:1675–
1681. https ://doi.org/10.1534/genet ics.105.05033 6

Begun DJ, Lindfors HA, Kern AD, Jones CD (2007) Evidence for 
de novo evolution of testis-expressed genes in the Drosophila 
yakuba/Drosophila erecta clade. Genetics 176:1131–1137. https 
://doi.org/10.1534/genet ics.106.06924 5

Bernsel A, Viklund H, Elofsson A (2008) Remote homology detec-
tion of integral membrane proteins using conserved sequence 
features. Proteins Struct Funct Bioinform 71:1387–1399. https 
://doi.org/10.1002/prot.21825 

Bitard-Feildel T, Heberlein M, Bornberg-Bauer E, Callebaut I (2015) 
Detection of orphan domains in Drosophila using “hydropho-
bic cluster analysis”. Biochimie 119:244–253. https ://doi.
org/10.1016/j.bioch i.2015.02.019

Brunner E, Ahrens CH, Mohanty S et al (2007) A high-quality cata-
log of the Drosophila melanogaster proteome. Nat Biotechnol 
25:576–583. https ://doi.org/10.1038/nbt13 00

Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein 
alignment using DIAMOND. Nat Methods 12:59–60. https ://
doi.org/10.1038/nmeth .3176

Bungard D, Copple JS, Yan J et al (2017) Foldability of a natural de 
novo evolved protein. Structure 25:1687–1696.e4. https ://doi.
org/10.1016/j.str.2017.09.006

Cai J, Zhao R, Jiang H, Wang W (2008) De Novo Origination of a 
new protein-coding gene in Saccharomyces cerevisiae. Genet-
ics 179:487–496. https ://doi.org/10.1534/genet ics.107.08449 1

Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: archi-
tecture and applications. BMC Bioinform 10:421. https ://doi.
org/10.1186/1471-2105-10-421

Carvunis A-R, Rolland T, Wapinski I et al (2012) Proto-genes and de 
novo gene birth. Nature 487:370–374. https ://doi.org/10.1038/
natur e1118 4

Casas-Vila N, Bluhm A, Sayols S et al (2017) The developmental 
proteome of Drosophila melanogaster. Genome Res 27:1273–
1285. https ://doi.org/10.1101/gr.21369 4.116

Casola C (2018) From de novo to “de nono”: the majority of novel 
protein-coding genes identified with phylostratigraphy are old 
genes or recent duplicates. Genome Biol Evol 10:2906–2918. 
https ://doi.org/10.1093/gbe/evy23 1

Chen S, Zhang YE, Long M (2010) New genes in drosophila 
quickly become essential. Science 330:1682–1685. https ://doi.
org/10.1126/scien ce.11963 80

https://vassarstats.net/rdiff.html
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1016/j.febslet.2012.06.007
https://doi.org/10.7554/eLife.03528
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1371/journal.pcbi.1005375
https://doi.org/10.1371/journal.pcbi.1005375
https://doi.org/10.1101/185983
https://doi.org/10.1534/genetics.105.050336
https://doi.org/10.1534/genetics.106.069245
https://doi.org/10.1534/genetics.106.069245
https://doi.org/10.1002/prot.21825
https://doi.org/10.1002/prot.21825
https://doi.org/10.1016/j.biochi.2015.02.019
https://doi.org/10.1016/j.biochi.2015.02.019
https://doi.org/10.1038/nbt1300
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1016/j.str.2017.09.006
https://doi.org/10.1016/j.str.2017.09.006
https://doi.org/10.1534/genetics.107.084491
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1038/nature11184
https://doi.org/10.1038/nature11184
https://doi.org/10.1101/gr.213694.116
https://doi.org/10.1093/gbe/evy231
https://doi.org/10.1126/science.1196380
https://doi.org/10.1126/science.1196380


397Journal of Molecular Evolution (2020) 88:382–398 

1 3

Cock PJ, Antao T, Chang JT et al (2009) Biopython: freely available 
Python tools for computational molecular biology and bioinfor-
matics. Bioinformatics 25:1422–1423

Comeron JM, Ratnappan R, Bailin S (2012) The many landscapes 
of recombination in Drosophila melanogaster. PLoS Genetics 
8:e1002905. https ://doi.org/10.1371/journ al.pgen.10029 05

Domazet-Loso T, Brajković J, Tautz D (2007) A phylostratigraphy 
approach to uncover the genomic history of major adaptations 
in metazoan lineages. Trends Genet TIG 23:533–539. https ://
doi.org/10.1016/j.tig.2007.08.014

Dunn JG, Foo CK, Belletier NG et al (2013) Ribosome profiling 
reveals pervasive and regulated stop codon readthrough in Dros-
ophila melanogaster. eLife 2:e01179. https ://doi.org/10.7554/
eLife .01179 

Edgar RC (2004) MUSCLE: multiple sequence alignment with high 
accuracy and high throughput. Nucleic Acids Res 32:1792–
1797. https ://doi.org/10.1093/nar/gkh34 0

Ekman D, Elofsson A (2010) Identifying and quantifying orphan 
protein sequences in fungi. J Mol Biol 396:396–405. https ://
doi.org/10.1016/j.jmb.2009.11.053

Fernandez-Escamilla A-M, Rousseau F, Schymkowitz J, Serrano L 
(2004) Prediction of sequence-dependent and mutational effects 
on the aggregation of peptides and proteins. Nat Biotechnol 
22:1302–1306. https ://doi.org/10.1038/nbt10 12

Fiston-Lavier A-S, Singh ND, Lipatov M, Petrov DA (2010) Dros-
ophila melanogaster recombination rate calculator. Gene 
463:18–20. https ://doi.org/10.1016/j.gene.2010.04.015

Hao Y, Zhang L, Niu Y et al (2018) SmProt: a database of small 
proteins encoded by annotated coding and non-coding RNA 
loci. Brief Bioinform 19:636–643. https ://doi.org/10.1093/bib/
bbx00 5

Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowl-
edge-base of divergence times among organisms. Bioinformatics 
22:2971–2972. https ://doi.org/10.1093/bioin forma tics/btl50 5

Heffernan R, Yang Y, Paliwal K et al (2017) Capturing non-local 
interactions by long short-term memory bidirectional recurrent 
neural networks for improving prediction of protein secondary 
structure, backbone angles, contact numbers and solvent acces-
sibility. Bioinformatics 33:2842–2849. https ://doi.org/10.1093/
bioin forma tics/btx21 8

Hervas S, Sanz E, Casillas S et al (2017) PopFly: the Drosophila popu-
lation genomics browser. Bioinformatics 33:2779–2780. https ://
doi.org/10.1093/bioin forma tics/btx30 1

Kanitz A, Gypas F, Gruber AJ et al (2015) Comparative assessment 
of methods for the computational inference of transcript isoform 
abundance from RNA-seq data. Genome Biol 16:150. https ://doi.
org/10.1186/s1305 9-015-0702-5

Khalturin K, Hemmrich G, Fraune S et al (2009) More than just 
orphans: are taxonomically-restricted genes important in evo-
lution? Trends Genet 25:404–413. https ://doi.org/10.1016/j.
tig.2009.07.006

König S, Romoth LW, Gerischer L, Stanke M (2016) Simultaneous 
gene finding in multiple genomes. Bioinformatics 32:3388–3395. 
https ://doi.org/10.1093/bioin forma tics/btw49 4

Kronja I, Yuan B, Eichhorn S et al (2014) Widespread changes in the 
posttranscriptional landscape at the Drosophila oocyte-to-embryo 
transition. Cell Rep 7:1495–1508. https ://doi.org/10.1016/j.celre 
p.2014.05.002

Lavista-Llanos S, Svatoš A, Kai M et al (2014) Dopamine drives Dros-
ophila sechellia adaptation to its toxic host. eLife 3:e03785. https 
://doi.org/10.7554/eLife .03785 

Leinonen R, Sugawara H, Shumway M (2011) The sequence read 
archive. Nucleic Acids Res 39:D19–D21. https ://doi.org/10.1093/
nar/gkq10 19

Levine MT, Jones CD, Kern AD et al (2006) Novel genes derived 
from noncoding DNA in Drosophila melanogaster are frequently 

X-linked and exhibit testis-biased expression. Proc Natl Acad Sci 
103:9935–9939. https ://doi.org/10.1073/pnas.05098 09103 

Li J, Arendsee Z, Singh U, Wurtele ES (2019) Recycling RNA-seq 
data to identify candidate orphan genes for experimental analysis. 
BioRxiv. https ://doi.org/10.1101/67126 3

McLysaght A, Guerzoni D (2015) New genes from non-coding 
sequence: the role of de novo protein-coding genes in eukaryotic 
evolutionary innovation. Philos Trans R Soc B 370:20140332. 
https ://doi.org/10.1098/rstb.2014.0332

McLysaght A, Hurst LD (2016) Open questions in the study of de novo 
genes: what, how and why. Nat Rev Genet 17:567–578. https ://
doi.org/10.1038/nrg.2016.78

Mészáros B, Erdős G, Dosztányi Z (2018) IUPred2A: context-depend-
ent prediction of protein disorder as a function of redox state and 
protein binding. Nucleic Acids Res 46:W329–W337. https ://doi.
org/10.1093/nar/gky38 4

Michel AM, Fox G, Kiran A et al (2014) GWIPS-viz: development of 
a ribo-seq genome browser. Nucleic Acids Res 42:D859–D864. 
https ://doi.org/10.1093/nar/gkt10 35

Mikhaylova LM, Nguyen K, Nurminsky DI (2008) Analysis of the 
Drosophila melanogaster testes transcriptome reveals coordinate 
regulation of paralogous genes. Genetics 179:305–315. https ://
doi.org/10.1534/genet ics.107.08026 7

Moore MJ (2005) From Birth to death: the complex lives of eukaryotic 
mRNAs. Science 309:1514–1518. https ://doi.org/10.1126/scien 
ce.11114 43

Moyers BA, Zhang J (2015) Phylostratigraphic bias creates spurious 
patterns of genome evolution. Mol Biol Evol 32:258–267. https 
://doi.org/10.1093/molbe v/msu28 6

Moyers BA, Zhang J (2017) Further simulations and analyses dem-
onstrate open problems of phylostratigraphy. Genome Biol Evol 
9:1519–1527. https ://doi.org/10.1093/gbe/evx10 9

Murga-Moreno J, Coronado-Zamora M, Hervas S et al (2019) iMKT: 
the integrative McDonald and Kreitman test. Nucleic Acids Res 
47:W283–W288. https ://doi.org/10.1093/nar/gkz37 2

Neme R, Tautz D (2016) Fast turnover of genome transcription across 
evolutionary time exposes entire non-coding DNA to de novo 
gene emergence. eLife 5:e09977. https ://doi.org/10.7554/eLife 
.09977 

Nielly-Thibault L, Landry CR (2019) Differences between the raw 
material and the products of de novo gene birth can result 
from mutational biases. Genet Genet 302187:2019. https ://doi.
org/10.1534/genet ics.119.30218 7

Palmieri N, Kosiol C, Schlötterer C (2014) The life cycle of Dros-
ophila orphan genes. eLife 3:e01311. https ://doi.org/10.7554/
eLife .01311 

Peng Z, Mizianty MJ, Kurgan L (2014) Genome-scale prediction of 
proteins with long intrinsically disordered regions. Proteins Struct 
Funct Bioinforma 82:145–158. https ://doi.org/10.1002/prot.24348 

Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for 
comparing genomic features. Bioinformatics 26:841–842. https ://
doi.org/10.1093/bioin forma tics/btq03 3

Reinhardt JA, Wanjiru BM, Brant AT et al (2013) De novo ORFs in 
drosophila are important to organismal fitness and evolved rapidly 
from previously non-coding sequences. PLoS Genet 9:e1003860. 
https ://doi.org/10.1371/journ al.pgen.10038 60

Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecu-
lar biology open software suite. Trends Genet 16:276–277. https 
://doi.org/10.1016/S0168 -9525(00)02024 -2

Rosenbloom KR, Armstrong J, Barber GP et al (2015) The UCSC 
genome browser database: 2015 update. Nucleic Acids Res 
43:D670–D681. https ://doi.org/10.1093/nar/gku11 77

Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM (2014) Long non-
coding RNAs as a source of new peptides. eLife 3:e03523. https 
://doi.org/10.7554/eLife .03523 

https://doi.org/10.1371/journal.pgen.1002905
https://doi.org/10.1016/j.tig.2007.08.014
https://doi.org/10.1016/j.tig.2007.08.014
https://doi.org/10.7554/eLife.01179
https://doi.org/10.7554/eLife.01179
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1016/j.jmb.2009.11.053
https://doi.org/10.1016/j.jmb.2009.11.053
https://doi.org/10.1038/nbt1012
https://doi.org/10.1016/j.gene.2010.04.015
https://doi.org/10.1093/bib/bbx005
https://doi.org/10.1093/bib/bbx005
https://doi.org/10.1093/bioinformatics/btl505
https://doi.org/10.1093/bioinformatics/btx218
https://doi.org/10.1093/bioinformatics/btx218
https://doi.org/10.1093/bioinformatics/btx301
https://doi.org/10.1093/bioinformatics/btx301
https://doi.org/10.1186/s13059-015-0702-5
https://doi.org/10.1186/s13059-015-0702-5
https://doi.org/10.1016/j.tig.2009.07.006
https://doi.org/10.1016/j.tig.2009.07.006
https://doi.org/10.1093/bioinformatics/btw494
https://doi.org/10.1016/j.celrep.2014.05.002
https://doi.org/10.1016/j.celrep.2014.05.002
https://doi.org/10.7554/eLife.03785
https://doi.org/10.7554/eLife.03785
https://doi.org/10.1093/nar/gkq1019
https://doi.org/10.1093/nar/gkq1019
https://doi.org/10.1073/pnas.0509809103
https://doi.org/10.1101/671263
https://doi.org/10.1098/rstb.2014.0332
https://doi.org/10.1038/nrg.2016.78
https://doi.org/10.1038/nrg.2016.78
https://doi.org/10.1093/nar/gky384
https://doi.org/10.1093/nar/gky384
https://doi.org/10.1093/nar/gkt1035
https://doi.org/10.1534/genetics.107.080267
https://doi.org/10.1534/genetics.107.080267
https://doi.org/10.1126/science.1111443
https://doi.org/10.1126/science.1111443
https://doi.org/10.1093/molbev/msu286
https://doi.org/10.1093/molbev/msu286
https://doi.org/10.1093/gbe/evx109
https://doi.org/10.1093/nar/gkz372
https://doi.org/10.7554/eLife.09977
https://doi.org/10.7554/eLife.09977
https://doi.org/10.1534/genetics.119.302187
https://doi.org/10.1534/genetics.119.302187
https://doi.org/10.7554/eLife.01311
https://doi.org/10.7554/eLife.01311
https://doi.org/10.1002/prot.24348
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1371/journal.pgen.1003860
https://doi.org/10.1016/S0168-9525(00)02024-2
https://doi.org/10.1016/S0168-9525(00)02024-2
https://doi.org/10.1093/nar/gku1177
https://doi.org/10.7554/eLife.03523
https://doi.org/10.7554/eLife.03523


398 Journal of Molecular Evolution (2020) 88:382–398

1 3

Ruiz-Orera J, Verdaguer-Grau P, Villanueva-Cañas JL et al (2018) 
Translation of neutrally evolving peptides provides a basis for 
de novo gene evolution. Nat Ecol Evol 2:890–896. https ://doi.
org/10.1038/s4155 9-018-0506-6

Schmitz JF, Bornberg-Bauer E (2017) Fact or fiction: updates on how 
protein-coding genes might emerge de novo from previously non-
coding DNA. F1000Resarch 6:57. https ://doi.org/10.12688 /f1000 
resea rch.10079 .1

Schmitz JF, Ullrich KK, Bornberg-Bauer E (2018) Incipient de 
novo genes can evolve from frozen accidents that escaped rapid 
transcript turnover. Nat Ecol Evol 2:1626–1632. https ://doi.
org/10.1038/s4155 9-018-0639-7

Sella G, Petrov DA, Przeworski M, Andolfatto P (2009) Pervasive natu-
ral selection in the drosophila genome? PLoS Genet 5:e1000495. 
https ://doi.org/10.1371/journ al.pgen.10004 95

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular 
evolutionary genetics analysis (MEGA) software version 4.0. Mol 
Biol Evol 24:1596–1599. https ://doi.org/10.1093/molbe v/msm09 2

Tautz D, Domazet-Lošo T (2011) The evolutionary origin of orphan 
genes. Nat Rev Genet 12:692–702. https ://doi.org/10.1038/nrg30 
53

Thurmond J, Goodman JL, Strelets VB et al (2019) FlyBase 2.0: the 
next generation. Nucleic Acids Res 47:D759–D765. https ://doi.
org/10.1093/nar/gky10 03

Tretyachenko V, Vymětal J, Bednárová L et al (2017) Random protein 
sequences can form defined secondary structures and are well-
tolerated in vivo. Sci Rep 7:15449. https ://doi.org/10.1038/s4159 
8-017-15635 -8

Vakirlis N, McLysaght A (2019) Computational prediction of de novo 
emerged protein-coding genes. In: Sikosek T (ed) Computational 
methods in protein evolution. Springer, New York, pp 63–81

Vakirlis N, Hebert AS, Opulente DA et al (2018) A molecular portrait 
of de novo genes in yeasts. Mol Biol Evol 35:631–645. https ://doi.
org/10.1093/molbe v/msx31 5

Vakirlis N, Carvunis A-R, McLysaght A (2020) Synteny-based analy-
ses indicate that sequence divergence is not the main source of 
orphan genes. eLife 9:e53500. https ://doi.org/10.7554/eLife 
.53500 

Van Oss SBV, Carvunis A-R (2019) De novo gene birth. PLOS Genet 
15:e1008160. https ://doi.org/10.1371/journ al.pgen.10081 60

Versteeg R, van Schaik BDC, van Batenburg MF et al (2003) The 
human transcriptome map reveals extremes in gene density, intron 
length, GC content, and repeat pattern for domains of highly and 
weakly expressed genes. Genome Res 13:1998–2004. https ://doi.
org/10.1101/gr.16493 03

Wang L, Park HJ, Dasari S et al (2013) CPAT: coding-potential assess-
ment tool using an alignment-free logistic regression model. 
Nucleic Acids Res 41:e74–e74. https ://doi.org/10.1093/nar/gkt00 6

Wheeler DL, Church DM, Federhen S et al (2003) Database resources 
of the National Center for Biotechnology. Nucleic Acids Res 
31:28–33

Wilson BA, Masel J (2011) Putatively noncoding transcripts show 
extensive association with ribosomes. Genome Biol Evol 3:1245–
1252. https ://doi.org/10.1093/gbe/evr09 9

Wilson BA, Foy SG, Neme R, Masel J (2017) Young genes are highly 
disordered as predicted by the preadaptation hypothesis of de novo 
gene birth. Nat Ecol Evol 1:1–6. https ://doi.org/10.1038/s4155 
9-017-0146

Wissler L, Godmann L, Bornberg-Bauer E (2012) Evolutionary 
dynamics of simple sequence repeats across long evolutionary 
time scale in genus Drosophila. Trends Evol Biol 4:7. https ://doi.
org/10.4081/eb.2012.e7

Wissler L, Gadau J, Simola DF et al (2013) Mechanisms and dynamics 
of orphan gene emergence in insect genomes. Genome Biol Evol 
5:439–455. https ://doi.org/10.1093/gbe/evt00 9

Witt E, Benjamin S, Svetec N, Zhao L (2019) Testis single-cell RNA-
seq reveals the dynamics of de novo gene transcription and ger-
mline mutational bias in Drosophila. eLife 8:e47138. https ://doi.
org/10.7554/eLife .47138 

Wolf YI, Novichkov PS, Karev GP et al (2009) The universal distribu-
tion of evolutionary rates of genes and distinct characteristics of 
eukaryotic genes of different apparent ages. Proc Natl Acad Sci 
106:7273–7280. https ://doi.org/10.1073/pnas.09018 08106 

Wu B, Knudson A (2018) Tracing the de novo origin of protein-
coding genes in yeast. eLife 9:e01024. https ://doi.org/10.1128/
mBio.01024 -18

Yanai I, Benjamin H, Shmoish M et al (2005) Genome-wide midrange 
transcription profiles reveal expression level relationships in 
human tissue specification. Bioinformatics 21:650–659. https ://
doi.org/10.1093/bioin forma tics/bti04 2

Yang Z (1997) PAML: a program package for phylogenetic analysis 
by maximum likelihood. Bioinformatics 13:555–556. https ://doi.
org/10.1093/bioin forma tics/13.5.555

Yang Z, Nielsen R (2000) Estimating synonymous and nonsynony-
mous substitution rates under realistic evolutionary models. Mol 
Biol Evol 17:32–43. https ://doi.org/10.1093/oxfor djour nals.molbe 
v.a0262 36

Zdobnov EM, von Mering C, Letunic I et al (2002) Comparative 
genome and proteome analysis of Anopheles gambiae and 
Drosophila melanogaster. Science 298:149–159. https ://doi.
org/10.1126/scien ce.10770 61

Zhang L, Ren Y, Yang T et al (2019) Rapid evolution of protein diver-
sity by de novo origination in Oryza. Nat Ecol Evol 3:679. https 
://doi.org/10.1038/s4155 9-019-0822-5

Zhao L, Saelao P, Jones CD, Begun DJ (2014) Origin and spread of 
de novo genes in Drosophila melanogaster populations. Science 
343:769–772. https ://doi.org/10.1126/scien ce.12482 86

Zhou Q, Zhang G, Zhang Y et al (2008) On the origin of new genes in 
Drosophila. Genome Res 18:1446–1455. https ://doi.org/10.1101/
gr.07658 8.108

https://doi.org/10.1038/s41559-018-0506-6
https://doi.org/10.1038/s41559-018-0506-6
https://doi.org/10.12688/f1000research.10079.1
https://doi.org/10.12688/f1000research.10079.1
https://doi.org/10.1038/s41559-018-0639-7
https://doi.org/10.1038/s41559-018-0639-7
https://doi.org/10.1371/journal.pgen.1000495
https://doi.org/10.1093/molbev/msm092
https://doi.org/10.1038/nrg3053
https://doi.org/10.1038/nrg3053
https://doi.org/10.1093/nar/gky1003
https://doi.org/10.1093/nar/gky1003
https://doi.org/10.1038/s41598-017-15635-8
https://doi.org/10.1038/s41598-017-15635-8
https://doi.org/10.1093/molbev/msx315
https://doi.org/10.1093/molbev/msx315
https://doi.org/10.7554/eLife.53500
https://doi.org/10.7554/eLife.53500
https://doi.org/10.1371/journal.pgen.1008160
https://doi.org/10.1101/gr.1649303
https://doi.org/10.1101/gr.1649303
https://doi.org/10.1093/nar/gkt006
https://doi.org/10.1093/gbe/evr099
https://doi.org/10.1038/s41559-017-0146
https://doi.org/10.1038/s41559-017-0146
https://doi.org/10.4081/eb.2012.e7
https://doi.org/10.4081/eb.2012.e7
https://doi.org/10.1093/gbe/evt009
https://doi.org/10.7554/eLife.47138
https://doi.org/10.7554/eLife.47138
https://doi.org/10.1073/pnas.0901808106
https://doi.org/10.1128/mBio.01024-18
https://doi.org/10.1128/mBio.01024-18
https://doi.org/10.1093/bioinformatics/bti042
https://doi.org/10.1093/bioinformatics/bti042
https://doi.org/10.1093/bioinformatics/13.5.555
https://doi.org/10.1093/bioinformatics/13.5.555
https://doi.org/10.1093/oxfordjournals.molbev.a026236
https://doi.org/10.1093/oxfordjournals.molbev.a026236
https://doi.org/10.1126/science.1077061
https://doi.org/10.1126/science.1077061
https://doi.org/10.1038/s41559-019-0822-5
https://doi.org/10.1038/s41559-019-0822-5
https://doi.org/10.1126/science.1248286
https://doi.org/10.1101/gr.076588.108
https://doi.org/10.1101/gr.076588.108

	A Continuum of Evolving De Novo Genes Drives Protein-Coding Novelty in Drosophila
	Abstract
	Introduction
	Results and Discussion
	Orphan Genes form a Significant Fraction of Drosophila Genomes
	De Novo Emergence Contributes to the Prevalence of Orphan Genes in Drosophila
	Divergence of Outgroup Genomic Regions Limits Inference of the Mechanism of Orphan Gene Emergence
	High Chromosomal GC-Content May Promote Gene Emergence
	Lack of ORF Conservation Provides Independent Confirmation of De Novo Gene Emergence
	De Novo Genes Show Robust but Specific Expression
	De Novo Genes are Under Weaker Selective Constraint Than Conserved Genes
	De Novo Genes in D. melanogaster Have Abundant Translational Evidence
	Nucleotide Sequence Properties Reflect the Recent Evolutionary Origin of De Novo Genes
	De Novo Genes Encode More Disordered Proteins Than Both Older Genes and Intergenic ORFs

	Conclusion
	Materials and Methods
	Orphan Gene Annotation
	Outgroup Genome Mapping
	Preparation of Conserved and Random Control Sequence Sets
	Analysis of Syntenic Genomic Regions
	Transcriptional Evidence
	Translational Evidence
	Evolutionary Rate Analysis
	Sequence Property Analysis
	Recombination Rate
	Statistical Tests

	Acknowledgements 
	References




