Skip to main content
Log in

The Mitochondrial Subgenomes of the Nematode Globodera pallida Are Mosaics: Evidence of Recombination in an Animal Mitochondrial Genome

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We sequenced four mitochondrial subgenomes from the potato cyst nematode Globodera pallida, previously characterized as one of the few animals to have a multipartite mitochondrial genome. The sequence data indicate that three of these subgenomic mitochondrial circles are mosaics, comprising long, multigenic fragments derived from fragments of the other circles. This pattern is consistent with the operation of intermitochondrial recombination, a process generally considered absent in animal mitochondria. We also report that many of the duplicated genes contain deleterious mutations, ones likely to render the gene nonfunctional; gene conversion does not appear to be homogenizing the different gene copies. The proposed nonfunctional copies are clustered on particular circles, whereas copies that are likely to code functional gene products are clustered on others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Armstrong MR, Blok VC, Phillips MS (2000) A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida. Genetics 154:181–192

    PubMed  CAS  Google Scholar 

  • Awata H, Noto T, Endoh H (2005) Differentiation of somatic mitochondria and the structural changes in mtDNA during development of the dicyemid Dicyema japonicum (Mesozoa). Mol Gen Genomics 273:441–449

    Article  CAS  Google Scholar 

  • Coulier F, Popovici C, Villet R, Birnbaum D (2000) MetaHox gene clusters. J Exp Zool 288:345–351

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Wilson K, Makaroff C (1998) Analysis of the four cox2 genes found in turnip (Brassica campestris, Brassicaceae) mitochondria. Am J Bot 85:153–161

    Article  CAS  Google Scholar 

  • Dowton M (1999) Relationships among the cyclostome braconid (Hymenoptera: Braconidae) subfamilies inferred from a mitochondrial tRNA gene rearrangement. Mol Phylogenet Evol 11:283–287

    Article  PubMed  CAS  Google Scholar 

  • Dowton M, Austin AD (1999) Evolutionary dynamics of a mitochondrial rearrangement “hotspot” in the Hymenoptera. Mol Biol. Evol 16:298–309

    PubMed  CAS  Google Scholar 

  • Dowton M, Campbell NJH (2001) Intramitochondrial recombination—Is it why some mitochondrial genes sleep around? Trends Ecol Evol 16:269–271

    Article  PubMed  Google Scholar 

  • Dowton M, Castro LR, Austin AD (2002) Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome ‘morphology.’ Invert Syst 16:345–356

    Article  Google Scholar 

  • Dowton M, Castro LR, Campbell SL, Bargon SD, Austin AD (2003) Frequent mitochondrial gene rearrangements at the hymenopteran nad3-nad5 junction. J Mol Evol 56:517–526

    Article  PubMed  CAS  Google Scholar 

  • Eberhard JR, Wright TF, Bermingham E (2001) Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. Mol Biol Evol 18:1330–1342

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Awadalla P (2001) Does human mtDNA recombine? J Mol Evol 53:430–435

    Article  PubMed  CAS  Google Scholar 

  • Fauron C, Casper M, Gao Y, Moore B (1995) The maize mitochondrial genome: dynamic, yet functional. Trends Genet 11:228–235

    Article  PubMed  CAS  Google Scholar 

  • Hagelberg E (2003) Recombination or mutation rate heterogeneity? Implications for mitochondrial Eve. Trends Genet 19:84–90

    Article  PubMed  CAS  Google Scholar 

  • Hagelberg E, Goldman N, Lió P, Whelan S, Schiefenhövel W, Clegg JB, Bowden DK (1999) Evidence for mitochodrial DNA recombination in a human population of island Melanesia. Proc R Soc Lond B 266:485–492

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hey J (2000) Human mitochondrial DNA recombination: can it be true? Trends Ecol Evol 15:181–182

    Article  PubMed  Google Scholar 

  • Innan H, Nordberg M (2002) Recombination or mutational hot spots in human mtDNA? Mol Biol Evol 19:122–1127

    Google Scholar 

  • Kajander OA, Rovio AT, Majamaa K, Poulton J, Spelbrink JN, Holt IJ, Karhunen PJ, Jacobs HT (2000) Human mtDNA sublimons resemble rearranged mitochondrial genoms found in pathological states. Hum Mol Genet 9:2821–2835

    Article  PubMed  CAS  Google Scholar 

  • Kajander OA, Karhunen PJ, Holt IJ, Jacobs HT (2001) Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Reports 2:1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Kraytsberg Y, Schwartz M, Brown TA, Ebralidse K, Kunz WS, Clayton DA, Vissing J, Khrapko K (2004) Recombination of human mitochondrial DNA. Science 304:981

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa Y, Ota H, Nishida M, Ozawa T (1996) Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol Biol Evol 13:1242–1254

    PubMed  CAS  Google Scholar 

  • Ladoukakis ED, Zouros E (2001) Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. Mol Biol Evol 18:1168–1175

    PubMed  CAS  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    Article  PubMed  CAS  Google Scholar 

  • Levings CS 3rd, Brown GG (1989) Molecular biology of plant mitochondria. Cell 56:171–179

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  Google Scholar 

  • Lunt DH, Hyman BC (1997) Animal mitochondrial DNA recombination. Nature 387:247

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi K, Miya M, Satoh TP, Westneat MW, Nishida M (2004) Gene rearrangement and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae). J Mol Evol 59:287–297

    Article  PubMed  CAS  Google Scholar 

  • Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol 14:91–104

    PubMed  CAS  Google Scholar 

  • Macey JR, Papenfuss TJ, Kuehl JV, Fourcade HM, Boore JL (2004) Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences. Mol Phylogenet Evol 33:22–31

    Article  PubMed  CAS  Google Scholar 

  • Marienfeld JR, Unseld M, Brandt P, Brennicke A (1997) Mosaic open reading frames in the Arabidopsis thaliana mitochondrial genome. Biol Chem 378:859–862

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J, Smith NH (2002) Recombination in animal mitochondrial DNA. Mol Biol Evol 19:2330–2332

    PubMed  Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  • Mueller RL, Boore JL (2005) Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Mol Biol Evol 22:2104–2112

    Article  PubMed  CAS  Google Scholar 

  • Pääbo S, Irwin D, Wilson A (1990) DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem 265:4718–4721

    PubMed  Google Scholar 

  • Posada D (2002) Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 19:708–717

    PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc Natl Acad Sci USA 98:13757–13762

    Article  PubMed  CAS  Google Scholar 

  • Schon EA (2000) Mitochondrial genetics and disease. TIBS 25:555–560

    PubMed  CAS  Google Scholar 

  • Shao R, Mitani H, Barker SC, Takahashi M, Fukunaga M (2005) Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J Mol Evol 60:764–773

    Article  PubMed  CAS  Google Scholar 

  • Small ID, Isaac PG, Leaver CJ (1987) Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J 6:865–869

    PubMed  CAS  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    Article  PubMed  CAS  Google Scholar 

  • Sunnucks P, Hales DF (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol 13:510–524

    PubMed  CAS  Google Scholar 

  • Tsang WY, Lemire BD (2002) Stable heteroplasmy but differential inheritance of a large mitochondrial DNA deletion in nematodes. Biochem Cell Biol 80:645–654

    Article  PubMed  CAS  Google Scholar 

  • Watanabe KI, Bessho Y, Kawasaki M, Hori H (1999) Mitochondrial genes are found on minicircle DNA molecules in the mesozoan animal Dicyema. J Mol Biol 286:645–650

    Article  PubMed  CAS  Google Scholar 

  • Wiuf C (2001) Recombination in human mitochondrial DNA? Genetics 159:749–756

    PubMed  CAS  Google Scholar 

  • Zevering CE, Moritz C, Heideman A, Strum RA (1991) Parallel origins of duplications and the formation of pseudogenes in mitochondrial DNA from parthenogenetic lizards (Heteronotia binoei; Gekkonidae). J Mol Evol 33:431–441

    Article  PubMed  CAS  Google Scholar 

  • Zuckerman SH, Solus JF, Gillespie FP, Eisenstadt JM (1984) Retention of both parental mitochondrial DNA species in mouse-chinese hamster somatic cell hybrids. Somat Cell Mol Genet 10:85–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Australian Research Council and the Scottish Executive Environment and Rural Affairs Department and by EU AIR3 CT-92-0062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracey Gibson.

Additional information

[Reviewing Editor: Dr. Rafael Zardoya]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, T., Blok, V.C., Phillips, M.S. et al. The Mitochondrial Subgenomes of the Nematode Globodera pallida Are Mosaics: Evidence of Recombination in an Animal Mitochondrial Genome. J Mol Evol 64, 463–471 (2007). https://doi.org/10.1007/s00239-006-0187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-006-0187-7

Keywords

Navigation