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Abstract Of special interest in formal verification are safety specifications, which assert that
the system stays within some allowed region, in which nothing “bad” happens. Equivalently,
a computation violates a safety specification if it has a “bad prefix”—a prefix all whose
extensions violate the specification. The theoretical properties of safety specifications as well
as their practical advantages with respect to general specifications have been widely studied.
Safety is binary: a specification is either safety or not safety. We introduce a quantitative
measure for safety. Intuitively, the safety level of a language L measures the fraction of
words not in L that have a bad prefix. In particular, a safety language has safety level 1 and a
liveness language has safety level 0. Thus, our study spans the spectrum between traditional
safety and liveness. The formal definition of safety level is based on probability and measures
the probability of a random word notin L to have a bad prefix. We study the problem of finding
the safety level of languages given by means of deterministic and nondeterministic automata
as well as LTL formulas, and the problem of deciding their membership in specific classes
along the spectrum (safety, almost-safety, fraction-safety, etc.). We also study properties of
the different classes and the structure of deterministic automata for them.

1 Introduction

Today’s rapid development of complex and safety-critical systems requires reliable verifi-
cation methods. In formal verification, we verify that a system meets a desired property by
checking that a mathematical model of the system meets a formal specification that describes
the property. Of special interest are specifications asserting that the observed behavior of
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the system always stays within some allowed region, in which nothing “bad” happens. For
example, we may want to assert that every message sent is acknowledged in the next cycle.
Such specifications of systems are called safety specifications. Intuitively, a specification ¥
is a safety specification if every violation of v occurs after a finite execution of the system.
In our example, if in a computation of the system a message is sent without being acknowl-
edged in the next cycle, this occurs after some finite execution of the system. Also, once this
violation occurs, there is no way to “fix”’ the computation.

In order to define safety formally, we refer to computations of a non-terminating system
as infinite words over an alphabet . Consider a language L of infinite words over . That
is, L € X®. A finite word x € X* is a bad prefix for L iff for all infinite words y € X,
the concatenation x - y is not in L. Thus, a bad prefix for L is a finite word that cannot be
extended to an infinite word in L. A language L is a safety language if every word not in L
has a finite bad prefix.!

The interest in safety started with the quest for natural classes of specifications. The
theoretical aspects of safety have been extensively studied [2,22,23,29]. With the growing
success and use of formal verification, safety has turned out to be interesting also from a
practical point of view [9,12,16]. Indeed, the ability to reason about finite prefixes signifi-
cantly simplifies both enumerative and symbolic algorithms. In the first, safety circumvents
the need to reason about complex w-regular acceptance conditions. For example, methods
for synthesis, program repair, or parametric reasoning are much simpler for safety properties
[11,27]. In the second, it circumvents the need to reason about cycles, which is significant
in both BDD-based and SAT-based methods [3,4].

In addition to a rich literature on safety, researchers have studied additional classes, such
as co-safety and liveness [2,22]. A language L is a co-safety language if the complement
of L, namely the language of words not in L, is safety. Equivalently, every word in L has
a good prefix—one all whose extensions result in a word in L. A language L is a liveness
language if it does not have bad prefixes. Thus, every word in £* can be extended to a word
in L. For example, if ¥ = {a, b}, then L = {a®, b®} is a safety language, its complement
is both co-safety and liveness, and L = (a + b)* - b is a liveness language that is neither
safety nor co-safety.

From a theoretical point of view, the importance of safety and liveness languages stems
from their topological characteristics. Consider the natural topology on £, where similarity
between words corresponds to the length of the prefix they share. Formally, the distance
between w and w’ is 27/, where i > 0 is the position of the first letter in which w and w’
differ. In this topology, safety languages are exactly the closed sets, co-safety languages are
the open sets, and liveness languages are the dense sets (that is, they intersect every nonempty
open set) [1]. This, for example, implies that every linear specification can be expressed as
a conjunction of a safety and a liveness specification [1,2].

Safety is binary: a specification is either safety or not safety. In this work, we introduce a
quantitative measure for safety. We define the safety level of a language L as the probability
of a word not in L to have a bad prefix. From a theoretical point of view, our study spans the
spectrum between traditional safety and liveness. From a practical point of view, the higher
the safety level of L is, the bigger is the chance that algorithms designed for safety languages
would work appropriately for L. For example, when we apply algorithms designed for safety
languages to languages with safety level 1, we may get a one-sided error for some words,

! The definition of safety we consider here is given in [1,2], it coincides with the definition of limit closure
defined in [8], and is different from the definition in [19], which also refers to the property being closed under
stuttering.
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namely words that are not in the language yet have no bad prefix, yet the measure of such
words is zero.

Let us describe our framework and results in more detail. A random word over an alphabet
¥ is a word in which for all indices i, the i-th letter is drawn uniformly at random. Thus, we
assume a uniform probability distribution on £, and the probability of a language L € X
is the probability of the event L. For example, the probability of Pr(a - (a + b)?) is % Now,
for a language L C X¢, the safety level of L is the conditional probability of the event
“words with a bad prefix for L” given the event “words not in L”. That is, intuitively, the
safety level measures the fraction of words not in L that have a bad prefix. When L is a safety
language, all the words not in L have a bad prefix, thus the safety level of L is 1. When L
is liveness, no word has a bad prefix, thus the safety level is 0. A language may have safety
level 1 without being safety. For example, when AP = {a, b}, then the safety level of the
non-safety specification v = aUDb (that is, a until b) is 1. Indeed, almost all computations
(that is, all but {¢}®) that violate 1 have a bad prefix.? Also, languages may have a fractional
safety level. For example, ¢ = a A FGb (that is, a and eventually always b) has safety level
%, as only words that start with a letter satisfying —a have a bad prefix for ¢ and almost all
words that start with a letter satisfying a do not satisfy ¢ either.

We partition safety levels to four classes: safety, almost-safety [the safety level is 1 but the
language is not safety), frac-safety (the safety level is in (0, 1)], and liveness (the safety level
is 0, as we prove in Proposition 3.3). We define a dual classification for co-safety and examine
possible combinations. For example, it is shown in [17] that the intersection of safety and
co-safety languages is exactly the set of bounded languages—these that are recognizable by
cycle-free automata, which correspond to clopen sets in topology. We study all intersections,
some of which we prove to be empty. For example, there is no language that is both co-safety
and frac-safety. We study the problem of calculating the safety level of a given language and
prove that it can be solved in linear, exponential, and doubly-exponential time for languages
given by deterministic parity automata, nondeterministic Biichi automata, and LTL formulas,
respectively.

We then turn to study the classification problem, where the goal is to decide whether a
given language belongs to a given class. The problem was studied for the classes of safety
and liveness properties [15,29], and we study it for almost-safety and frac-safety. We show
that the complexities for almost-safety coincide with these known for safety; that is, the
problem is NLOGSPACE-complete for deterministic automata, and is PSPACE-complete
for nondeterministic automata and LTL formulas. The complexities for frac-safety coincide
with these known for livensess, where the treatment of LTL formulas is exponentially harder
than that of nondeterministic automata and is EXPSPACE-complete. Our results are based on
an analysis of the strongly connected components of deterministic automata for the language,
and involve other results of interest on the expressive power of deterministic automata. In
particular, we prove that frac-safety languages cannot be recognized by deterministic Biichi
automata. This is in contrast with safety and almost-safety languages, which can always be
recognized by deterministic Biichi automata, and liveness languages, some of which can be
recognized by such automata.

Recall that the intersection of safety and co-safety languages is exactly the set of bounded
languages, which correspond to clopen sets in topology. Intuitively, a language L is bounded
if every word w € X* has a determined prefix, namely a prefix that is either good (in case
w € L) or bad (in case w ¢ L). We define the bounding level of a language L as the

2 Note that & = 247 and our probability distribution is such that for each atomic proposition a and for each
position in a computation, the probability that @ holds in the position is %
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probability of a word to have a determined prefix. We show how different safety and co-
safety levels induce different bounding levels, and we study four classes of specifications
that are induced by their bounding levels. For example, a language L is pending, which is the
dual of clopen, if it is both liveness and co-liveness. In other words, every word in £* can
be extended both to a word in L and to a word not in L. We study the problem of classifying
specifications into their bounding class. We show that the classification can be based on the
classification to safety and co-safety classes, or by a direct analysis of deterministic automata
for the language.

The paper is organized as follows. In Sect. 2, we define the basic notions of LTL, automata,
and the probabilitic setting. In Sect. 3, we introduce the classes of safety and co-safety, and
show how to find the safety level of a given language. Section 4 discusses the problem
of finding the safety class of a given language, and shows several interesting conclusions
regarding expressive power. In Sects. 5 and 6 we extend our results to clopen and bounded
languages, and present the relation between the safety, co-safety and bounded classes. In
Sect. 7, we discuss possible extensions of our approach as well as its practical applications.

2 Preliminaries
2.1 Linear temporal logic

For a finite alphabet X, an infinite word w = o7 - 02 - - - is an infinite sequence of letters
from X. We use ¢ to denote the set of all infinite words over the alphabet . A language
L C X?is a set of words.

When = = 247 for a set AP of atomic propositions, each infinite word corresponds to a
computation over A P. Formulas of LTL are constructed from a set A P of atomic propositions
using the usual Boolean operators and the temporal operators X (‘“nexttime”’) and U (“until”).
Formally, an LTL formula over A P is defined as follows:

e true, false,or p, for p € AP.
o —Y, Y1 A Yo, Xy, or Yy U, where ¥ and v, are LTL formulas.

The semantics of LTL is defined with respect to infinite computations # = o1, 02, 03, .. .,
where for every i > 1, the set 0; € 24P i5 the set of atomic propositions that hold in the
i-th position of 7. Consider a computation 7 = o1, 02,03, ... € 2APY? We use 7, i = v
to indicate that an LTL formula  holds in position i of 7. The relation = is inductively
defined, for every computation 7 and position 7, as follows.

mw,i = true and w, i W= false.

w,i = piff p € 0;, where p € AP is an atomic proposition.

w0 =y iffm, 0 E Y.

miEYIAYifftr, i EyYandn,i = ys.

i =Xy iffr, i+1EY;.

7w, i = Y1 Uy, iff there exists k > O such thatw,i + k = v and w,i 4+ j = ¢ forall
0<j<k.

Writing LTL formulas, it is convenient to use the abbreviations G (“always”) and F
(“eventually”). Formally, the abbreviations follow the following semantics.

o Fyy = trueUv. Thatis, w,i = F iff there is k > O such that 7, i + k |= 1.
e Gy = —F—y. Thatis, m, i |= Gy iff for all k > 0 we have that 7, i + k = V.
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Spanning the spectrum from safety to liveness 707

We use 7 |= ¥ to indicate that r, 1 = .
Each LTL formula v over AP defines a language [¥] < (247)® of the computations
that satisfy . Formally, [¢] = {7 € 247)® : 7 = ¢).

2.2 Automata

A nondeterministic finite automaton is a tuple A = (¥, Q, Qo, 8, &), where X is a finite
non-empty alphabet, Q is a finite non-empty set of states, Qo S Q is a set of initial states,
§: 0 x ¥ — 29 is a transition function, and « is an acceptance condition. The automaton
A is deterministic if |Qo| = 1 and |§(g, o)| < 1 for all states g € Q and letters 0 € X.

A run of A on an infinite input word w = o7 - 02 --- € X, is an infinite sequence of
states r = qo, q1, - - - such that go € Qq, and for alli > 0, we have g;+1 € 6(qi, oi+1). The
acceptance condition « determines which runs are accepting. For a run r, let inf(r) ={q :
gi = q for infinitely many i’s}. That is, inf (r) is the set of states that » visits infinitely often.
Then, r is accepting iff inf(r) satisfies . We consider two acceptance conditions.

A set S of states satisfies a Biichi acceptance condition « € Q if S N« # . That
is, a run r is accepting iff inf(r) N« # (. A richer acceptance condition is parity, where
o ={ay, 0, ...}, withay Coay € --- C o = Q, and a set S satisfies « if the minimal
index i for which S Na; # @ is even. That is, a run r is accepting iff the minimal index i for
which inf(r) N o; # @ is even.

A word w is accepted by an automaton A if there is an accepting run of .4 on w. The
language of A, denoted L(.A), is the set of words that A accepts. We use NBW, DBW, and
DPW to abbreviate nondeterministic Biichi, deterministic Biichi, and deterministic parity
word automata, respectively.

Theorem 2.1 [26,28,32]

e Given an LTL formula \r of lenght n, we can construct an NBW Ay, such that Ay has
200 states and L(Ay) = [¥ 1.
e Given an NBW with n states, we can construct an equivalent DPW with 20(mlogn) grqte.

Consider a directed graph G = (V, E). A strongly connected set of G (SCS) is a set
C C V of vertices such that for every two vertices v, v' € C, there is a path from v to v’. An
SCS C is maximal if it cannot be extended to a larger SCS. Formally, for every nonempty
set C’ C V\C, we have that C U C” is not an SCS. The maximal strongly connected sets are
also termed strongly connected components (SCC). An automaton A = (X, Q, Qo, S, o)
induces a directed graph G 4 = (Q, E) in which (g, ¢’) € E iff there is a letter o such that
q’' € 8(q, o). When we talk about the SCSs and SCCs of A, we refer to these of G 4.

An SCC C of a graph G is ergodic iff for all (u,v) € E,ifu € C thenv € C. That is, an
SCC is ergodic if no edge leaves it. We say that a path m = mg, 71, 72, ... in G reaches an
ergodic SCC C, if there exists i > 0 such that for all j > i, we have that 7; € C. Note that
if m; € C for some 7, then 7 reaches the ergodic SCC C.

2.3 Probability

Given a set S of elements, a probability distribution on S is a function Pr : S — [0, 1] such
that X;cs Pr(s) = 1. An event is a set A C S. The probability of A is then Xsc4 Pr(s).
Given two events A and B with Pr(B) > 0, the conditional probability of A given B, denoted
Pr(A | B),is defined as the ratio between the probability of the joint of events A and B, and

.- . Pr(ANB)
the probability of B. Thatis, Pr(A| B) = ———
Pr(B)
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Consider an alphabet ¥. A random word over ¥ is a word in which for all indices i, the i-th
letter is drawn uniformly at random. In particular, when & = 24” then arandom computation
7 is such that for each atomic proposition ¢ and for each position in 7, the probability that
g holds in the position is % The probabilistic model above induces a probability distribution
on X, where the probability of a word is the product of the probabilities of its letters. The
probability of a language L € X, denoted Pr(L), is then the probability of the event L. It
is known that regular languages have measurable probabilities [6]. For an LTL formula v,
we use Pr(y) to denote Pr([[]). For example, the probabilities of Xp, Gp, and Fp are %,
0, and 1, respectively. See also Remark 2.3 below.

The following lemma states two fundamental properties of runs of automata on random
words (see, for example, [14]).

Lemma 2.2 Consider an automaton A.

1. A run of A on a random word reaches some ergodic SCC with probability 1.
2. An infinite run that reaches an ergodic SCC C of A visits all the states in C infinitely
often with probability 1.

We assume that all SCCs of automata are reachable. In addition, we distinguish between
several types of ergodic SCCs. Let .4 be an automaton. An ergodic SCC C of A is accepting
if a random path that reaches C is accepting with probability 1. Similarly, C is rejecting if
a random path that reaches C is rejecting with probability 1. Recall that for an acceptance
condition «, a run r is accepting iff inf(r) satisfies «. It follows from Lemma 2.2 that an
ergodic SCC C is accepting iff it satisfies . We say that an ergodic SCC C of A is pure
accepting if every path 7 that reaches C is accepting. Similarly, an ergodic SCC C of A is
pure rejecting if every path 7 that reaches C is rejecting. Note that pure accepting and pure
rejecting ergodic SCCs are equivalent to accepting and rejecting sinks, respectively.

Remark 2.3 The described characterization of ergodic SCCs suggests an algorithm for cal-
culating the probability of a language given by a DPW. Given a DPW A, we can find its
ergodic SCCs and classify them to accepting and rejecting SCCs in linear time [31]. Recall
that an accepting ergodic SCC accepts words with probability 1, and a rejecting ergodic SCC
rejects words with probability 1. Therefore, if we sum the probabilities of reaching every
accepting ergodic SCCs in A, we get Pr(L(A)). It is easy to see that in automata for Xp,
Gp, and Fp, the probability to reach an accepting ergodic SCC are %, 0, and 1, respectively.
Since LTL formulas can be translated to DPWs with a doubly-exponential blow-up, and the
construction can be done on-the-fly, the above algorithm implies an EXPSPACE algorithm
for calculating the probability of LTL formulas. As shown, however, in [5], it is possible to
circumvent the translation into DPW and find the probability in PSPACE.

3 Classes of safety

In this section we define safety, safety levels, and four classes of safety levels. We also define
the dual notion, of co-safety levels, and study the calculation of the safety level.

3.1 Safety, levels and classes
Consider a language L € X of infinite words over an alphabet X. A finite word x € £*isa

bad prefix for L if for all infinite words y € X, we have that x - y ¢ L. In other words, a bad
prefix for L is a finite word that cannot be extended into an infinite word in L. Let safe(L) =
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Spanning the spectrum from safety to liveness 709

{w : w has a bad prefix for L} and comp(L) = Z“\L. Note that safe(L) € comp(L). We
define the safety level of a language L, denoted slevel(L), as the probability of a word not in
L to have a bad prefix. Formally, slevel(L) = Pr(safe(L) | comp(L)). When slevel(L) = p,
we say that L is a p-safety language. By the definition of conditional probability, we have
that

Pr(safe(L) N comp(L)) _ Pr(safe(L))
Pr(comp(L)) = Pr(comp(L))’

Note that if Pr(L) = 1, then Pr(comp(L)) = 0 so slevel(L) is undefined. In this case,
we define the safety level of L to be 0, as justified in Proposition 3.1 below.>

slevel(L) = Pr(safe(L) | comp(L)) =

Proposition 3.1 For every language L, if Pr(L) = 1, then safe(L) = (.

Proof Consider a language L with Pr(L) = 1. Assume, by way of contradiction, that
there is a bad prefix x of L. For every y € X%, we have that x - y ¢ L. It follows that
Pr(comp(L)) > 0, contradicting the assumption that Pr(L) = 1. ]

Remark 3.2 Note that the other direction of Proposition 3.1 does not hold. That is, there
exists a language L such that L has no bad prefixes and still Pr(L) # 1. As an example,
consider the language L = [F Ga] with AP = {a}. Every finite prefix can be extended to a
word in L by the suffix {a}®, thus L has no bad prefixes. Nevertheless, it is easy to see that
Pr(L) =0.

We define four classes of languages, describing their safety level:

e Safety [2,29] A language L C X® is a safety language if safe(L) = comp(L). That is,
every word not in L has a bad prefix. For example, L = [Ga] is a safety language, as
every word not in L has a prefix in which a does not hold, and this prefix cannot be
extended to a word in L.

e Almost-safety A language L C X is an almost-safety language if it is p-safety for p = 1
but is not safety. As an example, consider the language L = [[aUb]]. The language L is
not a safety language, as the word a® ¢ L has no bad prefix. Indeed, we can concatenate
b® to every prefix of a® and get a word in L. In addition, every word not in L except
for a® has a bad prefix for L,and the set of these words have measure 1 Accordingly,

Pr(safe(L))
Pr(comp(L))

e Frac-safety A language L C X is a frac-safety language if it is p-safety for0 < p < 1.
As an example, consider the language L = [[a A FGa]l. We show that L is %-safety.
The words not in L are these that satisfy —a vV G F—a. Since Pr(G F—a) = 1, we have
that Pr(comp(L)) = Pr(—a Vv GF—-a) = 1. Note that every prefix can be extended
to a word that satisfies F Ga, simply by concatenating the suffix a®. That is, words that
do not satisfy F'Ga have no bad prefixes. On the other hand, every word that does not
satisfy a has the bad prefix —a. It follows that a word has a bad prefix for L iff it does not
Pr(safe(L))

* Pr(comp(L))

=1
=3,

>—~\N\'—

satisfy a. Accordingly, Pr(safe(L)) = Pr(—a) = % Hence

and L is %—safety.

3 An anomaly of this definition is the language L = £®. While Pr(L) = 1, making its safety level 0, we
also have that L is a safety language. Thus, L is the only language that is both safety and has safety level 0.
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e Liveness A language L C X® is a liveness language if safe(L) = {. For example, the
language L = [[Fa]l is liveness, as no word in comp(L) has a bad prefix. Indeed, the
only word in comp(L) is (—a)®, and it has no bad prefixes. Note that the definition is
equivalent to the one in [1], according to which L is liveness if every word in X* can be
extended to a word in L.

We extend the classification to LTL formulas. We say that a formula ¢ is p-safety if [¢]]
is p-safety, and that ¢ is in one of the classes above if [¢] is in the class.

Recall that an almost-safety language is a language that is 1-safety but not safety. Dually,
we can relate to 0-safety languages that are not liveness. While, however, 1-safety is distinct
from safety, Proposition 3.3 below states that O-safety and liveness coincide.

Proposition 3.3 A language is liveness iff it is 0-safety.

Proof Consider a language L € X“. By the definition of liveness, if L is liveness, then
safe(L) = @, so it is 0-safety. For the other direction, we prove that if L is not liveness then
it is not O-safety. Assume that L is not liveness, thus safe(L) # @. Let w € safe(L) and let
u be a bad prefix for w. Every word that starts with u is both in comp(L) and in safe(L).
Therefore, the measure of words in safe(L) is at least the measure of words with prefix u,
which is strictly greater than 0. Hence, if L is not liveness then it is not 0-safety. O

3.2 Co-safety, levels and classes

We turn to study the dual notion, of co-safety languages. A finite word x € ¥* is a good
prefix for a language L C X, if for all infinite words y € X£®, we have that x - y € L.
In other words, a good prefix is a finite word all whose extentions are in L. A language L
is a co-safety language if every word in L has a good prefix. Equivalently, L is co-safety
iff comp(L) is safety. We define co-safe(L) = {w : w has a good prefix for L}. The classes
defined above for safety can be dualized to classes on co-safety. Thus, the co-safety level of a
language L, denoted co-slevel(L), is Pr(co-safe(L) | L). Also, a language L is co-liveness
if co-safe(L) = {. Propositions 3.1 and 3.3 can be dualized too. Formally, we have the
following.

Lemma 3.4 For every language L, we have slevel(L) = co-slevel(comp(L)).

Proof Consider a language L. By the definition of good and bad prefixes, every bad prefix

for L is a good prefix for comp(L), thus Pr(safe(L)) = Pr(co-safe(comp(L))). Hence,
Pr(safe(L)) Pr(co-safe(comp(L)))

slevel(L) = Pr(safe(L) | comp(L)) = =

Pr(comp(L)) Pr(comp(L))

Pr(co-safe(comp(L)) | comp(L)) = co-slevel(comp(L)), and we are done.

Table 1 describes LTL formulas of different safety and co-safety levels. The number
within brackets next to a formula ¢ is Pr(¢). For example, the LTL formula aUb Vv Gc is
almost-safety, almost-co-safety, and has probability %

Note that, by Lemma 3.4, a language L is a member of the (i, j)-th cell in the table iff
comp(L) is amember of the (j, i)-th cell. In addition, it follows from the definition of a safety
level that if Pr(p) = 1, then ¢ is O-safety, so, by Proposition 3.3, the formula ¢ is in the
right column. Dually, if Pr(¢) = 0, then ¢ is 0-co-safety, so, by the dual of Proposition 3.3,
it is in the bottom row. Propositions 4.6 and 4.9 below state some additional properties of the
table, and they are based on some observations on automata.
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Spanning the spectrum from safety to liveness 711

Table 1 Examples to formulas of different safety and co-safety levels, with o1 =a A GFb, ¢y =c A FGd,
and 3 = —~a A FGb

Safety Almost-safety Frac-safety Liveness
Co-safety ad) aUb (3) - Fa (1)
anFb(d) (see Lemma 4.9)
Almost-co-safety —(aUb) (}) aUb v Ge (%) g1 Ac(d) -1 (})
avGh(h) aver () Ga Vv Fb (1)
Frac-co-safety - Q1 Ve (%) Y1V Ve (%) -2 (1)
(see Lemma 4.9) an—g(d) —p1 A=z (1)
Co-liveness Ga (0) 1 (%) ¢ (0) FGa (0)
Ga A Fb (0) o1 ver () GFa (1)
1V o3 (%)

3.3 Finding the safety level

We now study the problem of calculating the the safety level of a language given by a DPW,
an NBW, or an LTL formula. Note that the safety level of a language does not depend on
the formalism in which it is given. The latter is going to affect only the complexity of the
problem.

Theorem 3.5 Calculating the safety level of a language L can be done in linear, exponen-
tial, and doubly-exponential time for L given by a DPW, an NBW, and an LTL formula,
respectively.

Proof We describe a linear-time algorithm for DPWs. The complexity for the other classes
then follows from Theorem 2.1. Consider a DPW A. We calculate slevel(L(.A)) by calculating
Pr(safe(L(A))), Pr(comp(L(A))), and the ratio between them. Let C = {Cy, ..., C;,} be
the ergodic SCCs of .A. We can find C in linear time, and can also mark the ergodic SCCs
that are rejecting and these that are pure rejecting [31]. Recall that safe(L(.A)) includes all
the words with bad prefix for L(A), and note a path to an ergodic SCC C in A is labeled
with a bad prefix for L(A) iff C is pure rejecting. In addition, by Lemma 2.2, a path reaches
some ergodic SCC with probability 1. Therefore, it is easy to see that Pr(safe(L(A))) is
the probability that a random run reaches a pure rejecting SCC, and Pr(comp(L(A))) is the
probability that a random run reaches a rejecting SCC. Both can be calculated by assigning
to each SCC the probability that a random run reaches it. Finally, by Proposition 3.1, if
Pr(comp(L(A))) = 0, then the algorithm returns 0. O

Remark 3.6 While we assume a uniform probability distribution on X%, it is possible to
extend our results to a setting in which the probability of a computation 7 is defined by
a Markov chain, such that for each atomic proposition ¢ and for each position in m, the
probability that g holds in the position is in (0, 1). This assumption may affect the exact
safety level of a language, yet it is not hard to see that the class of safety level agrees with
the one obtained for uniform distribution.
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4 Finding the safety class

In this section we study the problem of classifying languages to the four classes of safety
level, hoping to end up with algorithms that are simpler than the one described for finding the
exact safety level. Deciding membership in the classes of safety and liveness have already
been studied, and we focus on almost-safety and frac-safety. We first recall the known results
for safety and liveness:

Theorem 4.1 [15,29] Consider a language L € X.

e Deciding whether L is safety is NLOGSPACE-complete for L given by a DPW and
PSPACE-complete for L given by an NBW or an LTL formula.

e Deciding whether L is liveness is NLOGSPACE-complete for L given by a DPW,
PSPACE-complete for L given by an NBW, and EXPSPACE-complete for L given by
an LTL formula.

We did not find in the literature an NLOGSPACE-complete result for deciding liveness
of a DPW. The proof, however, follows standard considerations, and we give it here for
completeness.

Proposition 4.2 Deciding whether L is liveness is NLOGSPACE-complete for L given by a
DPW.

Proof The upper bound follows from Theorem 4.5(1). We prove the lower bound by showing
a reduction from the non-reachability problem, proven to be NLOGSPACE-hard in [13].
Given a graph G = (V, E) and two vertices # and v in V, we construct a DPW A =
(2, 0, Qo, 8, ) such that L(A) is liveness iff v is not reachable from u.

The DPW A is similar to G, with a new state and additional transitions from each state in
V\{v} to the new state and from v to itself. See Fig. 1 for illustration. Intuitively, the new state
is an accepting sink and v is a rejecting sink, so v is not reachable from u iff safe(L(A)) = @.
Recall that by the definition of liveness, a language L is liveness iff safe(L) = 0.

Formally, A = (E U {enew}, V U {qace}, (U}, 8, (9, {qace}> V U {qace}}), where 8 is such
that for every edge ¢ = (w, w’) € E we have a transition (w, e, w’) in 8. That is, all the
edges of the graph are transitions in .4, all labeled differently. In addition, § has the transitions
(v, e, v) and (qacc, €, Gace) for all e € E U {epey}, and the transitions (w, epey, Gace) for all
w € V\{v}. Note that A is a DPW, as required, and that the reduction is computable using
logarithmic space.

We now prove that L(.A) is liveness iff v is not reachable from u. Since v is a rejecting
sink in A, if v is reachable from u then the path from u to v is labeled by a bad prefix for
L(A). Recall that a language has a bad prefix iff it is not liveness, thus L (.A) is not liveness.
For the other direction, assume that v is not reachable from u. Recall that u is the initial
state, and every state but v has a transition to the accepting sink ¢. Thus, every prefix can be
extended to a word in L(.A) by the suffix {€,e,}?, so safe(L(A)) = @, thus L(A) is liveness.

O

Theorem 4.1 hints that at least for one of the classes almost-safety and frac-safety, the
classification for LTL formulas is going to be EXPSPACE-complete. We turn to study the
problems in detail. We do this by analyzing the structure of deterministic automata for the
language. As detailed in Sect. 4.2, the analysis leads to interesting results on the expressive
power of deterministic automata beyond the classification to safety level. We first need some
definitions and observations on automata.
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enew

Fig. 1 The reduction from non-reachability to liveness decidability for DPWs

4.1 Observations on automata

Consider a deterministic automaton A. Recall the partition of A to SCC as defined in Sect. 2.
An ergodic SCC C of A is mixed if there exist both accepting and rejecting paths that reach
C. Note that a mixed ergodic SCC of a DPW may be either accepting or rejecting, whereas
a mixed ergodic SCC of a DBW is accepting. In terms of safety and co-safety, a run that
reaches a pure accepting (rejecting) ergodic SCC is an accepting (rejecting) run and it is
labeled by a word that has a good (bad, respectively) prefix. On the other hand, a run that
reaches a mixed ergodic SCC is labeled by a word that has neither a good prefix nor a bad
prefix. For an automaton A and an ergodic SCC C of A, we define reach(A, C) = {w :
the run of A on w reaches C}. For a language L, we define mixed-in(L) = L\co-safe(L).
That is, mixed-in(L) contains all words w such that w € L and w has no good prefix. Dually,
we define mixed-out(L) = comp(L)\safe(L). That is, mixed-out(L) contains all words w
such that w ¢ L and w has no bad prefix.

Our goal is to characterize classes of safety level by the structure of deterministic automata
that recognize them. Lemmas 4.3 and 4.4 below state relevant observations on the ergodic
SCC of automata of languages in the different classes.

Lemma 4.3 Consider a deterministic automaton A, and let L = L(A).

1. safe(L) # O iff A has a pure rejecting ergodic SCC. Dually, co-safe(L) # 0 iff A has a
pure accepting ergodic SCC.

2. Consider a mixed ergodic SCC C of A. Let R;;, = reach(A, C) N mixed-in(L) and
Rour = reach(A, C)Nmixed-out(L). Then, R;, and R,,; form a partition of reach(A, C)
with Ri, # W and Ry # 9. If C is rejecting, then Pr(R;,) = 0 and Pr(Ryy;) > 0.
Dually, if C is accepting, then Pr(R;,) > 0 and Pr(Ryy:) = 0.

Proof Each of the clauses in the proposition consist of a claim and its dual. For both clauses,
we prove only the claim. The proof for the dual of the claim is dual.

1. First, if A has a pure rejecting ergodic SCC C, then clearly, there is a bad prefix for L,
thus safe(L) # ¢. Indeed, every word that reaches C is rejected, thus every path from an
initial state to a state of C is a bad prefix. For the other direction, assume that safe(L) 7# #
and let x € X* be a bad prefix for L. Recall that a path that reaches a mixed ergodic SCC
is labeled by a word that has no bad prefix. It follows that for every y € X%, the run of
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A on x - y reaches a pure rejecting ergodic SCC. Thus, if safe(L) # ¢ then A has a pure
rejecting ergodic SCC.

2. Let C be a mixed ergodic SCC. By the definition of mixed ergodic SCC, there are both
accepting and rejecting paths that reach C. In addition, a path that reaches a mixed
ergodic SCC is labeled by a word that is neither in co-safe(L) nor in safe(L). Therefore,
reach(A, C) can be partitioned into R;, = reach(A, C) N mixed-in(L) and R,,; =
reach(A, C) N mixed-out(L) suchthat R;,, # ) and R,,; # ). Assume that C is rejecting.
Then, by the definition of rejecting ergodic SCC, a random path that reaches C is rejecting
with probability 1 and accepting with probability 0. Thatis, Pr(R;,) = 0, Pr(Ryyu:) > 0
and we are done. O

Lemma 4.4 Consider a deterministic automaton A. If Pr(mixed-out(L(A))) = 0 and
mixed-out(L(A)) # @, then at least one of the following conditions holds:

1. A has a mixed accepting ergodic SCC.
2. There is a rejecting run of A that does not reach an ergodic SCC.

Proof Consider a deterministic automaton A and its language L = L(A). Assume that
Pr(mixed-out(L)) = 0, and consider a word w € mixed-out(L). By definition, w does
not have a bad prefix. If for some ergodic SCC C it holds that w € reach(A, C), then, by
Lemma 4.3(2), the SCC C is mixed accepting, so the first condition holds. Also, if there
is no ergodic SCC C such that w € reach(A, C), then the second condition holds. Indeed,
since w € mixed-out(L) and since w ¢ reach(A, C) for every ergodic SCC C, we have that
the run of A on w is a rejecting run of A that does not reach an ergodic SCC. That is, if
Pr(mixed-out(L)) = 0 and mixed-out(L) # (J, then at least one of the mentioned conditions
holds. m]

We can now reduce questions about the class of a given language to questions about the
structure of a deterministic automaton for it. We assume that automata have at most one
rejecting sink. Indeed, multiple rejecting sinks may be merged. We refer to rejecting sinks as
empty states. Similarly, we assume that automata have at most one accepting sink, and refer
to accepting sinks as universal states.

Theorem 4.5 Consider a deterministic automaton A with at most one empty state, and let

L =L(A).

1. The language L is liveness iff A does not have a pure rejecting ergodic SCC.

2. Thelanguage L is frac-safety iff A has a pure rejecting ergodic SCC and a mixed rejecting
ergodic SCC.

3. The language L is almost-safety iff A has a pure rejecting ergodic SCC, does not have
a mixed rejecting ergodic SCC, and has either a mixed accepting ergodic SCC or a
rejecting path that does not reach a pure rejecting ergodic SCC.

4. The language L is safety iff A has a pure rejecting ergodic SCC and all its rejecting paths
reach a pure rejecting ergodic SCC.

Proof Consider a deterministic automaton .4 with at most one empty state, and let L = L(A).

1. By Lemma 4.3(1), the automaton A has a pure rejecting ergodic SCC iff safe(L) # 9.
Recall that L is liveness iff it has no bad prefixes. It follows that L is liveness iff .A does
not have pure rejecting ergodic SCCs.

2. For the first direction, assume that L is frac-safety. By the definition of frac-safety
languages, we have that safe(L) # . According to Lemma 4.3(1), it follows that A
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has a pure rejecting ergodic SCC. In addition, for a frac-safety language L it holds
that Pr(mixed-out(L)) > 0. Since an ergodic SCC may be either pure or mixed and
either accepting or rejecting, it follows from Lemma 4.3(2) that a positive measure
of words in mixed-out(L) can be induced only by a mixed rejecting ergodic SCC.
Therefore, A has a mixed rejecting ergodic SCC, so we are done. For the other direc-
tion, assume that A has both pure rejecting and mixed rejecting ergodic SCCs. By
Lemma 4.3, it holds that safe(L) # ¢ and Pr(mixed-out(L)) > 0. Thus, we have
that 0 < Pr(safe(L) | comp(L)) < 1. In addition, since safe(L) # (, we have that
Pr(L) < 1. Recall that for a language L with Pr(L) # 1, the level of safety is defined
as Pr(safe(L) | comp(L)). Therefore, we have that the level of safety of L is greater
than 0 and less than 1, so L is frac-safety, and we are done.

3. For the first direction, assume that L is almost-safety. Since L is almost-safety, we have
that Pr(mixed-out(L)) = 0 and mixed-out(L) # ). By Lemma 4.4, the automaton A
has either a mixed accepting ergodic SCC or a rejecting path that does not reach a pure
rejecting ergodic SCC. By Lemma 4.3(2), A does not have mixed rejecting ergodic SCC.
In addition, an almost-safety language has a bad prefix. Therefore, by Lemma 4.3(1), the
automaton A has a pure rejecting ergodic SCC, and we are done. For the other direction,
assume that A has a pure rejecting ergodic SCC, does not have a mixed rejecting ergodic
SCC, and has either a mixed accepting ergodic SCC or a rejecting path that does not reach
a pure rejecting ergodic SCC. From the first two conditions and Lemma 4.3 it follows that
Pr(safe(L) | comp(L)) = 1. From the last condition and the assumption that .4 includes
at most one empty state, it follows that mixed-out(L) # ¢, and therefore L is not safety.
Then, by the definition of almost-safety languages, the language L is almost-safety.

4. For the first direction, assume that L is safety. Since every word in comp(L) has a bad
prefix, the automaton .4 does not have mixed ergodic SCCs. Since safe(L) # ¥, by
Lemma 4.3(1) A has a pure rejecting ergodic SCC. In other words, if L is safety then A
has a pure rejecting ergodic SCC and all its rejecting paths reach a pure rejecting ergodic
SCC. For the other direction, assume that A has a pure rejecting ergodic SCC and all its
rejecting paths reach a pure rejecting ergodic SCC. It follows that every word in comp(L)
has a bad prefix, thus L is safety. O

4.2 Expressive power

Before we study the decision procedure that follow from Theorem 4.5, let us point to some
interesting conclusions regarding expressive power that follow from the theorem.

Consider a language L. By the dual of Remark 3.2, co-liveness of a language L is not a
sufficient condition for Pr(L) = 0. Itis easy to see that also safety is not a sufficient condition
for Pr(L) = 0. For example, the language [[a] is safety and Pr(a) = % Proposition 4.6
below shows that the combination of co-liveness and safety is sufficient.

Proposition 4.6 If a language L is safety and co-liveness, then Pr(L) = 0.

Proof Consider a deterministic automaton .4 for a safety and co-liveness language L. Accord-
ing to Theorem 4.5(4), since L is safety, the automaton .A does not have mixed ergodic SCCs
and has a pure rejecting ergodic SCC. According to the dual (for co-liveness) of Theo-
rem 4.5(1), since L is co-liveness, the automaton A does not have pure accepting ergodic
SCCs. Hence, A has only rejecting ergodic SCCs, so Pr(L) = 0. O

It is known that safety languages can be recognized by looping automata (that is, Biichi
automata in which all states are accepting). Propositions 4.7 and 4.8 below relate the other
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classes with recognizability by deterministic Biichi automata, which are known to be less
expressive than deterministic parity automata [20].

Proposition 4.7 The language of a DBW is safety, almost-safety, or liveness.

Proof Considera DBW A. By Lemma 2.2, if a path in .4 reaches an ergodic SCC C, it visits
all states in C infinitely often with probability 1. Therefore, a mixed ergodic SCC of a DBW
is accepting. On the other hand, by Theorem 4.5(2), a DBW of a frac-safety language has a
mixed rejecting ergodic SCC. O

Note that the other direction of Proposition 4.7 does not hold for liveness languages.
That is, a liveness language may not have a DBW. For example, the language [[F Ga] is
liveness, but it does not have a DBW [20]. Proposition 4.8 states that the other direction of
Proposition 4.7 does hold for safety and almost-safety languages.

Proposition 4.8 Ifalanguage is safety or almost-safety, then it can be recognized by a DBW.

Proof Consider a DPW A for a safety or almost-safety language. Let o« = {or1, a2, . .., ok}
By Theorems 4.5(3) and 4.5(4), the DPW A does not have a mixed rejecting ergodic SCC.
Recall that an ergodic SCC of a DBW is either pure accepting, pure rejecting, or mixed
accepting. Let o’ = | Jo; : i is even. Since A does not have a mixed rejecting ergodic SCC,
the DBW obtained from A by defining the acceptance condition to be ' is equivalent to A.
Hence, L can be recognized by a DBW and we are done. O

Recall that in Table 1, we left some intersections empty. We can now prove that the
corresponding combinations are indeed impossible.

Proposition 4.9 A language cannot be both safety and frac-co-safety or both frac-safety and
co-safety.

Proof We prove that a language L cannot be both safety and frac-co-safety. The proof of
the second claim is dual. Let L be a frac-co-safety language, and let .4 be a DPW for L. As
follows from the dual of Theorem 4.5(2), the DPW A has a mixed accepting ergodic SCC.
Since a mixed accepting ergodic SCC induces at least one word in mixed-out(L), it follows
that L is not safety, and we are done. O

4.3 Decision procedures

We now use Theorem 4.5 in order to find safety classes. Essentially, the characterization
there reduces the problem to a search for “witness SCCs” or “witness paths”. We elaborate
on the algorithms for the specific cases.

Theorem 4.10 Deciding whether a language L € X? is almost-safety is NLOGSPACE-
complete for L given by a DPW and PSPACE-complete for L given by an NBW or an LTL
formula.

Proof We start with the upper bounds and show that the problem is in NLOGSPACE for
DPWs. The upper bound for NBWs then follow from Theorem 2.1. Consider a DPW A. By
Theorem 4.5(3), we have that L(.A) is almost-safety iff .A has a pure rejecting ergodic SCC,
does not have a mixed rejecting ergodic SCC, and has either a mixed accepting ergodic SCC
or a rejecting path that does not reach a pure rejecting ergodic SCC. Since NLOGSPACE
is closed under complementation, and since we can verify the classification of a given
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Fig. 2 The reduction from reachability to almost-safety decidability for DBWs

SCC in NLOGSPACE, checking whether A satisfies the condition above can be done in
NLOGSPACE.

We turn to an upper bound for LTL. Note that a naive application of Theorems 4.5(3)
and 2.1 only gives an EXPSPACE upper bound. Consider an LTL formula ¢. First, we

construct an NBW A, for ¢ and remove from it empty states (that is, states from which

no word is accepted). We then construct an NBW Agmp by making all of the states of A,

accepting. That is, the NBW AfpooP has the same structure as Ay, and all of its states are

in «. Note that Ag’"p accepts the words all whose prefixes can be extended to a word in
[[e]l. It is easy to see that for a safety language L, these words are exactly the words in

L. As argued in [29], the language [¢] is safety iff L(Afpm”7 ) = L(A,). For almost-safety
languages, this equality holds with probability 1. That is, [¢] is almost-safety iff it is not
safety and Pr(L (.Afp”o" )NL(A-y)) = 0.Indeed, every word without a bad prefix is accepted
both by Af;‘)p and A-,. Therefore, [[¢]] is almost-safety iff the set L(Agwp )N L(A-y) is of

measure 0. Accordingly, our algorithm constructs the NBWs Afpwp and A-, and then check

whether Pr(L (.Afpmp )NL(A-y)) = 0. The latter can be done in NLOGSPACE(|.A ), which
is PSPACE(|¢]), as required. Indeed, we only have to check that the product automaton does
not have an accepting SCC.

We turn to the lower bounds, and start with DPWs. In fact, we show that the problem
is NLOGSPACE-hard already for DBWs. We describe a reduction from the reachability
problem, proven to be NLOGSPACE-hard in [13]. Given a graph G and two vertices u and
v in V, we construct a DBW A such that L(A) is almost-safety iff v is reachable from u.
Intuitively, the DBW A adds to G self loop in v and transitions to an accepting and a rejecting
sink in such a way so that if v is not reachable from u, the language of A is safety. If, however,
v is reachable from u, an infinite path that loops forever in v makes its language almost-safe.

The DBW A is similar to G, with a new state and some additional transitions (see an
illustration in Fig. 2. Formally, A = (E U {epew}, V U {qacc}, {u}, 8, {(V\{v}) U {qacc})-
Intuitively, all the states in V except for v are accepting, and so is .. The transition function
3 is such that for every edge ¢ = (w, w’) € E we have a transition (w, e, w’) in §. That is,
all the edges of the graph are transitions in .4, all labeled differently. In addition, § has the
transition (v, €yeyw, ace), the self-loop (v, e, v) for all e € E, and the self loop (guce, €, Gace)
forall e € EU{eyey}. Note that A is a DBW, as required, and that the reduction is computable
using logarithmic space.

We prove that v is reachable from u iff L(.A) is almost-safety. If v is not reachable from u
then the language L (.A) contains exactly all words whose run do not get stuck. That is, they
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do not contain e, and successive edges in the word are successive in the graph. This is a
safety language. Thus, if v is not reachable from u then L(A) is not almost-safety. For the
other direction, assume that v is reachable from u. Therefore, the run that reachs v from u
and stays in v is a rejecting run that does not reach any ergodic SCC. A run that gets stuck is
equivalent to a run that moves to a rejecting sink. Thus, A having runs that get stuck implies
that A includes a pure rejecting ergodic SCC. In addition, .A does not have mixed rejecting
ergodic SCCs. It follows from Theorem 4.5(3) that L(.A) is almost-safety.

For NBWs, we again show a reduction from the non-universality problem for safety
NBWs, namely the problem of deciding, given an NBW A for a safety language, whether
L(A) # 2. The latter is proven to be PSPACE-hard in [24]. Given an NBW A for a safety
language, we define an NBW B such that A is not universal iff L (13) is almost-safety. Let
A=1(Z,0,00,8,a),andlet A" = ({a, b}, Q', 0y, 8, a') be an NBW for the language
[aUb]. We define B = (X x {a, b}, O x Q', Qg x Qy,8”, "), where

e 8"({q,q"), (0,0")) = (8(¢g,0),8(q", ")), and
e " ={(0,0):0€e€a}U{(Q,Q"): Q0 €u'}.

For a word w € (2 x {a, b})?, let w; € X be the word obtained from w by pro-
jecting its letters on X, and similarly for wo and {a, b}. It is easy to see that L(5) =
{fw: wy € L(A)orwy € [[aUb]l}. We prove that A is not universal iff L(B) is almost-
safety. First, if A is universal, then so is B, thus L(B) is not almost-safety. Assume
now that A is not universal, we show that L(B) is almost-safety. By the definition of B,
comp(L(B)) = {w : wy € comp(L(A)) and wy € comp(L(A"))}. Inaddition, safe(L(B)) =
{w: wy € safe(L(A)) and wy € safe(L(A’))}. Recall that L(.A) is safety, thus every word in
comp(L(.A)) has abad prefix for L(.A). It follows that a word w € comp(L (13)) has a bad pre-
fix for L(B) iff w, has a bad prefix for L(A’). That is, Pr(safe(L(B))) = Pr(safe(L(A))).
Pr(safe(L(A)))
Pr(comp(L(A")))

Pr(safe(L(B))) _ Pr(safe(L(A")) - Pr(safe(L(A))
Pr(comp(L(B)))  Pr(comp(L(B))) ~ Pr(comp(L(A)))

That is, the safety level of L(B) is 1. We show that L(B) is almost-safety. Since A is not
universal, there is a word x| in comp(L(A)). In addition, since L(A) is almost-safety,
there is a word x, in comp(L(A’)) that does not have a bad prefix for L(A’). The word
w € (X x {a, b})® with w; = x1 and wy = x3 is in comp(L(B))\safe(L(B)). That is, L(B)
is almost-safety. Concluding, we have that A is not universal iff 3 is almost-safety.

It is left to prove PSPACE-hardness the LTL setting. We do this by a reduction from
the non-validity problem for safety LTL formulas, proven to be PSPACE-hard in [30].
Given a safety LTL formula ¢ over AP, let a and b be atomic propositions not in
AP. We prove that ¢ is not valid iff ¢ Vv (aUb) is almost-safety. Assume first that ¢
is valid. Then, ¢ Vv aUb is valid and therefore is not almost-safety. Assume now that
¢ is not valid, we show that ¢ vV aUb is almost-safety. Since ¢ is safety, we have that
a word is in comp(L(p VvV aUb))\safe(L(¢ Vv aUb)) iff its projection on {a, b} is in
comp(L(aUb))\safe(L(aUDb)). Note that comp(L(aUb))\safe(L(aUb)) = {a®}. It follows
that Pr(comp(L(p Vv aUb))\safe(L(¢ v aUb))) = 0 and comp(L(¢ Vv aUb))\safe(L(p V
aUb)) # 0. That is, ¢ VvV aUb is almost-safety, and we are done. O

Since L(A’) is almost-safety, we have that = 1. It follows that

Theorem 4.11 Deciding whether a language L C X is frac-safety is NLOGSPACE-
complete for L given by a DPW, PSPACE-complete for L given by an NBW, and
EXPSPACE-complete for L given by an LTL formula.
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Fig. 3 The reduction from
reachability to frac-safety E
decidability for DPWs E

enew

Proof We start with the upper bounds and show that the problem is in NLOGSPACE for
DPWs. The upper bounds for NBWs and LTL formulas then follow from Theorem 2.1. Con-
sidera DPW A. By Theorem 4.5(2), we have that L (A) is frac-safety iff A has a pure rejecting
ergodic SCC and a mixed rejecting ergodic SCC. Since we can verify the classification of a
given SCC in NLOGSPACE, checking whether A satisfies the condition above can be done
in NLOGSPACE.

We proceed to the lower bounds. For DPWs, we describe a reduction from the reachability
problem. Given a graph G = (V, E) and two vertices # and v in V, we construct a DPW A
such that L(A) is frac-safety iff v is reachable from u. Intuitively, the DPW is constructed
in the following way. A new rejecting sink is added, with a transition from «. In addition, v
is replaced by a mixed rejecting component. We get a DPW with a reachable pure rejecting
ergodic SCC. In addition, it has a mixed rejecting ergodic SCC which is reachable iff v is
reachable from u. Recall that by Theorem 4.5(2), a language is frac-safety iff its automaton
has a pure rejecting ergodic SCC and a mixed rejecting ergodic SCC. See an illustration in
Fig. 3.

Formally, A = (E U {epen}, (V\{v}) U {q, V', "}, u, 8, {{v'}, {v/,v"}, Q}), where § is
such that for every edge e = (w, w’) € E with w’ # v we have a transition (w, e, w’) in 8.
For every edge ¢ = (w, v) € E we have in § a transition (w, e, v’). That is, all the edges of
the graph are transitions in .4, all labeled differently, and v is replaced by v’. In addition, &
has the transitions (V', euen, V), (V7 epew, V'), (v, e, V') forall e € E, and (v”, e, v') for all
e € E. In other words, the acceptance condition requires a finite number of visits in v/, and
an infinite number of visits in v”. Note that A is a DPW, as required, and that the reduction
is computable using logarithmic space.

We prove that v is reachable from u iff L(.A) is frac-safety. For the first direction, assume
that v is reachable from u. We have that .4 has both a reachable mixed rejecting ergodic SCC,
namely {v’, v”'}, and an implicit pure rejecting ergodic SCC to which runs “move” when they
get stuck. By Theorem 4.5(2), it follows that L(.A) is frac-safety. For the other direction,
assume that v is not reachable from u, thus A does not have a reachable mixed rejecting
ergodic SCC. It follows from Theorem 4.5(2) that L(.A) is not frac-safety.

We turn to prove that the problem is PSPACE-hard for NBWs, again by a reduction from
the non-universality problem for safety NBWs. Let .A be an NBW for a safety language.
The reduction is similar to the one for NBWs in the proof of Theorem 4.10, except that
now we take A’ to be an NBW for the language [[a A FGb]], which is a %—safety language.
Consequently, L(B) = {w : w; € L(Aorw; € [[a A FGb]}.

We prove that A is not universal iff L(B) is frac-safety. First, if .4 is universal,
then so is B, so L(B) is not frac-safety. Assume now that .4 is not universal, we show
that L(B) is frac-safety. In order to find the safety level of L(B), we wish to compute
Pr(safe(L(B))) and Pr(comp(L(B))). By the definition of B, comp(L(B)) = {w : w; €
comp(L(A)) and wy € comp(L(A’))}. Since w; and wy are independent, we have that
Pr(comp(L(B))) = Pr(comp(L(A))) - Pr(comp(L(A"))). In addition, safe(L(B)) = {w :
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w; € safe(L(A)) and wy € safe(L(A'))}. That is, a prefix is a bad prefix for L(B) iff it is
a bad prefix both for L(A) and for L(A’). With the same reasoning as for comp(L(B)), we
have that Pr(safe(L(B))) = Pr(safe(L(A))) - Pr(safe(L(A"))). Recall that L(A) is safety,

P L
thus % = 1. In addition, A is not universal, thus Pr(comp(L(A))) > 0.

Therefore, the safety level of L(B) is
Pr(safe(L(B))) _ Pr(safe(L(A))) - Pr(safe(L(A"))) { Pr(safe(L(A")) 1

Pr(comp(L(B)))  Pr(comp(L(A))) - Pr(comp(L(A)))  Pr(comp(L(A))) 2

That s, the safety level of L(B) is equal to the safety level of L(A’). Since L(A’) is frac-safety,
we have that L(B) is frac-safety too, and we are done.

It is left to prove that the problem is EXPSPACE-hard for LTL formulas. We show a
reduction from the problem of deciding non-liveness of LTL formulas, which is EXPSPACE-
hard [15]. Given an LTL formula i over A P, we construct an LTL formula ¢ such that ¥ is
not liveness iff ¢ is frac-safety.

The construction of ¢ is as follows. Let a, b, and ¢ be propositions not in A P. We define
¢ = ((anb) - Yy)A((—aVv—b) — FGc). We prove that ¢ is not liveness iff ¢ is frac-safety.
First, if ¢ is liveness then ¢ is liveness, since nor i neither F' G ¢ have a bad prefix. Therefore,
¢ is not frac-safety. That is, if ¥ is liveness then ¢ is not frac-safety. For the other direction,
assume that ¥ is not liveness. Then, 0 < Pr(safe([¥ 1)) < 1. Note that if a computation for
@ starts with {a, b}, then the computation has a bad prefix with probability Pr(safe([y])).
Otherwise, the computation has a bad prefix with probability Pr(safe([FGp])), which is
0. That is, Pr(safe([¢])) = L2894V 'so 0 < Pr(safe(le])) < 1. In order to find the
safety level of ¢, itis left to find Pr(comp([[¢])), which is equal to Pr(—¢). If a computation
for ¢ starts with {a, b}, then the computation satisfies ¢ with probability Pr (). Otherwise,

the computation satisfies ¢ with probability Pr(FGc), which is 0. That is, Pr(p) = 2248,

500 < Pr(gp) < 1. Therefore, 3 < Pr(—p) < 1. Since 0 < Pr(safe([¢]))) < I, we have

P P
that 0 < w < % Note that the safety level of L(¢) is equal to W,
. Pr(=¢) ) Pr(=¢)
thus ¢ is frac-safety, and we are done. O

We note that the problem of deciding frac-safety for DBWs is in O(1), as, by Proposi-
tion 4.7, the language of all DBWs is not frac-safety.

To conclude, the complexities of deciding almost-safety and safety coincide, and so do the
complexities of deciding frac-safety and liveness. In the case of LTL formulas, the difference
in the complexity of deciding safety and liveness is carried over to a difference in deciding
almost-safety and frac-safety, and the latter is exponentially more expensive. Intuitively, it
follows from the structural similarity between safety and almost-safety — both search a word
with no bad prefix, which can be done in the nondeterministic automaton, and between frac-
safety and liveness — both search for a word that cannot be extended to a word in the language,
which should be done in the deterministic automaton for the language.

5 Classes of clopen

Consider a language L € X of infinite words over an alphabet ¥. A finite word in X*
is a determined prefix for L if it is either a bad or a good prefix for L. Note that if x is a
determinized prefix, then so are all its extensions. For k > 0, we say that L is k-bounded if
every word in ¥ is a determined prefix for L. In other words, a language L is k-bounded if
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Spanning the spectrum from safety to liveness 721

for every word w € £, the mempership of w in L can be determined by observing only the
prefix of length k of w. We say that a language is bounded if it is k-bounded for some k > 0.

For k > 0, let determined; (L) = {w : w has a determined prefix for L of length k}. We
define the k-bounding level of alanguage L, denoted blevely (L), as the probability of a word in
3 to have a determined prefix for L of length k. That s, blevely (L) = Pr(determinedy(L)).
Note that, equivalently, the k-bounding level of a language L is the probability that a random
word in = is a determined prefix for L. We define the bounding level of a language L,
denoted blevel(L), as limy_,~, blevel,(L). Since every extension of a determined prefix
in ¥ is a determined prefix, we have that blevely (L) < blevelyy1(L). Thus, blevely (L)
is monotonically increasing with k. In addition, bleveli (L) is bounded by 1. Therefore, for
every language L, we have that limy_, , blevel; (L) exists, and thus blevel(L) is well defined.

Let us show some examples. Let AP = {a}. The bounding level of L = [[a] is 1, as
blevely (L) = 1 for every k > 1. The bounding level of L = [Fa] is 1. Indeed, for every
k > 0, the only prefix of length k that is not determined for L is (—a)¥. Since its probability
is 5, we have that blevely (L) = Pr(determinedi(L)) = 1 — 5, which tends to 1 as k tends
to co. The bounding level of L = [FGa] is 0, as blevely (L) = 0 for every k > 0. Indeed,
the language [ FGa] does not have determined prefixes.

Consider a language L € X“. We say that L is clopen if it is both safety and co-safety
[18]. In other words, a language L is clopen if every word in £ has a determined prefix for
L. Let us first review some of the relevant terminology from set-theoretic topology. Consider
aset X and a distance functiond : X x X — R between the elements of X. For an element
x € Xand y > 0, let K(x, y) be the set of elements x" such that d(x, x’) < y. Consider a
set S € X. An element x € S is called an interior element of S if there is y > 0 such that
K(x,y) C S. The set S is open if all the elements in S are interior. A set S is closed if X\ S
is open. So, a set S is open if every element in S has a nonempty “neighborhood” contained
in S, and a set S is closed if every element not in S has a nonempty neighborhood whose
intersection with S is empty. A set that is both open and close is called a clopen set.

A Cantor space consists of X = D®, for some finite D, and d defined by d(w, w’) = 2%,
where n is the first position where w and w’ differ. Thus, elements of X can be viewed as
infinite words over D and two words are close to each other if they have a long common
prefix. If w = w’, thend (w, w’) = 0. Itis known that clopen sets in Cantor space are bounded
[17], where a set S is bounded if it is of the form W - D for some finite set W C D*. Hence,
clopen sets in our Cantor space correspond exactly to the bounded properties we are looking
for: each clopen language L € X has a bound k& > 0 such that membership in L can be
determined by the prefixes of length k of words in .

What are these clopen sets in £“? It turns out that topology has an answer to this question
as well [10,21]: it is not hard to see that a language L € X“ is co-safety iff L is an open
set in our Cantor space. To see that, consider a word w in a co-safety language L, and let
x be a good prefix of w. All the words w’ with d(w, w’) < 2|1X| have x as their prefix, so
they all belong to L. For the second direction, consider a word w in an open set L, and let
y > 0 be such that K (w, y) € L. The prefix of w of length |log %J is a good prefix for L.
It follows that the clopen sets in £, namely the bounded properties we are after, are exactly
these properties that are both safety and co-safety.

We define the clopen level of a language L, denoted clevel(L), as the probability of a
word to have a determined prefix for L. Formally, clevel(L) = Pr(safe(L) U co-safe(L)) =
Pr(safe(L)) + Pr(co-safe(L)). The latter equality holds because the intersection of safe(L)
and co-safe(L) is empty. When clevel(L) = p, we say that L is a p-clopen language.
For example, the language L = [[a] has Pr(safe(L)) = % and Pr(co-safe(L)) = %, thus
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clevel([[a]l) = 1. Thelanguage L = [[aAFGa] has Pr(safe(L)) = % and Pr(co-safe(L)) =
0, thus clevel([a A FGal) = 1.

As shown in [18], the clopen and bounded classes concide. That is, a language is bounded
iff it is clopen. We give here the proof, for completeness.

Lemma 5.1 [18] A language L C X is bounded iff it is clopen.

Proof Consider a language L. We first prove that if L is bounded then it is clopen. If L is
bounded, then it is k-bounded for some k > 0. That s, for every word w € X, eitherw € L,
in which case w has a good prefix of length at most k, or w ¢ L, in which case w has a bad
prefix of length at most k. Thus, L is both safety and co-safety, so it is clopen. For the other
direction, assume that L is clopen. We first prove that every word in X“ has only finitely
many prefixes that are undetermined with respect to L. Consider a word w € . Since L
is both safety and co-safety, w has a bad or good prefix. Let x be the minimal determined
prefix of w. Clearly, w has |x| undetermined prefixes (exactly all the strict prefixes of x), and
we are done. Now assume, by way of contradiction, that L is not bounded. Thus, there are
infinitely many x € £* such that x is undetermined with respect to L. Since X is finite and
the set of undetermined words is prefix closed, it follows by Konig’s Lemma, that there is
an infinite word w in X all of whose prefixes are undetermined with respect to L, and we
reached a contradiction. O

Theorem 5.2 shows that the equivalence of bounded and clopen classes is maintained in
their spectrum. This observation validates our definitions of bounding and clopen levels.

Theorem 5.2 For a language L C X%, blevel(L) = clevel(L).

Proof Consider a language L. Note that blevel = Pr(U,fi0 determined; (L)) and
clevel(L) = Pr(safe(L) U co-safe(L)). We prove that U,fio determinedy (L) = safe(L) U
co-safe(L). First, we show that U/?io determinedy (L) C safe(L) U co-safe(L). Assume
that w € U;tozo determinedy (L). That is, w has a determined prefix of length k for some
k > 0. In particular, w has a determined prefix. Therefore, w € safe(L) U co-safe(L) and
we are done. We left to show that safe(L) U co-safe(L) U/C:io determined) (L). Assume,
by way of contradiction, that for some w € X it holds that w € safe(L) U co-safe(L) and
w ¢ U}?ozo determinedy (L). That is, w has a bad or good prefix, but there is no k > 0 such
that w € determined; (L), so we reached a contradiction. ]

We turn to study the relation between the bounding level, the safety level, and the co-safety
level of a given language. The following lemma follows from Proposition 5.2 and from the
definition of clevel(L).

Lemma 5.3 For a language L C X?,
blevel(L) = clevel(L) = Pr(L) - co-slevel(L) + Pr(comp(L)) - slevel(L).

We can now study classes of bounding level. Similarly to the safety setting, we define four
classes of languages, describing their bounding level:

e Bounded A language L € ¥ is a bounded language if the mempership of every word
in £“ in L can be determined by observing only the prefix of length k of the word, for
some k > 0. That is, every word has either a bad or a good prefix of a bounded length.
For example, L = [[a] is a 1-bounded language. Indeed, every word not in L has a prefix
of length 1 in which a does not hold, and this prefix cannot be extended to a word in L,
and every word in L has a prefix of length 1 in which a holds, and every extention of this
prefix is in L. As mentioned above, we have that bounded = safety N co-safety.
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Table 2 Bounding classes of languages with different safety and co-safety levels

Safety Almost-safety Frac-safety Liveness
Co-safety Bounded Almost-bounded - Almost-bounded
Almost-co-safety Almost- Almost-bounded Frac-bounded Frac-bounded or
bounded almost-bounded
Frac-co-safety - Frac-bounded Frac-bounded Frac-bounded
Co-liveness Almost- Frac-bounded or Frac-bounded Pending
bounded almost-bounded

o Almost-bounded A language L € X is an almost-bounded language if blevel(L) = 1
and L is not bounded. As an example, consider the language L = [aUb]|. The language
L is not a bounded language, since a® does not have a determined prefix. Every word
except for a® has a determined prefix for L. Accordingly, Pr(determined(L)) = 1.

e Frac-bounded A language L € X is a frac-bounded language if its bounding level is
p for some 0 < p < 1. As an example, consider the language L = [[a A FGa]l. This
language is %-safety and co-liveness, and its probability is 0. By Lemma 5.3, blevel(L) =
Pr(L) - co-slevel(L) + Pr(comp(L)) - slevel(L) = 0-0+ 1 - 1. Hence, blevel(L) = .

e Pending A language L C X is a pending language if safe(L) U co-safe(L) = (. That
is, a language is a pending language if it is both liveness and co-liveness. In other words,
if L is a pending language then every word in X* can be extended both to a word in L
and to a word in comp(L). For example, the language L = [G Fa] is pending, as it is
both liveness and co-liveness. Indeed, we can concatenate a® to every word in ¥* and
get a word in L, and we can concatenate (—a)® to every word in X * and get a word not
in L.

Proposition 5.4 A language L C X is pending iff blevel(L) = 0.

Proof Consider a language L € X®. Clearly, if L is a pending language, then slevel(L) = 0
and co-slevel(L) = 0. Therefore, by Lemma 5.3, we have blevel(L) = 0. For the other
direction, note that the only way to obtain blevel(L) = 0 is by having both slevel(L) = 0
and co-slevel(L) = 0. It follows that if blevel(L) = 0, then, by Proposition 3.3, L is both
liveness and co-liveness language, so it is a pending language. O

We are interested in determining the bounding class of a language, given its safety and
co-safety classes. In Table 2 we show the classes of bounding that correspond to different
combinations of safety and co-safety classes.

Note that since the definition of bounded languages does not distinguish between bad and
good prefixes, then for every language L, we have blevel (L) = blevel(comp(L)). Hence,
by Lemma 3.4, the table is symmetric, in the sense that the (i, j)-th entry agrees with the
(J, i)-th entry.

Below we explain the different entries in the table. Consider a language L. First, if L is both
a safety and a co-safety language, then L is a bounded language by the definition. Similarly, if
L isboth aliveness and a co-liveness language, then L is a pending language by the definition.
For the other cases, recall that blevel(L) = Pr(L)-co-slevel(L)+ Pr(comp(L))-slevel(L).If
L is an almost-safety and either a co-safety or an almost-co-safety language, then blevel(L) =
Pr(L) -1+ Pr(comp(L)) -1 =1, and L is an almost-bounded language. Dually, if L is an
almost-co-safety and either a safety or an almost-safety language, then blevel(L) = 1,s0 L
is an almost-bounded language.
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If L is a frac-safety language, then blevel(L) = Pr(L) - p + Pr(comp(L)) - slevel(L)
for some p. Note that slevel(L) < 1 and p < 1, thus blevel(L) < 1. In addition, we
have slevel(L) > 0, and since the language is not a liveness language, we also have
Pr(comp(L)) > 0. Therefore, we have blevel(L) > 0, thus the language is a frac-
bounded language. Dually, if L is a frac-co-safety language, then 0 < blevel(L) < 1
and L is a frac-bounded language. If L is both a safety and a co-liveness language, then
blevel(L) = Pr(L) -0+ Pr(comp(L)) - 1. By Proposition 4.6, we have that Pr(L) = 0.
Therefore, Pr(comp(L)) = 1, thus blevel(L) = 1. In addition, the words in L have
no good prefixes, thus L is not a bounded language. It follows that L is an almost-
bounded language. Dually, if L is both a liveness and a co-safety language, then L is an
almost-bounded language. If L is both an almost-safety and a co-liveness language, then
blevel(L) = Pr(L)-04Pr(comp(L))-1.By Proposition 3.1, we have that Pr(comp(L)) > 0.
It follows that 0 < blevel(L) < 1. Note that since L is an almost-safety language, it is not
bounded. Therefore, L is either a frac-bounded or an almost-bounded language. Dually, if
L is both a liveness and an almost-co-safety language, then L is either a frac-bounded or an
almost-bounded language.

Lemma 5.5 Consider a language L < X“. If L is almost-safety and co-liveness, then it
is almost-bounded iff Pr(L) = 0. Dually, If L is almost-co-safety and liveness, then it is
almost-bounded iff Pr(L) = 1.

Proof We prove the first claim, and the proof for the second claim is dual. Consider a language
L C X, and assume that L is almost-safety and co-liveness. As explained below Table 2,
we have that blevel(L) = Pr(L) - 0 + Pr(comp(L)) - 1, so blevel(L) < 1. An equality is
reached iff Pr(comp(L)) = 1. Therefore, we have that blevel(L) = 1 iff Pr(L) = 0. Note
that L is not bounded anyway, since it is almost-safety. O

6 Deciding bounding classes

In this section we study the problem of deciding membership in the four classes of bounding
level. The problem of classification to classes of bounding level is strongly related to the
problems of classification to classes of safety and co-safety level. Accordingly, in Sect. 6.1,
we first study the problem of deciding co-safety classes. Then, in Sect. 6.2, we combine these
results with the results on safety from Sect. 4, and study the problem of deciding bounding
classes.

6.1 Deciding co-safety classes

We show that the complexity of deciding membership in the four classes of co-safety level
coincides with the complexity of deciding membership in the four classes of safety level. This
is straightforward for the formalisms of DPW and LTL, where complementation involves no
blow-up, and requires some care in the case of NBWs.

Theorem 6.1 Consider a language L C X°.

1. Deciding whether L is co-safety and whether L is almost-co-safety is NLOGSPACE-
complete for L given by a DPW and PSPACE-complete for L given by an NBW or an
LTL formula.
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2. Deciding whether L is frac-co-safety and whether L is co-liveness is NLOGSPACE-
complete for L given by a DPW, PSPACE-complete for L given by an NBW, and
EXPSPACE-complete for L given by an LTL formula.

Proof First, note that DPW and LTL are formalisms that are closed under complementation
in O(1). Thus, the tight bounds for LTL and for DPW follow from Theorems 4.1, 4.10,
and 4.11.

Since we have upper bounds of NLOGSPACE for DPWs, the upper bounds of PSPACE
for NBWs follow from Theorem 2.1.

We turn to the lower bounds for NBWs, describing reductions from a PSPACE Turing
machine. The details of the generic reduction are given in [25]. For the following reductions,
we add to the alphabet of the NBW two letters: $ and $’. We start with co-safety. Given a
PSPACE Turing machine 7 and an input x to it, we can generate an NBW .4 that accepts
a word w iff w either starts not with a legal encoding of a computation of 7" over the input
x, or starts with an encoding of a legal rejecting computation of 7 over x, or is an encoding
of a legal accepting computation of 7" over x followed by infinitely many occurrences of
the letter $. We show that T accepts x iff L(A) is not co-safety. First, if T accepts x, then
A accepts words that encode a legal accepting computation of 7" over the input x followed
by infinitely many occurrences of the letter $. These words do not have a good prefix, and
therefore L(A) is not co-safety. If T rejects x, then A accepts words that encode a legal
rejecting computation of 7 over x or do not encode a legal computation. Words from both
categories have a good prefixes, so L(.A) is co-safety.

We continue to almost-co-safety and frac-co-safety, describing a reduction from a PSPACE
Turing machine. The reduction is similar to the one for co-safety. We generate, given a
PSPACE Turing machine 7" and an input x to it, an NBW A that accepts a word w iff w either
starts not with a legal encoding of a computation of T over the input x, or is an encoding of
a legal rejecting computation of 7" over x, followed by a string over {$, $'} that satisfies the
(described below) LTL formula v, or starts with an encoding of a legal accepting computation
of T over x. For almost-co-safety, the formula v is the almost-co-safety formula —=($U$").
For frac-co-safety, the formula v is the frac-co-safety formula $ v G F$'. Note that words
that do not start with an encoding of a legal computation and words that do not start with
an encoding of a legal accepting computation have a good prefix. For almost-co-safety, a
word that starts with an encoding of a legal rejecting computation has a good prefix with
probability 1, but does not have a good prefix if it is followed by $“. Therefore, L(A) is
almost-co-safety iff 7' rejects x. For frac-co-safety, a word that starts with an encoding of a
legal rejecting computation has a good prefix with probability %, so L(A) is frac-co-safety
iff T’ rejects x.

We complete the proof by showing a similar reduction, from a PSPACE Turing machine,
for co-liveness. Given a PSPACE Turing machine 7 and an input x to it, we generate an NBW
A that accepts a word w iff w either starts not with a legal encoding of a computation of T’
over the input x and also includes infinitely many occurrences of the letter $, or is an encoding
of a legal rejecting computation of 7" over x, followed by infinitely many occurrences of the
letter $, or starts with an encoding of a legal accepting computation of T over x. It is easy
to see that if T rejects x, then no word in L(.A) has a good prefix, and if T accepts x, then
A accepts words with a good prefix, namely the words that start with an encoding of a legal
accepting computation of 7" over x. Hence, T rejects x iff L(.A) is co-liveness. O
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6.2 From safety and co-safety classes to bounding classes

We study the complexity of deciding membership in the four classes of bounding level.
Interestingly, although an almost-bounded language may be liveness, the results show that
the complexity of deciding almost-boundedness coincides with the complexity of deciding
boundedness, as well as with the complexities of deciding safety and almost-safety. Also, the
complexities of deciding membership in the classes of frac-bounded and pending languages
coincide with the complexities of deciding frac-safety and liveness.

The procedure of deciding bounding class can be based on deciding safety and co-safety
classes and relying on Table 2 and Lemma 5.5. We also describe direct algorithms for which,
as in the case of safety, we first need some observations about deterministic automata. The
following theorem is analogous to Theorem 4.5.

Theorem 6.2 Consider a deterministic automaton A with at most one empty state and at
most one universal state, and let L = L(A).

1. The language L is bounded iff A does not have a mixed ergodic SCC and all its paths
reach an ergodic SCC.

2. The language L is almost-bounded iff A does not have a mixed ergodic SCC and has a
path that does not reach an ergodic SCC.

3. The language L is frac-bounded iff A has a pure ergodic SCC and a mixed ergodic SCC.

4. The language L is pending iff A does not have a pure ergodic SCC.

Proof Consider a deterministic automaton .A with at most one empty state and at most one
universal state, and let L = L(A).

1. Recall that a language is bounded iff it is both safety and co-safety. Combining Theo-
rem 4.5(4) and its dual, we have that L is bounding iff A does not have mixed ergodic
SCCs and all its paths reach an ergodic SCC.

2. First, assume that .4 does not have a mixed ergodic SCC and has a path that does not
reach an ergodic SCC. Note that .A does not have empty or universal states that are not
ergodic. Since A has a path that does not reach an ergodic SCC, there is a word without a
determined prefix for L. In addition, since .A does not have a mixed ergodic SCC, we have
that Pr(determined(L)) = 1. Therefore, L is almost-bounded. For the other direction,
assume that L is almost-bounded. Hence, Pr(determined(L)) = 1, so A does not have
a mixed ergodic SCC. Yet, there is a word without a determined prefix for L. Therefore,
A has a path that does not reach an ergodic SCC, and we are done.

3. Note that L is frac-bounded iff 0 < Pr(determined(L)) < 1. It is easy to see that
Pr(determined(L)) < 1 iff A has a mixed ergodic SCC, and that Pr(determined(L)) >
0 iff A has a pure ergodic SCC. Therefore, we have that L is frac-bounded iff A has a
pure ergodic SCC and a mixed ergodic SCC.

4. Since L is pending iff it has no determined prefixes and since a path to a pure ergodic
SCC in A induces a determined prefix for L, we have that L is pending iff A does not
have a pure ergodic SCC. O

Note that, similarly to the case of safety classes, the characterization in Theorem 6.2
reduces the problem of finding the bounding class to a search for “witness SCCs” or “witness
paths”. We can now study the complexities for the different classes and formalisms.

Theorem 6.3 Deciding whether a language L C %% is bounded and deciding whether it
is almost-bounded is NLOGSPACE-complete for L given by a DPW and PSPACE-complete
for L given by an NBW or an LTL formula.
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Proof We start with the upper bounds. Both problems can be solved by checking safety and
co-safety classes, using Table 2, or directly, based on Theorem 6.2. We first describe the
direct algorithms, showing that the problems are in NLOGSPACE for DPWs. The upper
bounds for NBWs then follow from Theorem 2.1. Consider a DPW A. By Theorem 6.2(2),
we have that L(.A) is bounded iff A does not have a mixed ergodic SCC and all its paths reach
an ergodic SCC. In addition, L(.A) is almost-bounded iff .4 does not have a mixed ergodic
SCC and has a path that does not reach an ergodic SCC. Since NLOGSPACE is closed under
complementation, and since we can verify the classification of a given SCC in NLOGSPACE,
checking whether A satisfies each of the conditions above can be done in NLOGSPACE.

We show now the algorithms that are based on finding the safety and co-safety classes.
While a naive application of Theorems 6.2(1), 6.2(2) and 2.1 only gives EXPSPACE upper
bounds for LTL, these algorithms give upper bounds of PSPACE.

For bounded, consider a language L. By Theorems 4.1 and 6.1(1), we can check whether L
is safety and whether it is co-safety in NLOGSPACE if L is given by a DPW and in PSPACE
if L is given by NBW or by an LTL formula. If L is both safety and co-safety, then it is a
bounded language. Otherwise, L is not a bounded language.

Regarding almost-bounded, consider the following procedure. Given a language L, we
check whether it is safety or almost-safety and whether it is co-safety or almost-co-safety.
Note that each of the above can be done in NLOGSPACE if L is given by a DPW and in
PSPACE if L is given by NBW or by an LTL formula. If the check results give a combination
that yields, according to Table 2, an almost-bounded language, then we conclude that L is
almost-bounded. For example, if L is safety and almost-co-safety, then it is almost-bounded.
If L is safety and it is nor co-safety neither almost-co-safety, then, since it cannot be frac-
co-safety, it is almost-bounded too. If the results give a language that is not almost-bounded
according to Table 2, then we conclude that L is not almost-bounded. For example, if L is
safety and co-safety, then it is not almost-bounded. The only case in which we cannot make
a decision yet is when L is almost-safety and is nor co-safety neither almost-co-safety, or,
dually, when L is almost-co-safety and is nor safety neither almost-safety. We describe the
procedure for the first case. The procedure for the second case is dual. As explained below
Table 2 and by Lemma 5.5, an almost-safety language that is also a frac-co-safety or a co-
liveness language, can be almost-bounded only if it is co-liveness and its probability is 0.
In addition, according to the dual of Proposition 3.1, a language with probability 0 cannot
be a frac-co-safety language. Therefore, it is sufficient to check whether Pr(L) = 0, which
can be done in NLOGSPACE for NBWs and for DPWs by checking that the automaton does
not have an accepting SCC. For LTL formulas, it can be done in PSPACE by translating the
formula to an NBW and checking whether its probability is 0.

We turn to prove the lower bounds, and start with the lower bounds for bounded. We
show first a lower bounds of NLOGSPACE for DPWs, describing a reduction from the non-
reachability problem. Given a graph G = (V, E) and two vertices # and v in V, we construct
a DPW A such that L(A) is bounded iff v is not reachable from u. The DPW is constructed
exactly in the same way as in the proof of Theorem 4.11. We prove that L(.A) is bounded iff
v is not reachable from u. If v is not reachable from u, then L (A) is empty and therefore it is
bounded. If v is reachable from u, then A has a mixed ergodic SCC. Then, by Theorem 6.2(1),
we have that L(.A) is not bounded.

We continue to the lower bound for NBWs, showing a reduction from a PSPACE Turing
machine. Given a PSPACE Turing machine 7" and an input x to it, we generate an NBW A
such that T rejects x iff L(A) is bounded. The reduction is exactly the same as the one that
shown in Theorem 6.1 for co-safety. We prove that T rejects x iff L(A) is bounded. If T
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reject x then L(A) is universal, and hence, it is bounded. If 7 accepts x, then L(A) is not
co-safety. Therefore, it is not bounded.

We complete the proof for bounded by proving a lower bound of PSPACE for LTL for-
mulas. We do this by a reduction from the validity problem. We use the same reduction that
is shown in Theorem 4.10, and prove that ¢ is valid iff ¢ v (aUb) is bounded, where ¢ is
an LTL formula over AP, and a and b are atomic propositions not in A P. First, if ¢ is valid
then so is ¢ Vv (aUb), and therefore it is bounded. For the other direction, assume that ¢ is
not valid. Note that a bad prefix for ¢ Vv (aUDb) is a bad prefix both for ¢ and for aUb. Since
¢ is not valid, there is a computation that does not satisfy it. Consider a computation whose
projection on {a, b} is a® and whose projection on A P is a computation that does not satisfy
¢. Clearly, this computation does not satisfy ¢ v (aUb) and has no bad prefix, so ¢ Vv (aUb)
is not bounded.

We turn to prove the lower bounds for almost-bounded, and start with DPWs. We describe
a reduction from the reachability problem. Given a graph G = (V, E) and two vertices u
and v in V, we construct a DPW A = (X, O, Qo, §, o) such that v is reachable from u
iff L(A) is almost-bounded. The DPW A is very similar to the one that is described in the
proof of Theorem 4.10. The only difference is that now the originally implicit rejecting sink
becomes an accepting one. In other words, every computation of A is accepting, except the
one that reaches v and stays there forever. Note that such a computation does not reach an
ergodic SCC. We prove that v is reachable from u iff L(A) is almost-bounded. Consider the
automaton A’ that is equal to A, except that the universal states are merged to one accepting
sink. Note that L(A") = L(A), so it is sufficient to prove that v is reachable from u iff L(A")
is almost-bounded. First, if v is reachable from u then A" does not have a mixed ergodic
SCC, and the path from u to v that stays in v is a path that does not reach an ergodic SCC.
Therefore, by Theorem 6.2(2), we have that L(A’) is almost-bounded. If v is not reachable
from u, then A’ is universal and therefore is not almost-bounded, and we are done.

For NBWs, we use the same reduction from a PSPACE Turing machine as in the proof
of Theorem 6.1 for almost-co-safety. We show that L(.A) is almost-bounded iff T rejects
x. The first direction is easy: if T accepts x then L(A) is universal and is therefore not
almost-bounded. For the other direction, assume that 7' rejects x. Then, as shown in the
proof of Theorem 6.1, L(A) is almost-co-safety. In addition, note that A rejects only these
computations that are an encoding of a legal rejecting computation of 7" over x followed by
a string over {$, $'} that does not satisty =($U$’). These computations have a bad prefix, so
L(A) is safety. By Table 2, this implies that L(A) is almost-bounded.

It is left to prove a lower bound of PSPACE for LTL formulas. We show a reduction
from the non-validity problem for safety LTL formulas. Given a safety LTL formula ¢ over
AP, let a be an atomic proposition not in AP. We prove that ¢ is not valid iff ¢ vV Fa
is almost-bounded. Note that a bad prefix for ¢ vV Fa is a bad prefix both for ¢ and for
Fa, and that a good prefix for ¢ vV Fa is a good prefix either for ¢ or for Fa. For the first
direction, assume that ¢ is not valid. Therefore, there is a computation that does not satisfy
¢. A computation that does not satisfy ¢ and does not satisfy Fa is a computation that does
not satisfy ¢ vV Fa and also has no bad prefix. Therefore, ¢ v Fa is not bounded. We show
that blevel([[¢p v Fall) = 1. First, note that Pr(¢ vV Fa) = 1. We are interested in finding
co-slevel([[¢ Vv Fall). Since Fa is co-safety, a computation that satisfies ¢ vV Fa does not
have a good prefix iff it does not satisfy Fa, satisfies ¢, and does not have a good prefix for
¢. The probability of that is zero, because even the probability of not satisfying Fa is zero.
Hence, co-slevel([[¢ vV Fa]l) = 1. Then, by Lemma 5.3, we have that blevel([¢ V Fa]) = 1.
Therefore, if ¢ is not valid, then ¢ V Fa is almost-bounded. The other direction is easy: if ¢
is valid then so is ¢ VvV Fa, implying that ¢ VvV Fa is not almost-bounded. O
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Theorem 6.4 Deciding whether a language L € X is frac-bounded and deciding whether
it is pending is NLOGSPACE-complete for L given by a DPW, PSPACE-complete for L given
by an NBW, and EXPSPACE-complete for L given by an LTL formula.

Proof We start with the upper bounds. As in the proof of Theorem 6.3, the problems can be
solved directly by observing a DPW for a given language, or by deciding safety and co-safety
classes and relying on Table 2. We describe both ways, starting with the direct algorithms.
We show that the problems are in NLOGSPACE for DPWs. The upper bounds for NBWs and
LTL formulas then follow from Theorem 2.1. Consider a DPW A. By Theorem 6.2(3, 4), we
have that L (A) is frac-bounded iff .4 has a pure ergodic SCC and a mixed ergodic SCC, and
it is pending iff A does not have a pure ergodic SCC. Since NLOGSPACE is closed under
complementation, and since we can verify the classification of a given SCC in NLOGSPACE,
checking whether A satisfies each of the conditions above can be done in NLOGSPACE.

We turn to the algorithms that are based on finding the safety and co-safety classes, giving
the same upper bounds as the direct algorithms.

For pending, the procedure is easy. Given a language L, we check whether L is liveness
and whether it is co-liveness. By Theorems 4.1 and 6.1(2), it can be done in NLOGSPACE if
L is given by aDPW, in PSPACEif L is given by NBW, and in EXPSPACE if L is given by an
LTL formula. If L is both liveness and co-liveness, then it is a pending language. Otherwise,
L is not a pending language.

For frac-bounded, consider the following procedure. Given a language L, we find the class
of safety and the class of co-safety in which L is. If the check results give a combination
that yields, according to Table 2, a frac-bounded language, then we conclude that L is frac-
bounded. For example, if L is frac-safety, then it is frac-bounded. If the results give a language
that is not frac-bounded according to Table 2, then we conclude that L is not frac-bounded.
For example, if L is liveness and co-safety, then it is not almost-bounded. The only case
in which we cannot make a decision yet is when L is almost-safety and co-liveness, or,
dually, when L is almost-co-safety and liveness. We describe the procedure for the first case.
The procedure for the second case is dual. By Lemma 5.5, an almost-safety and co-liveness
language is frac-bounded iff its probability is greater than 0. Therefore, it is sufficient to
check whether Pr(L) = 0. If Pr(L) = 0 then we conclude that L is not frac-bounded.
Otherwise, we have that L is frac-bounded. Note that all of the decisions that the procedure
includes can be done in NLOGSPACE if L is given by a DPW, in PSPACE if L is given by
NBW, and in EXPSPACE if L is given by an LTL formula.

‘We continue to the lower bounds, and start with frac-bounded.

For DPWs, we base on the reduction from reachability that is shown in the proof of
Theorem 4.10 for frac-safety. We show that for a graph G = (V, E) and two vertices u and v
in V, the language of the DPW A that is shown there is frac-bounded iff v is reachable from
u. First, if v is reachable from u then L(A) is frac-safety, as proved in Theorem 4.10, and,
by Table 2, is therefore frac-bounded. For the other direction, assume that v is not reachable
from u. Then, L(A) is empty, implying it is not frac-safety.

For NBWs, we use the reduction from a PSPACE Turing machine that is shown in the proof
of Theorem 6.1(2) for frac-co-safety. We prove that T rejects x iff L(A) is frac-bounded. The
first direction is easy: as proved in Theorem 6.1(2), if T rejects x, then L (A) is frac-co-safety.
Therefore, as shown in Table 2, it is frac-bounded. In the other direction, if 7 accepts x, then
L(A) is universal, and is therefore not frac-co-safety.

It is left to show the lower bound for LTL formulas. We show a reduction from the problem
of deciding non-liveness. Given an LTL formula ¢ over A P, we construct an LTL formula
¢ such that i is not liveness iff ¢ is frac-bounded. The construction of ¢ is as follows. Let
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a and b be atomic propositions not in AP. We define ¢ = Gy Vv (a A GFb). We prove
that v is liveness iff ¢ is frac-bounded. Note that a bad prefix for ¢ is a bad prefix for
both G and a A G Fb, and that a good prefix for ¢ is a good prefix for Gy or a A GFb.
For the first direction, assume that v is liveness. Then, Gy has no determined prefix, so
it is pending. Since a A G Fb have no good prefixes, it follows that ¢ is pending, so it
is not frac-bounded. For the other direction, assume that ¥ is liveness, thus it has a bad
prefix. Therefore, Gy also has a bad prefix. Since a A G Fb has a bad prefix too, we have
that ¢ has a bad prefix, so slevel([[¢]) > 0. In addition, since nor Gy neither a A GFb
have a good prefix, we have that co-slevel([[¢]]) = 0. Then, it follows from Lemma 5.3
that blevel([¢]) = Pr(comp([[¢])) - slevel([¢]l). Since ¢ has a bad prefix, we have that
Pr(p) < 1,50 Pr(—¢) > 0.In addition, since Pr(a AGFb) = %, we have that Pr(¢) > %,
s00 < Pr(—¢) < % Therefore, we have that 0 < blevel([¢]) < % so ¢ is frac-bounded.

We turn to the lower bounds for pending. We start with a lower bound of NLOGSPACE for
DPWs, describing a reduction from the non-reachability problem. Given a graph G = (V, E)
and two vertices # and v in V, we construct a DPW A = (X, Q, Qo, §, a) such that L(A)
is pending iff v is not reachable from u. The DPW A is similar to G, with a new state ¢ and
additional transitions from each state in V'\{v} to ¢ and from ¢ to u, and with additional self
loop in v and in ¢g. Intuitively, all of the states except for ¢ are accepting, so (V U {g})\{v}
is a mixed ergodic SCC, and {v} is a pure ergodic SCC. Then, v is not reachable from u iff
A has no pure ergodic SCCs.

Formally, A = (E U {epen}, V U {q}, {u}, 8, {0, V, V U {q}}), where § is such that for
every edge e = (w, w’) € E, we have a transition (w, e, w’) in §. That is, all the edges of the
graph are transitions in .A, all labeled differently. In addition, for all w € V\{v} and for all
e € E U{epew} such that there is no transition from w that is labeled by e, we add a transition
(w, e, q). Finally, we add to § the transitions (g, enew, ¢) and (g, e, u) for all e € E, and the
transition (v, e, v) for all e € E U {ep,}. Note that A is a DPW, as required, and that the
reduction is computable using logarithmic space.

We now prove that L(.A) is pending iff v is not reachable from u. Note that (V U {g})\{v}
is amixed ergodic SCC, and that {v} is a pure ergodic SCC. Therefore, A has a mixed ergodic
SCC, and it has a pure ergodic SCC iff v is reachable from u. By Theorem 6.2(4), we have
that L(A) is pending iff v is not reachable from u.

We turn to the lower bound for NBWs. We prove a lower bound of PSPACE, describing a
reduction from a PSPACE Turing machine. As in the proof of Theorem 6.1, we add the letter
$ to the alphabet. Given a PSPACE Turing machine 7 and an input x to it, we generate an
NBW A that accepts a word w iff w is either not a legal encoding of a computation of T over
the input x followed by infinitely many occurrences of the letter $, or an encoding of a legal
rejecting computation of T’ over x followed by infinitely many $s, or starts with an encoding
of a legal accepting computation of 7 over x. We prove that T rejects x iff L(.A) is a pending
language. It is easy to see that if T rejects x then L(A) accepts only words that are followed
by infinitely many $’s. That is, if 7 rejects x then L(A) has no determined prefixes, so it
is pending. If T accepts x, then L(A) includes words that start with an encoding of a legal
accepting computation of 7" over x. Hence, A accepts words with a good prefix, so L(A) is
not pending, and we are done.

We left to prove a lower bound of EXPSPACE for LTL formulas. The reduction that we
show for frac-bounded can work for pending too. Recall that given an LTL formula v, we
construct an LTL formula ¢ such that ¢ is not liveness iff ¢ is frac-safety, and that if i is
liveness then ¢ is pending. Therefore, the same reduction is a reduction from the problem of
deciding liveness to the problem of deciding pending, and we are done. O
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7 Discussion and directions for future research

We defined and studied safety levels of w-regular languages. One can define the relative safety
level of a specification in a system. Then, rather than taking the probability distribution with
respect to X¢, we take it with respect to the set of computations generated by a system §. For
example, if § does not generate the computation a®, then the specification aUb is safety with
respect to §. Relative safety and liveness have been studied in [15]. It is interesting to extend
the study and add relativity to the full spectrum between safety and liveness. In particular,
relativity may both increase and decrease the safety level.

A different approach to span the spectrum between safety and liveness was taken in [7].
Recall that the probability of a specification is measured with respect to random computations
in . Alternatively, one can also study the probability of formulas to hold in computations
of random finite-state systems. Formally, for an integer / > 1, let Pr;(¢) denote the proba-
bility that ¢ holds in a random cycle of length /. Here too, the probability that each atomic
proposition holds in a state is %, yet we have only / states to fix an assignment to. So, for
example, while Pr(Gp) = 0, we have that Pr(Gp) = %, Pr(Gp) = }, and in general
Pri(Gp) = 2% Indeed, an /-cycle satisfies Gp iff all its states satisfy p. It is suggested in [7]
to characterize safety properties by means of the asymptotic behavior of Pr;(¢). The idea is
to define different levels of safety according to the rate the probability decreases or increases.
For example, clearly Pr;(Gp) tends to O as [ increases, whereas Pr;(Fp) tends to 1. As it
turns out, however, the characterization is not clean. For example, F Gp is a liveness formula,
but Pr;(FGp) decreases as [ increases. It is interesting to see whether a combination of the
safety level studied here and the finite-state system approach of [7] can lead to a refined
spectrum.

In practice, the safety level of a language L indicates how well algorithms that are desig-
nated for safety specifications can work for L. We propose two approximated model-checking
algorithms for languages with a high safety level. In one, model checking proceeds using an
automaton for the bad prefixes (c.f. [16]). Here, we may get a one-sided error in which model
checking succeeds even though the system has a bad computation (evidently, one with no bad
prefix). In the second, model checking ignores the acceptance condition of an automaton for
the specification and views it as a looping automaton (that is, all infinite runs that do not reach
an empty state are accepting). Here, we may get a one-sided error in which model checking
fails even though the system has no computation that violates the specification (evidently, it
has a computation all whose prefixes can be extended to computations that violates the spec-
ification). When the specification is safety, no errors occur. Also, the higher its safety level
is, the less probable the two types of errors are. Combining this with the relative approach
described above can tighten our expectation of error further.
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