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Abstract Two-way finite state transducers are considered that use a finite number of pebbles,
of which the life times must be nested. For every nondeterministic transducer that realizes a
partial function, an equivalent deterministic transducer can be constructed. The composition
of two deterministic transducers can be realized by one such transducer with a minimal
number of pebbles.

1 Introduction

A pebble automaton is a two-way finite state automaton that uses a fixed, finite number of
pebbles that it can drop on, and lift from, the squares of its input tape. Pebble automata recog-
nize regular languages only, provided the life times of the pebbles are nested (otherwise they
recognize the logarithmic space languages). Automata with nested pebbles were introduced
in [21], and in [11] for tree-walking automata. A tree transducer with nested pebbles was
introduced in [25] as a model for XML-based query languages. In [15] some results were
proved for the two-way finite state transducer with nested pebbles (pebble transducer, for
short), which is the restriction of the tree transducer of [25] to monadic trees, i.e., to strings.

One result of [15] is that every partial function that can be computed by a nondeterministic
pebble transducer, can in fact be computed by a deterministic one, with the same number of
pebbles. Unfortunately, the proof of this result in [15, Theorem 3] is wrong.1 In this paper
the result is stated in Corollary 7, with a (hopefully) correct proof.

Another result of [15] is that for every two deterministic pebble transducers M1 and M2,
there is a deterministic pebble transducer M that computes the composition of the functions
computed by M1 and M2. In the proof, the constructed transducer M has (k1 + 1)(k2 + 2)
pebbles, where ki is the number of pebbles of Mi . It is conjectured in [15] that a transducer
with (k1 + 1)(k2 + 1) − 1 pebbles can do the same job (and it is easy to see that, in general,

1 The mistake in the proof is explained in New Observation 5.10 of [10].
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it cannot be done with less pebbles). In this paper the conjecture is proved, and stated in
Theorem 11.

Our proofs are based on a reduction of pebble transducers to two-way finite state transduc-
ers (without pebbles), which is a straightforward generalization of the reduction of pebble
automata to two-way finite state automata in [20]. This allows us to use the well-known
facts that a partial function computed by a nondeterministic two-way finite state transducer
can also be computed by a deterministic one (see, e.g., Theorem 22 of [12]), and that the
deterministic two-way finite state transductions are closed under composition ([6]).

Other work on nested pebbles has appeared in, e.g., [2–5,13,14,16–19,22,26–28,30,32].
All results stated in this paper are effective. Results that are known from the literature, or

can easily be concluded from results in the literature, are stated as Propositions.

2 Definitions

For binary relations R1 ⊆ X × Y and R2 ⊆ Y × Z , where X, Y, Z are sets, we denote by
R1 ◦ R2 their composition {(x, z) | ∃y : (x, y) ∈ R1, (y, z) ∈ R2}. For classes of binary
relations R1 and R2, we define R1 ◦ R2 = {R1 ◦ R2 | R1 ∈ R1, R2 ∈ R2}. For a binary
relation R ⊆ X × Y , the domain of R is dom(R) = {x ∈ X | ∃y ∈ Y : (x, y) ∈ R}, and its
range is ran(R) = {y ∈ Y | ∃x ∈ X : (x, y) ∈ R}.

For a setΔ, the set of all strings overΔ (i.e., sequences of elements ofΔ) is denotedΔ∗. For
a stringw ∈ Δ∗, its length is denoted |w|, andw(i) denotes its i th element (for 1 ≤ i ≤ |w|).
The empty string is denoted λ. For k ∈ N = {0, 1, 2, . . .}, we define Δk = {w ∈ Δ∗ | |w| =
k} and Δ≤k = {w ∈ Δ∗ | |w| ≤ k}.
2.1 Pebble transducers

A two-way finite state transducer (also called two-way generalized sequential machine, or
2gsm) is a finite state automaton with a two-way input tape, delimited by the endmarkers
� and 	, and a one-way output tape. A k-pebble transducer is a two-way finite state transducer
that additionally carries k pebbles, each with a unique name, say, 1, . . . , k. Initially there are
no pebbles on the input tape, but during its computation the transducer can drop pebbles on
the squares of the input tape, lift them, drop them again, etc. In one step of its computation,
the transducer can determine which pebbles are lying on the current square of the input tape,
lift one of these pebbles, or drop a new pebble. However, the life times of the pebbles should
be nested. This means that at each moment of time, pebbles 1 to � (for some 0 ≤ � ≤ k) are
on the input tape, and at such a moment the only pebble that can be dropped on the current
square is pebble � + 1, whereas the only pebble that can be lifted from the current square (if
it is on that square) is pebble �.

Formally, a k-pebble transducer (with k ≥ 0) is a system M = (Σ,Δ, Q, q0, F, δ)where
Σ and Δ are the input and output alphabet, respectively, Q is the finite set of states, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states, and δ is the finite set of transitions. Each
transition is of the form (q, σ, b) �→ (q ′, ϕ,w)with q ∈ Q− F , σ ∈ Σ ∪{�, 	}, b ∈ {0, 1}k ,
q ′ ∈ Q, ϕ ∈ {right, left, drop, lift}, and w ∈ Δ∗. Intuitively, such a transition means that if M
is in state q , σ is the symbol on the current square, and, for every 1 ≤ m ≤ k, b(m) = 1 if
and only if pebble m is on the current square, then M can go into state q ′, output the string
w, and execute the instruction ϕ, i.e., move the reading head one square to the right or left,
drop pebble � + 1 (the “next” pebble), or lift pebble � (the “last” pebble); note that these
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instructions are undefined if, respectively, σ = 	, σ = �, all k pebbles are on the input tape
(i.e., � = k), or pebble � is not on the current square (i.e., either � = 0 or b(�) = 0).

For a given input string u ∈ Σ∗, the input tape of M contains the string � u 	. The squares
of this tape are numbered 0, 1, . . . , |u|, |u|+1. Accordingly, a pebble configuration of M on
� u 	 is a string π ∈ {0, . . . , |u|+1}≤k , where π(m) = j means that pebblem is currently on
square j (for 1 ≤ m ≤ |π | and j ∈ {0, . . . , |u|+1}), and |π | < m ≤ kmeans that pebblem is
currently not on the input tape. A configuration of M on � u 	 is a triple (q, i, π)with q ∈ Q,
the current state of M , i ∈ {0, . . . , |u| + 1}, the current position of the reading head, and
π ∈ {0, . . . , |u| + 1}≤k , the current pebble configuration. The one step computation relation
�u is defined in the obvious way on 4-tuples (q, i, π, v) where (q, i, π) is a configuration
and v ∈ Δ∗ is the current content of the output, as follows.

Let σ be the content of the current input square, i.e., σ = � if i = 0, σ = u(i) if
1 ≤ i ≤ |u|, and σ = 	 if i = |u| + 1. Let b ∈ {0, 1}k indicate which pebbles are placed
on this square, i.e., for every 1 ≤ m ≤ k, b(m) = 1 if and only if π(m) = i . If δ contains a
transition (q, σ, b) �→ (q ′, ϕ,w), then (q, i, π, v) �u (q ′, i ′, π ′, vw) if the following holds:

if ϕ = right, then i �= |u| + 1, i ′ = i + 1 and π ′ = π ,
if ϕ = left, then i �= 0, i ′ = i − 1 and π ′ = π ,
if ϕ = drop, then i ′ = i , |π | < k and π ′ = π i ,
if ϕ = lift, then i ′ = i , π(|π |) = i and π = π ′i .

The transduction computed by M, denoted τM , is the binary relation

τM = {(u, v) ∈ Σ∗ × Δ∗ | ∃(q, i, π) : (q0, 0, λ, λ) �∗
u (q, i, π, v), q ∈ F}.

The k-pebble transducer M is deterministic if δ does not contain two transitions with the
same left-hand side. In that case, τM is a partial function from Σ∗ to Δ∗.

The class of transductions computed by k-pebble transducers is denoted by PTk , and by
DPTk for the deterministic transducers.

Example 1 A deterministic 4-pebble transducer M can translate an input string u into an
output string that is a concatenation of all strings v#w# where v and w are (occurrences of)
nonempty substrings of u and vw is in a given regular language R. The transducer M moves
pebble 1 from square 1 to square n of the input tape, where n = |u|. When pebble 1 is at
square i ,M moves pebble 2 from square i to square n. In this wayM systematically considers
all nonempty substrings v of u. For a fixed position of pebbles 1 and 2, M systematically
considers all nonempty substrings w of u, using pebbles 3 and 4 for that purpose. For each
position of all 4 pebbles, M walks from pebble 1 to pebble 2 and then from pebble 3 to
pebble 4, simulating a finite automaton that recognizes the regular language R. If vw ∈ R,
then M repeats that walk and outputs the string v#w#. ��
2.2 Counting transducers

Our first result (in the next section) will be the equivalence of the k-pebble transducer with
a related type of two-way pebble transducer that uses its k pebbles in a very restricted,
nonstandardway.Rather thanmanipulating pebbles bydropping and lifting them, a transducer
M of this new type has all its k pebbles on the input tape at all times. To explain how M can
move the pebbles,wefirst note that a pebble configurationπ ∈ {0, . . . , |u|+1}k on� u 	 (with
all pebbles on the input tape) can be viewed as usual as a number num(π) in the (|u|+2)-ary
number system, with 0 ≤ num(π) ≤ (|u| + 2)k − 1. As an example, for k = 3 and |u| = 8,
the pebble configuration 097 (which means that pebble 1 is on �, pebble 2 is on 	, and pebble
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3 is on the 7th symbol of u) corresponds to the (decimal) number 97; in this case the pebble
configurations on u of length k represent all numbers between 0 (all pebbles on �) and 999 (all
pebbles on 	). For pebble configurations π1 and π2 such that num(π1)+1 = num(π2), we say
that π2 is the next pebble configuration of π1, and that π1 is the previous pebble configuration
of π2. It is well known that a k-pebble transducer (as defined in Sect. 2.1) can count from
1 to (|u| + 2)k by systematically constructing all pebble configurations of length k, going
from one to the next, starting with the first pebble configuration of length k (representing 0,
with all pebbles on �) and ending with the last one (representing (|u| + 2)k − 1, with all
pebbles on 	). The transducer M of the new type only has the instructions right and left, which
are now also defined when the current symbol under the reading head is 	 or �, respectively
(provided the current pebble configuration is not the last or the first, respectively). The effect
of moving right from 	, is that the reading head jumps to � and the pebble configuration is
changed to the next one. Similarly, the effect of moving left from �, is that the reading head
jumps to 	 and the pebble configuration is changed to the previous one. We note here that
(as in [25]) the reading head can be viewed as an additional pebble, viz. pebble k + 1, and
so a pair (i, π) consisting of the current position of the reading head and the current pebble
configuration, can be viewed as the pebble configuration π i ∈ {0, . . . , |u| + 1}k+1 on � u 	.
Viewed in this way, the instruction right changes the pebble configuration π i to the next one,
and the instruction left changes it to the previous one. This shows the naturalness of the new
interpretation of right and left. Wewill call the new type of transducer a k-counting transducer.

Formally, a k-counting transducer (with k ≥ 0) is a system M = (Σ,Δ, Q, q0, F, δ),
defined in the sameway as a k-pebble transducer except that it does not have instructions drop
and lift, i.e., ϕ ∈ {right, left} in every transition (q, σ, b) �→ (q ′, ϕ,w). A pebble configuration
of M on � u 	 (with u ∈ Σ∗) is a string π ∈ {0, . . . , |u| + 1}k , and a configuration of M on
� u 	 is of the form (q, i, π), as for the k-pebble transducer (but with the pebble configuration
of length k). The one step relation �u is defined as for the k-pebble transducer on 4-tuples
(q, i, π, v), except that now:

if ϕ = right then either i �= |u| + 1, i ′ = i + 1 and π ′ = π ,

or i = |u| + 1, i ′ = 0, and π ′ is the next pebble configuration of π ,

if ϕ = left then either i �= 0, i ′ = i − 1 and π ′ = π ,

or i = 0, i ′ = |u| + 1, and π ′ is the previous pebble configuration of π .

Finally, the transduction computed by M, denoted τM , is

τM = {(u, v) ∈ Σ∗ × Δ∗ | ∃(q, i, π) : (q0, 0, 0
k, λ) �∗

u (q, i, π, v), q ∈ F}.
Note that 0k denotes a string of k 0’s; it is the first pebble configuration. Determinism of M
is defined as for the k-pebble transducer.

The class of transductions computed by k-counting transducers is denoted by CTk , and
by DCTk for the deterministic transducers.

Example 2 A 4-counting transducer M ′ that computes the same transduction as the 4-pebble
transducer M of Example 1, systematically considers all possible pebble configurations by
repeatedly moving to the right. For each such pebble configuration it checks that the pebbles
are not on an endmarker, and it checks that pebble 2 is not to the left of pebble 1, and pebble 4
is not to the left of pebble 3. If so, pebbles 1 and 2 determine a nonempty substring v of the
input string u, and pebbles 3 and 4 determine a nonempty substring w. Then M ′ operates in
the same way as M . ��
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Whenever we construct a k-pebble or k-counting transducer, we can also use transitions
containing an identity instruction ϕ = stay, with the semantics i ′ = i and π ′ = π . Such an
instruction can easily be simulated in two steps, first moving right and then moving left (or
vice versa if the reading head is on 	).

3 Equivalence of pebble and counting transducers

This section contains a basic result, underlying the proofs of our main results. We first
show that the two types of two-way pebble transducer, defined in the previous section,
are equivalent, and then we use this to characterize the k-pebble transductions in terms of
0-pebble transductions. One direction of the characterization was shown for k = 1 in the
proof of Lemma 1 of [15]. For arbitrary k the characterization was presented for transducers
with empty output alphabet, i.e., for automata, in [20] (and rediscovered by this author).

Lemma 3 For every k ∈ N, PTk = CTk and DPTk = DCTk.

Proof We first show the obvious fact that every k-counting transducer M can be simulated
by a k-pebble transducer M ′. The transducer M ′ initializes the simulation by dropping all
its pebbles on �, and then stepwise simulates M . The instruction right of M is simulated by
the same instruction of M ′ when the reading head is not on 	. Now assume that the reading
head is on 	. If all pebbles are on 	, then M ′ aborts. Otherwise, M ′ must construct the next
pebble configuration of M . To do this, M ′ first lifts all pebbles m + 1 to k, where m is the
largest number such that pebble m is not on 	. Then M ′ walks to the left, finds pebble m
and moves it one square to the right. Finally, M ′ walks to the left until it is on �, and drops
pebblesm+1 to k. The instruction left of M is simulated in a symmetrical way. Note that the
initialization and the simulation of each step are deterministic subroutines. Thus, CTk ⊆ PTk

and DCTk ⊆ DPTk .
We now show that every k-pebble transducer M can be simulated by a k-counting trans-

ducer M ′. Again, M ′ stepwise simulates M . A pebble configuration of M with pebbles 1 to
� on the input tape is simulated by the pebble configuration of M ′ where pebbles 1 to � are
on the same squares as those of M , and pebbles � + 1 to k are all on the same square as the
reading head. The number � is kept in the finite state of M ′. Note that M ′ already starts in
the correct configuration (with � = 0 in its finite state). The simulation of the instructions
drop and lift is easy: � := �+ 1 and � := �− 1, respectively, in the finite state. To simulate an
instruction right, M ′ first checks that the reading head is not on 	. Then M ′ has to move its
reading head and all pebbles �+1 to k one square to the right. To do this,M ′ repeatedlymoves
to the right (i.e., executes the instruction right with the semantics of the counting transducer)
until the reading head and all pebbles �+ 1 to k are again on the same square. Note that each
time M ′ moves to the right from 	, the next pebble configuration is realized. For instance,
for |u| = 8, k = 4 and � = 2, if num(π) = 7444 for the current pebble configuration π

and the reading head is on square 4, then, after the simulation of right, num(π ′) = 7455 for
the new pebble configuration π ′, and the reading head is on square 5; note that 74555 is the
first number after 74444 for which the three least significant digits are equal. The simulation
of the instruction left is symmetrical. Again, the simulation of each step is a deterministic
subroutine, and so PTk ⊆ CTk and DPTk ⊆ DCTk . ��

In the remainder of this section we show that the k-counting transductions, and hence the
k-pebble transductions, can be characterized as the compositions of a very specific kind of
deterministic k-counting transductions with the 0-counting transductions (i.e., 2gsm’s). Let
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us now define these specific k-counting transductions. There is one for each input alphabetΣ ,
called pebk,Σ ; it is the mapping Pk in [20].

For u ∈ Σ∗, a stringπ ∈ {0, . . . , |u|+1}k will be called a k-pebble configuration on � u 	;
it is a pebble configuration of a k-counting transducer with input alphabet Σ . We will need
an obvious encoding of the pair (� u 	, π) as a string over the alphabet (Σ ∪{�, 	})×{0, 1}k .
If u = σ1 · · · σn with n ≥ 0 and σi ∈ Σ , then

code(� u 	, π) = (�, b0)(σ1, b1) · · · (σn, bn)(	, bn+1)

where bi (m) = 1 if and only if π(m) = i , for every 0 ≤ i ≤ n + 1 and 1 ≤ m ≤ k.
We define the mapping pebbk,Σ (with two b’s!) such that for u ∈ Σ∗,

pebbk,Σ(u) = code(� u 	, π0) · · · code(� u 	, πs)

where s = (|u|+2)k−1 and num(π j ) = j for every 0 ≤ j ≤ s. In other words, pebbk,Σ (u) is
the concatenation of all consecutive (encodings of) k-pebble configurations on� u 	. To define
our intended specific k-counting transductions, we note that the first symbol of pebbk,Σ(u)

is (�, 1k) and its last symbol is (	, 1k), where 1k denotes a string of k 1’s; moreover, these
symbols do not occur anywhere else in pebbk,Σ(u).

We now define the mapping pebk,Σ (with one b!) such that for u ∈ Σ∗,

pebbk,Σ (u) = (�, 1k) · pebk,Σ (u) · (	, 1k).

Thus, pebk,Σ(u) is the result of removing the first and last symbol from pebbk,Σ(u). In the
proof of the next theorem (Theorem 4), a transducer that receives pebk,Σ (u) as input, will
view � as (�, 1k) and 	 as (	, 1k); in this way, the transducer views the content of its input
tape as pebbk,Σ(u).

For k ≥ 0, we denote by PEBk the class of all mappings pebk,Σ , where Σ is a ranked
alphabet.

It is easy to see that pebbk,Σ is in DCTk : by repeatedly moving right, a deterministic
k-counting transducer M can consecutively go through the k-pebble configurations π0 to
πs , and for each 0 ≤ j ≤ s output the string code(� u 	, π j ). To be precise, M has initial
state q and final state q ′, and it has the transitions (q, σ, b) �→ (q, right, (σ, b)) for all
(σ, b) �= (	, 1k), plus the transition (q, 	, 1k) �→ (q ′, left, (	, 1k)). It should be clear that
therefore also pebk,Σ is in DCTk , just suppressing the first and last symbol of the output of
M . Consequently PEBk ⊆ DPTk , by Lemma 3.

We now state the characterization of the k-pebble transductions, of which the proof is
intuitively obvious from Lemma 3.

Theorem 4 For every k ≥ 0, PTk = PEBk ◦ PT0 and DPTk = PEBk ◦ DPT0.

Proof Using Lemma 3, we prove that CTk = PEBk ◦ CT0 and DCTk = PEBk ◦ DCT0.
For a k-counting transducer M = (Σ,Δ, Q, q0, F, δ) we define the associated 0-counting
transducer M ′ = (Σ ′,Δ, Q, q0, F, δ′) where Σ ′ = (Σ ∪ {�, 	}) × {0, 1}k and δ′ is defined
as follows. If (q, σ, b) �→ (q ′, ϕ,w) is a transition in δ, then δ′ contains the transition
(q, (σ, b), λ) �→ (q ′, ϕ,w), where (�, 1k) is identified with � and (	, 1k) with 	. Note that
M ′ is deterministic if and only ifM is deterministic. It should be clear that pebk,Σ ◦τM ′ = τM .
Indeed, if M moves right from 	, then M ′ moves right from some (	, b) that is not identified
with 	, and so M ′ moves from the last symbol of code(� u 	, π j ), where u is the input string
and π j is the current pebble configuration of M , to the first symbol of code(� u 	, π j+1).
And similarly when M moves left from �. As long as M does not move right from 	 or
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move left from �, M ′ stays on the substring code(� u 	, π j ) of pebbk,Σ (u) = � pebk,Σ(u) 	,
simulating M .

This shows that CTk ⊆ PEBk ◦ CT0 and DCTk ⊆ PEBk ◦ DCT0. The reverse inclusions
hold because, obviously, every 0-counting transducer with input alphabet (Σ ∪ {�, 	}) ×
{0, 1}k is the associated transducer of a k-counting transducer with input alphabet Σ . ��

The constructions involved in this theorem, for the case that the output alphabet is empty,
are used in [20] to reduce the descriptional complexity of two-way k-pebble automata to that
of two-way (0-pebble) automata: if nondeterministic two-way automata can be simulated by
deterministic two-way automata with a polynomial number of states (which is not known,
cf. [29]), then the same is true for k-pebble automata. We will use Theorem 4 in the following
sections in a similar way, to transfer results for 2gsm’s to k-pebble transducers.

4 Uniformizers

In this section we use Theorem 4 to prove our first main result: that every partial function
in PTk is in DPTk . In fact, we will prove the stronger result that every transduction in PTk

has a uniformizer in DPTk . A uniformizer of a binary relation R is a binary relation R′ such
that R′ ⊆ R and dom(R′) = dom(R), see, e.g., [1,8]. Note that the only uniformizer of a
partial function f is f itself. We first prove the result for k = 0, i.e., for 2gsm’s. A proof was
already sketched in the proof of Theorem 4.9 of [9]. Here we give a proof using the results
of [12].

Proposition 5 Every transduction in PT0 has a uniformizer in DPT0.

Proof A writing 0-pebble transducer is a 0-pebble transducer that, in addition, can write on
its input tape. For this purpose, it has an additional “work alphabet”Ω that contains the input
alphabet and the endmarkers. Its transitions are of the form (q, σ, b) �→ (q ′, σ ′, ϕ,w) with
σ, σ ′ ∈ Ω , meaning that σ is overwritten by σ ′ in the current square. A Hennie machine
is a writing 0-pebble transducer M for which there is a number k ∈ N such that for each
(u, v) ∈ τM there is a k-visiting computation of M on input u with output v, which means
that each square of the input tape is visited at most k times. For more details see Section 7
of [12]. The Hennie machine was introduced as an accepting device in [23], where it was
shown that, due to the k-visiting restriction, it accepts regular languages only. It was shown
in [12] that the Hennie machine computes the MSO definable string transductions, i.e., the
string transductions that are definable in monadic second-order logic.

It is easy to see that for every 0-pebble transducer M there is a Hennie machine M ′
such that τM ′ is a uniformizer of τM . In fact, if (u, v) ∈ τM then M has a computation
on input u (with some output v′) that never enters the same state twice at the same square
(because if, during some computation, M enters state q at square j on time t1 and on time
t2 > t1, then the subcomputation between t1 and t2 can be skipped). Such a computation is
k-visiting, where k is the number of states ofM . AHenniemachineM ′ can easily simulate the
k-visiting computations of M using the work alphabet (Σ ∪ {�, 	}) × {0, 1, . . . , k} (where
Σ is the input alphabet) and counting the visits to each square in the symbol at that square.
To be precise, each transition (q, σ, b) �→ (q ′, ϕ,w) of M is replaced by all transitions
(q, (σ, i), b) �→ (q ′, (σ, i+1), ϕ,w) of M ′ with 0 ≤ i < k, where we identify (σ, 0)with σ .

By Theorem 25 of [12], every transduction computed by a Hennie machine is a nondeter-
ministic MSO definable string transduction (defined in Section 6.1 of [12]). By the proof of
Theorem 21 of [12], for every nondeterministic MSO definable string transduction τ ′ = τM ′
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there is adeterministicMSOdefinable string transduction τ ′′ (defined inSection 4 of [12]) that
is a uniformizer of τ ′ and hence a uniformizer of τM . By Theorem 13 of [12], τ ′′ can be com-
puted by a deterministic 0-pebble transducer M ′′, and so τM ′′ = τ ′′ is a uniformizer of τM . ��

We now prove our first main result.

Theorem 6 For every k ≥ 0, every transduction in PTk has a uniformizer in DPTk.

Proof By Theorem 4 every transduction in PTk is of the form pebΣ,k ◦ τ with τ ∈ PT0.
By Proposition 5, τ has a uniformizer τ ′ ∈ DPT0. This clearly implies that pebΣ,k ◦ τ ′ is a
uniformizer of pebΣ,k ◦ τ , and pebΣ,k ◦ τ ′ is in DPTk by Theorem 4. ��
Corollary 7 For every k ≥ 0, if τ ∈ PTk is a partial function, then τ ∈ DPTk.

5 Composition

In this section we prove that the composition of the transductions of two deterministic pebble
transducers with k and m pebbles respectively, can be computed by a deterministic pebble
transducer with (k + 1)(m + 1) − 1 = km + k + m pebbles. For k = m = 0, i.e., for
deterministic 2gsm’s, this was proved in [6] (see also Theorems 8.10 and 7.14 of [7]).

Proposition 8 DPT0 ◦ DPT0 ⊆ DPT0.

Let PEBBk denote the class of all mappings pebbk,Σ , where Σ is a ranked alphabet.
It should be clear that PEBBk ⊆ PEBk ◦ DPT0 and PEBk ⊆ PEBBk ◦ DPT0 (where the
0-pebble transducer adds or removes the first and last symbol, respectively). This, together
with Proposition 8 and Theorem 4, gives the following corollary.

Corollary 9 For every k ≥ 0, DPTk = PEBBk ◦ DPT0.

From Proposition 8 and Corollary 9 (or Theorem 4) we immediately obtain the inclusion
DPTk ◦DPT0 ⊆ DPTk . In the next lemmawe prove a special case of the symmetric inclusion
DPT0 ◦ DPTk ⊆ DPTk .

Lemma 10 For every k ≥ 0, DPT0 ◦ PEBBk ⊆ DPTk.

Proof Let τ ∈ DPT0 where τ is a partial function from Σ∗ to Δ∗. We will construct a
deterministic k-pebble transducer N such that τN = τ ◦ pebbΔ,k .

Let M = (Σ,Δ ∪ {�, 	}, Q, q0, F, δ) be a deterministic 0-pebble transducer such that
τM (u) = � τ(u) 	 for every u ∈ Σ∗. A configuration (q, i, λ) of M (where λ is the empty
pebble configuration) will be denoted by (q, i). Without loss of generality, we assume that
at each computation step M outputs at most one symbol.

Consider an input string u ∈ dom(τM ). Each occurrence of an output symbol in τM (u) is
produced by M in a certain configuration (q, i) during the next computation step, where q is
a state and i is a square of the input tape � u 	. By the above assumption, this configuration is
unique, because if two such occurrences would be produced by M in the same configuration,
then the computation of M on input u would loop, contradicting the fact that u ∈ dom(τM ).
We may assume that � is produced in configuration (q�, 0) and 	 in configuration (q	, 0) for
certain states q� and q	 (probably the initial state and a final state of M); thus, M produces
output � and 	 when it reads �.
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In the computations of N , a k-pebble configuration π ∈ {0, 1, . . . , |v|, |v| + 1}k on the
output string τM (u) = � v 	, where v = τ(u), is uniquely represented by a pair (α, π̃) where
α ∈ Qk associates a state with each pebble and π̃ ∈ {0, 1, . . . , |u|, |u| + 1}k is a pebble
configuration of N on � u 	, such that, for every 1 ≤ m ≤ k, the pair (α(m), π̃(m)) is the
configuration in which M produces (the symbol in) square π(m) of the output tape. The
association α is kept in the finite state of N .

For fixed (α, π̃), the string code(� v 	, π) can be produced by N as output, by simulating
the computation of M on input u. When M , in configuration (q, i), outputs a symbol a ∈
Δ ∪ {�, 	} during the next computation step, N instead outputs the symbol (a, b) with
b ∈ {0, 1}k such that, for every 1 ≤ m ≤ k, b(m) = 1 if and only if (α(m), π̃(m)) = (q, i),
i.e., pebble m is in the current square and is associated with the current state of M .

Next we explain how N can realize the representation of the next k-pebble configuration
of π , for given (α, π̃). First N walks to � and determines the largest number m, 1 ≤ m ≤ k,
such that (α(m), π̃(m)) �= (q	, 0) (which means that pebble m is not on the last symbol of
� v 	). If there is no such m, then N halts in a final state. If m exists, then N lifts the pebbles
m + 1 to k. After that, N must move pebble m one square to the right on � v 	. To do that, it
again simulates the computation of M on input u. On the moment that M is in configuration
(α(m), π̃(m)), N lifts pebble m and continues the simulation of M until the next output
symbol is produced. Then N drops pebble m on the current square, associates it with the
current state of M , and stops the simulation. Finally, N walks to �, drops the pebbles m + 1
to k, and associates them with q�.

Initially, N checks that the input string u is in the domain of τM . Since the domain of τM
is regular (see, e.g., [31]), N can simulate a finite automaton recognizing it. If u ∈ dom(τM ),
then N drops all its pebbles on � and associates them with q�. ��

We now prove our second main result.

Theorem 11 For every k,m ∈ N, DPTk ◦ DPTm ⊆ DPTkm+k+m.

Proof We first observe that it suffices to show that

PEBk ◦ PEBBm ⊆ PEBBkm+k+m ◦ DPT0.

Indeed, DPTk ◦DPTm = PEBk ◦DPT0 ◦DPTm = PEBk ◦DPT0 ◦PEBBm ◦DPT0 ⊆ PEBk ◦
DPTm ◦DPT0 = PEBk ◦ PEBBm ◦DPT0 ◦DPT0 ⊆ PEBk ◦ PEBBm ◦DPT0 by Theorem 4,
Corollary 9, Lemma 10, Corollary 9, and Proposition 8, respectively. If the above inclusion
holds, then this is included in PEBBkm+k+m ◦ DPT0 ◦ DPT0 ⊆ PEBBkm+k+m ◦ DPT0 =
DPTkm+k+m by Proposition 8 and Corollary 9.

Let r = km + k + m. Let Σ be an alphabet, let Δ = (Σ ∪ {�, 	}) × {0, 1}k , let Γ =
(Σ ∪ {�, 	}) × {0, 1}r , and let Ω = (Δ ∪ {�, 	}) × {0, 1}m . We will define a deterministic
0-pebble transducer M with input alphabet Γ and output alphabet Ω , such that

τM (pebbr,Σ(u)) = pebbm,Δ(pebk,Σ (u))

for every u ∈ Σ∗. In what follows we identify (�, 1k) with � and (	, 1k) with 	, in the
alphabet Δ. Thus Δ∪{�, 	} = Δ, and so the symbols in Ω are of the form ((σ, b1), b2) with
σ ∈ Σ ∪ {�, 	}, b1 ∈ {0, 1}k and b2 ∈ {0, 1}m .

For u ∈ Σ∗, we recall that pebbk,Σ(u) = code(� u 	, π0) · · · code(� u 	, πs) where
π0, . . . , πs is the sequence of consecutive k-pebble configurations on � u 	. Due to the above
identification,
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pebbm,Δ(pebk,Σ(u)) = code(pebbk,Σ(u), ρ0) · · · code(pebbk,Σ (u), ρt )

where ρ0, . . . , ρt is the sequence of consecutive m-pebble configurations on pebbk,Σ(u).
We also have that pebbr,Σ(u) = code(� u 	, η0) · · · code(� u 	, ηz) where η0, . . . , ηz is the
sequence of consecutive r -pebble configurations on � u 	. Note that for n = | � u 	 |, we
have |pebbk,Σ(u)| = nk+1, and hence |pebbm,Δ(pebk,Σ(u))| = |pebbr,Σ(u)| = n(k+1)(m+1).

We now give meaningful names to the r = km + k +m = m(k + 1)+ k pebbles involved
in pebbr,Σ . From 1 to r , they receive the names

〈1, 1〉, . . . , 〈1, k〉, 〈1, k + 1〉,
〈2, 1〉, . . . , 〈2, k〉, 〈2, k + 1〉,
. . .

〈m, 1〉, . . . , 〈m, k〉, 〈m, k + 1〉,
〈m + 1, 1〉, . . . , 〈m + 1, k〉.

The pebbles in the last row, 〈m + 1, 1〉, . . . , 〈m + 1, k〉, correspond to the pebbles 1, . . . , k
that determine the k-pebble configurationsπ0, . . . , πs of pebbk,Σ on � u 	. The pebbles in the
first m rows determine the m-pebble configurations ρ0, . . . , ρt of pebbm,Δ on pebbk,Σ(u).
The pebbles in the j th row, 1 ≤ j ≤ m, determine the position of pebble j on pebbk,Σ(u).
To be precise, the pebbles 〈 j, 1〉, . . . , 〈 j, k〉 determine the k-pebble configuration π� such
that pebble j occurs in the substring code(� u 	, π�) of pebbk,Σ(u), and the pebble 〈 j, k+1〉
determines the position of pebble j in that substring.

The transducer M is very simple: it computes a symbol-to-symbol string homomorphism
from Γ to Ω . Walking from left to right through the input tape containing pebbr,Σ(u), it
changes each symbol (σ, b), with Σ ∪ {�, 	} and b ∈ {0, 1}r , into the symbol ((σ, b1), b2)
such that

• b1(i) = b(〈m + 1, i〉) for every 1 ≤ i ≤ k, and
• for every 1 ≤ j ≤ m, b2( j) = 1 if and only if

– b(〈 j, i〉) = b(〈m + 1, i〉) for every 1 ≤ i ≤ k, and
– b(〈 j, k + 1〉) = 1.

It should be clear, after some thinking, that M indeed translates each input string pebbr,Σ(u)

into pebbm,Δ(pebk,Σ(u)). ��

It iswell known (and easy to see) that for every transduction τ ∈ DPTk and every string u in
its domain, |τ(u)| = O(|u|k+1). In fact, ifM is a deterministic k-pebble transducer computing
τ , then the number of configurations ofM on� u 	 is O(|u|k+1) and each configuration occurs
at most once in the computation of M on input u. As observed in the proof of Theorem 11,
|pebbm,Δ(pebk,Σ (u))| = (|u| + 2)(k+1)(m+1). Hence pebk,Σ ◦ pebbm,Δ cannot be computed
by a deterministic pebble transducer with less than (k + 1)(m + 1) − 1 pebbles. Since
pebk,Σ ∈ DPTk and pebbm,Δ ∈ DPTm , this shows that Theorem 11 is optimal.

In the same way as Proposition 8 it can be shown that DPT0 ◦ PT0 ⊆ PT0. From this it
follows in the same way as above that DPTk ◦ PTm ⊆ PTkm+k+m for every k,m ∈ N.

By Theorem 11, DPT = ⋃

k∈N DPTk is closed under composition (as already proved in
[15]). This is not true for PT = ⋃

k∈N PTk .
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Proposition 12 PT is not closed under composition.

Proof The proof is entirely similar to the proof of Lemma 15 of [12], as follows. Let τ be
the transduction {(an, w#w | n ≥ 0, w ∈ {a, b}∗, |w| = n}. Obviously, τ ∈ PT0 ◦ DPT0

(first translate an into all strings w ∈ {a, b}∗ of length n, then translate w into w#w).
Assume that τ is computed by a k-pebble transducerM withm states, that produces atmost

one output symbol at each computation step. The number of configurations of M on � an 	 is
m · (n+2)k+1. Choose n such that 2n > m · (n+2)k+1. Consider the behavior of M on input
an , and consider in particular the configuration of M when it has just produced the symbol
# of the output string w#w. Since there are 2n output strings w#w for an , there exist two
strings w1 and w2 for which this configuration is the same. Then the computation of output
w1#w1 can be switched halfway to the computation of w2#w2, resulting in a computation of
output w1#w2 with w1 �= w2. ��

We finally show that the composition closure PT∗ of PT does not contain more partial
functions than PT: all partial functions in PT∗ are already in DPT. We define PT1 = PT,
PTn+1 = PTn ◦ PT, and PT∗ = ⋃

n≥1 PT
n .

Theorem 13 PT∗ has uniformizers in DPT.

Proof Consider a transduction τ1 ◦ · · · ◦ τn with τi ∈ PT for 1 ≤ i ≤ n. Since dom(τi )

is regular (see, for instance, [15]), we may assume that the range of τi−1 is contained
in the domain of τi for 2 ≤ i ≤ n (when computing τi−1, simulate a finite automaton
for dom(τi ) on the output). By Theorem 6, τi has a uniformizer τ ′

i in DPT. By the above
assumption, τ ′

1 ◦ · · · ◦ τ ′
n is a uniformizer of τ1 ◦ · · · ◦ τn , and τ ′

1 ◦ · · · ◦ τ ′
n is in DPT by

Theorem 11. ��

6 Conclusion

By Proposition 12, PT � PT2. It is open whether PTn
� PTn+1 for every n.

A variant of pebble handling is to allow a pebble to be lifted also when the reading
head is not at the square where the pebble was dropped. In the literature these are called
“strong” pebbles, as opposed to the “weak” pebbles in this paper. It is shown in [2] that strong
k-pebble tree automata have the same expressive power as weak ones. It is not difficult to
show that deterministic strong 1-pebble transducers have the same power as weak ones, but
apart from that it is open whether or not strong k-pebble transducers have more power than
weak ones. It is also open whether the results of this paper are also valid for strong pebble
transducers.

We finally mention that it is open whether the equivalence problem for deterministic
k-pebble transducers is decidable. By an argument similar to the one in the proof of Theorem4
of [15], it can be shown that every deterministic k-pebble transduction is a composition of
k deterministic macro tree transductions. For an overview on the equivalence problem for
deterministic macro tree transducers see [24].

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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