
Acta Informatica (2014) 51:127–128
DOI 10.1007/s00236-014-0198-6

EDITORIAL

Editorial: special issue on synthesis

Doron Peled · Sven Schewe

Published online: 19 April 2014
© Springer-Verlag Berlin Heidelberg 2014

It is spectacular to observe, in retrospect, how deep computers have been integrated into our
lives in quite a short period. This incurs a great responsibility, as their failure can result in
damage or disruption of our well being. Formal methods are a collection of techniques for
testing and verifying the correctness of software, based on logic and automata theory. In
essence, formal methods can be used to verify the compatibility of a system with its formal
specification. Modern formal methods provide a counterexample when this compatibility
does not hold. The ability to provide counterexamples is perhaps the most important feature
of such methods. It can be used to inform the designers or programmers of the problem and
to locate it. However, a counterexample may not give ample information about the cause of
an error, which may happen far before its affect is observed. Moreover, even when it is clear
how to correct the specific problem, further errors may be detected, or even be introduced
while previous ones are corrected.

Given a formal specification for the system, it is natural to try to automatically generate
‘correct-by-design’ code. This does not diminish the need to apply formal methods, as a
complete set of properties may not be available. However, some complicated programming
problems, for example mutual exclusion, have complete specifications, and the automatic
synthesis of code can lift a difficult burden from the programmer.

The problem of realizability, i.e., the automatic synthesis from specification can be traced
back to Church. Seminal solutions were provided by Rabin, and by Pnueli and Rosner. In its
classical form, one is interested in constructing a system that interacts with an environment;
the environment is uncontrolled and capable of making selections between different choices
of response. The goal is that the system will behave in such a way that, whatever choices are
made by the environment, the overall behavior satisfies the specification. One can view this
as a two player game. The specification, often expressed in a formalism for languages, e.g.,

D. Peled (B)
Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
e-mail: doron.peled@gmail.com

S. Schewe (B)
Department of Computer Science, University of Liverpool, Liverpool, UK
e-mail: sven.schewe@liverpool.ac.uk

123



128 D. Peled, S. Schewe

temporal logic or as automata (over finite or infinite words), is the winning condition for the
system. In essence, the realization of the specification is hence a strategy for the system to
win the game.

Realization problems produce some intractability and undecidability results, which make
the application of synthesis to programming challenging. New directions that makes synthe-
sis practical are emerging. In addition to the classical synthesis problems, involving game
theory, we start to see interesting new directions. The limitation of synthesis are now better
understood, providing conditions under which software synthesis is plausible, and provid-
ing new algorithms. New synthesis methods are presented based on SAT solvers, heuristic
search, and genetic programming. In addition, synthesis is applied to new domains, includ-
ing probabilistic systems, systems with real time constraints, and systems with quantitative
goals.

This volume of Acta Informatica contains four selected papers from the first SYNT work-
shop, held July 7th and 8th, 2012 in Berkeley California, and further contributions. SYNT
2012 was the first in a series of international workshops dedicated to the synthesis of soft-
ware from formal specification. It was co-located with CAV 2012 conference. The goal of
SYNT is to bring together researchers of various aspects of synthesis. The co-location with
CAV brings together the formal methods and synthesis communities. The papers selected
here present different aspects of synthesis: for quantitative constraints, real-time constraints,
robustness conditions and formal languages. SYNT 2013 was held in St. Petersburg, and
SYNT will be co-located with CAV 2014 as part of the 2014 Vienna Summer of Logic.

Doron Peled and Sven Schewe

SYNT 2012 organizers and editors of Acta Informatica Special Issue on Synthesis

123


	Editorial: special issue on synthesis

