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Abstract Concurrent and reactive programs are specified by their behaviours in the pres-
ence of a nondeterministic environment. In a natural way, this gives a specification (ARW )
of an atomic variable in the style of Abadi and Lamport. Several implementations of atomic
variables by lower level primitives are known. A few years ago, we formulated a criterion to
prove the correctness of such implementations. The proof of correctness of the criterion itself
was based on Lynch’s definition of atomicity by serialization points. Here, this criterion is
reformulated as a specification HRW in the formal sense. Simulations from HRW to ARW
and vice versa are constructed. These now serve as a constructive proof of correctness of
the criterion. Eternity variables are used in the simulation from HRW to ARW . We propose
so-called gliding simulations to deal with the problems that appear when occasionally the
concrete implementation needs fewer steps than the abstract specification.

1 Introduction

Concurrent and reactive programs are preferably specified by their behaviours during
execution in the presence of a nondeterministic environment. Indeed, even when termination
is desirable, their preconditions and postconditions are usually not very informative.

These programs are designed in a hierarchical way, in which the atomic steps at a certain
level are implemented by several steps at a lower level. This makes the use of the word
“atomic” at the higher level questionable. There are two ways to justify it. One can either
define the high-level atomicity by means of serialization points [16], or take the refinement
approach and prove that all visible behaviours of the implementation are visible behaviours
of the high-level program [1].

Before committing to either of these approaches, let us concentrate on the atomicity of
read–write variables. There are several algorithms that implement read–write variables by

W. H. Hesselink (B)
Department of Mathematics and Computing Science,
University of Groningen, P. O. Box 800, 9700 AV Groningen, The Netherlands
e-mail: w.h.hesselink@rug.nl
URL: http://www.cs.rug.nl/∼wim

123



124 W. H. Hesselink

means of lower-level primitives, e.g. by Vitányi and Awerbuch [22], Bloom [2], Vidyasankar
[23], and Haldar and Subramanian [12]. In all these cases, the correctness is far from obvious.
The proposers of the algorithms apply different methods to argue the correctness of their
algorithms.

In [3], we used the definition of atomicity by serialization points to develop an assertional
criterion for atomicity of read–write variables. The criterion worked by adding history vari-
ables to the processes in a certain way, and then proving some invariants for the resulting
system, see Theorem 1 in Sect. 3.5 below. In [3], we applied the criterion to verify the algo-
rithms of Bloom and Vitanyi-Awerbuch. In [5], we applied it to the algorithm of Haldar and
Subramanian. It can also be used for Vidyasankar’s algorithm.

Although successful, we now regard the criterion as an unsatisfactory recipe, and we
prefer the refinement approach over the definition of atomicity by serialization points. We
therefore rephrase the criterion as an assertion that the “natural” specification (ARW ) of
an atomic variable is implemented by a specification HRW that encodes the clauses of
the criterion. In principle, this implementation relation could be proved by reduction to
Theorem 1, or by rephrasing its proof. From such a proof, however, not much new would be
learned.

This paper is therefore devoted to refinements proofs that HRW implements ARW , and
vice versa. Such proofs are challenges to the refinement methods developed in [1] and else-
where. Indeed, it seems that the method of [1] is not strong enough, since it only allows finite
invisible nondeterminism, whereas HRW uses infinite invisible nondeterminism. Instead of
the prophecy variables of [1], we therefore apply the eternity variables introduced in [6,7].

The refinement relations between HRW and ARW and vice versa thus seem to require
some kind of prescient variables, prophecy or eternity. These relations also show that some-
times the concrete specification does fewer steps than the abstract specification. We propose
gliding simulations to deal with the technical complications that arise in this way. In our opin-
ion, these gliding simulations are stronger and more convenient than the solutions proposed
in [1,14].

The present case study thus serves as an excellent illustration of advanced cases of refine-
ment relations. The specifications are quite small. Yet, the verifications of the various refine-
ment relations are complicated enough to justify the application of a proof assistant. We
verified all results with the theorem prover PVS of [21].

1.1 Overview

In Sect. 1.2, we sketch the position of refinement calculus in the field of concurrency verifi-
cation. Read–write atomicity is dealt with in Sect. 1.3.

In Sect. 2, we present our version of the specification and implementation formalism of [1].
In Sect. 3, we specialize to specifications of reactive systems. Here we introduce protocols
to distinguish the responsibilities of the system and its environment. Then we zoom in on
read–write systems and present the specifications ARW and HRW mentioned above.

In Sect. 4, we present simulations, the main tool for proving implementation relations.
After the well-known refinement mappings and forward simulations, we present eternity
extensions and gliding simulations. The latter type of simulations is needed when the imple-
menting specification takes fewer steps than the abstract one. In our case, this occurs between
intermediate specifications to move computation steps to their scheduled positions. In Sect. 5,
we construct a simulation from HRW to ARW as a composition of six simpler simulation
relations.
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In Sect. 6, a second gliding simulation is used to prove that, conversely, ARW implements
HRW . In other words, the two specifications are equivalent. The verification with the theorem
prover PVS is briefly discussed in Sect. 7. Conclusions are drawn in Sect. 8.

1.2 Specifying and verifying concurrent and reactive programs

There are two schools in the way behaviours of concurrent and reactive programs are
described. In the process algebra school of Milner [18] and Hoare [11], the behaviours
are characterized as sequences or trees of transitions. This is good for communication pro-
tocols, but less well suited for algorithms with complicated states and state transitions. In
this article, we follow the school of Abadi and Lamport [1,13], Manna and Pnueli [19,20],
in which behaviours are characterized as infinite sequences of states.

Since the complete state usually contains too many variables, we have to be explicit about
the variables that are relevant for the specification. These are called the visible variables.
The combination of all visible variables is the visible state. In this way, we also get visible
behaviours: infinite sequences of visible states.

One specification implements another if and only if all visible behaviours of the first
specification are also visible behaviours of the second specification. Although they may
change roles, we refer to the implementing specification as the concrete one, and to the
implemented specification as the abstract one.

Arguing about behaviours of a given specification is very inconvenient and error prone.
This is the reason that methods have been developed to prove implementation relations, in
which consideration of the behaviours is eliminated as much as possible. These methods are
based on concepts like invariants and simulation.

The idea of refinement calculus is to treat specifications, algorithms and programs under
the same heading, viz. as specifications of behaviours, the main difference being that programs
are closer to executable code than general specifications.

1.3 Read–write atomicity

One of the central concepts in concurrency is the grain of atomicity. We need to know that
a certain object or component acts according to its specification in a single indivisible step,
although we know that internally this step may be implemented in a complicated way by
many steps, and that the component may be serving different requests concurrently. The
easiest case of such an object is the read–write object.

In her book [16], Lynch defines atomicity by means of serialization points. Roughly speak-
ing, an operation is defined to be atomic iff, logically, it takes place at some undetermined
moment between the start and the end of the operation. In particular, the operation is allowed
to take some time, finite but arbitrary. This definition was used in [3] to develop an assertional
criterion for atomicity of read–write objects.

Yet, the definition of atomicity of [16] seems too complicated and verbose for such an
elementary concept as atomicity. In this paper, therefore, we give an elementary specifica-
tion ARW of an atomic read–write register in the style of [1]. The criterion for atomic-
ity mentioned above suggests a more complicated specification HRW . The soundness of
the criterion is the theorem that HRW implements ARW . The criterion is useful since for
some specifications it is easier to prove that they implement HRW than that they implement
ARW .
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2 Specifications

In this section, we present our formalism for specifications, a syntactic variation of [1], also
inspired by TLA [13]. If X stands for the state space, predicates on X correspond to sets of
states, relations over X correspond to possible state transformations, computations give rise
to infinite sequences over X . A specification is a state machine over X with a supplementary
property to specify progress.

2.1 Predicates, subsets, and relations

A predicate (boolean function) on a set X is identified with the subset of X where the predicate
holds. We can therefore identify conjunction (∧) with intersection (∩) and disjunction (∨)
with union (∪). Negation (¬) is the same as complementation with respect to X . Implication
is the set operation with (U⇒V ) = (¬U ∨ V ). On the other hand, U ⊆ V expresses that
predicate U is stronger than predicate V .

A binary relation on a set X is identified with the set of pairs that satisfy the relation; this
is subset of the Cartesian product X × X = X2. We write 1 for the identity relation of X . If
A is a binary relation on X and Q is a predicate on X , its weakest precondition is defined by
wp(A, Q) = {x | ∀ y : (x, y) ∈ A ⇒ y ∈ Q}. A special case is disabled(A) = wp(A,∅).

2.2 Temporal formulas

We write Xω for the set of infinite sequences on X , which are regarded as functions N → X .
For a sequence xs ∈ Xω and k ∈ N, we write xs|k (pronounce xs drop k) for the suffix of
xs where the first k elements have been removed, so that (xs|k)(n) = xs(k + n). If P is a
set of infinite sequences, its complement in Xω is denoted ¬P = (Xω \ P). The sets �P
(always P), and ♦P (sometime P) are defined by

xs ∈ �P ≡ (∀ k ∈ N : (xs|k) ∈ P),
xs ∈ ♦P ≡ (∃ k ∈ N : (xs|k) ∈ P).

So, xs ∈ �P means that all suffixes of xs belong to P , and xs ∈ ♦P means that xs has some
suffix that belongs to P . It follows that ♦P = ¬�¬P .

For U ⊆ X , we define the subset [[ U ]] of Xω to consist of the sequences whose first
element is in U . For a relation A on X , we define the subset [[ A ]]2 of Xω to consist of the
sequences that start with an A-transition. So we have

xs ∈ [[ U ]] ≡ xs(0) ∈ U ,
xs ∈ [[ A ]]2 ≡ (xs(0), xs(1)) ∈ A.

In temporal logic, these operators are usually kept implicit.
A sequence ys is defined to be a stuttering of a sequence xs, notation xs � ys, iff ys can be

obtained from xs by replacing its elements by positive iterations of them, so that v = xs(n)

is replaced by vd(n) for some function d : N → N+. For example, if, for a finite list vs, we
write vsω to denote the sequence obtained by concatenating infinitely many copies of vs, the
sequence (aaabbbccb)ω is a stuttering of (abbccb)ω.

Since we do not want to attach clock speeds to our specifications, it is important to regard
behaviours xs and ys with xs � ys as indistinguishable. A subset P of Xω is called a property
[1] iff it is insensitive to stutterings, i.e., if (xs ∈ P) ≡ (ys ∈ P) whenever xs � ys. If P
is a property, then �P , and ♦P , and ¬P are properties. The conjunction and disjunction of
properties is a property. [[ U ]] is a property for every U ⊆ X . If A is a reflexive relation on
X , then � [[ A ]]2 is a property.
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Example The set �♦ [[ 1 ]]2 consists of the sequences that stutter infinitely often. This set is
not a property (if X has more than one element). ��
2.3 Specifications and programs

As announced, we use a syntactic variation of the formalism of [1]. A specification is defined
to be a tuple K = (X, Y, N , P) where X is the state space, Y ⊆ X is the set of initial states,
N ⊆ X2 is the next-state relation and P is the supplementary property [1]. Relation N is
required to be reflexive in order to allow stutterings. P is a subset of the set Xω of the infinite
sequences of states, which is required to be a property.

We define an initial execution of K to be an infinite sequence xs over X with xs(0) ∈ Y
and such that every pair of consecutive elements belongs to N . A behaviour of K is an initial
execution xs of K with xs ∈ P . We write Beh(K ) to denote the set of behaviours of K . It is
easy to see that

Beh(K ) = [[ Y ]] ∩ �[[ N ]]2 ∩ P .

The property rules imply that Beh(K ) is always a property. For a specification K =
(X, Y, N , P), we write states(K ) = X , start(K ) = Y , step(K ) = N , prop(K ) = P .

When presenting a specification, we use a program-like notation, where the state space is
spanned by the variables declared. The set of initial states is determined by the initial values
of the variables, as given at the declaration. The next-state relation N is given as a program
in guarded command notation, where we keep the possibility of stuttering steps implicit. A
construct of the form

(W) whenever
[] Ui → Ai ;
end

denotes a next-state relation that is the union of the identity relation 1 with the sets Ai ∩
(Ui × X). So, it is a nondeterminate choice between the guarded commands Ui → Ai ,
which are taken atomically and repeatedly. A parallel composition of such constructs (W)
denotes the union of their next-state relations. The difference with Dijkstra’s do od notation
is that the do od construct terminates when none of the guards hold, whereas (W) never
terminates. When none of the guards hold, the construct (W) just blocks waiting for some
other component to modify a guard.

The supplementary property is given separately by means of some temporal logic formula,
preceded by prop. In the design of our specifications, we prefer to keep the suplementary
properties as weak as possible. They are mainly used to express progress conditions.

2.4 Visibility and implementation

A visible specification is a pair (K , v) where K is a specification and v is a function
from states(K ) to some set of observations. Then v is called the observation function. The
sequences v ◦ xs where xs ranges over the behaviours of K , are called observed behaviours.
A sequence of observations is called a visible behaviour of (K , v) if it has a stuttering that is
an observed behaviour. So, vs is a visible behaviour iff vs � v ◦ xs for some behaviour xs.
Not all visible behaviours are observed behaviours, see the example below.

Let (K , v) and (L , w) be visible specifications with observation functions to the same
set of observations. Then (K , v) is said to implement (L , w) iff every visible behaviour of
(K , v) is a visible behaviour of (L , w), cf. [1].
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Example Let m ∈ N be positive. Consider the specification K (m) given by

var j : Nat := 0 ;
whenever
[] true → j := (j+ 1) mod m ;
end ;
prop: j changes infinitely often.

Note that we keep the stuttering steps implicit. We have states(K (m)) = N, start(K (m)) = {0},
relation step(K (m)) consists of the pairs ( j, k) with k = ( j +1) mod m or j = k (stuttering).
The supplementary property is prop(K (m)) = �♦[[j �= j+ ]]2, where j+ refers to the value
of j in the next state.

Taking m = 5, the behaviours of K (5) are the stutterings of vs = (01234)ω. The other
executions are the stutterings of the infinite sequences (01234)n0 . . . kω with n, k ∈ N and
k < 5. These are not behaviours since eventually j is constant.

We now take the observation function v( j) = j div 2. The observed behaviours are
the stutterings of (00112)ω. The visible behaviours are the stutterings of (012)ω. Therefore
(K (5), v) has the same visible behaviours as (K (3), id), where id is the identity function. It
follows that (K (5), v) and (K (3), id) implement each other. ��
2.5 Machine closure, invariants, and inductive subsets

A specification K is called machine closed [1] iff every finite prefix of any initial execution
can be extended to a behaviour. The first case of a nonmachine closed specification was in [14].
Below, we encounter specifications that are nonmachine closed in our treatment of prophecies
and eternity variables. In a nonmachine closed specification, we need to distinguish between
states that are reachable and those that occur in behaviours. This is the reason for the following
nonstandard definitions.

A state x of K is said to be occurring iff x = xs(n) for some behaviour xs of K and
some number n. In this note, we define a subset J of states(K ) to be an invariant of K iff
J contains all occurring states. A subset J is called inductive for K if start(K ) ⊆ J and
J ⊆ wp(N , J ). It is easy to verify that every inductive subset of states(K ) is an invariant (in
the present sense).

Example Consider the specification

var j : Int := 0 ;
whenever
[] j = 0 → choose j with j > 0 ;
[] true → j := j− 2 ;
end ;
prop: j = 0 holds infinitely often.

A command of the form choose v with Q has the obvious meaning of a nondeterministic
choice of v in the type of v, constrained by predicate Q. We omit the clause “with Q” when
Q is identically true.

This specification is not machine closed. All odd numbers are reachable, but not occurring
because of the supplementary property. The predicatesj ≥ 0 andj mod 2 = 0 are invariants
of this specification, but neither is inductive. ��
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3 Specification of reactive systems

When we want to specify a reactive system in our state-based linear-time formalism, the
natural way is to specify the environment the system has to communicate with as a very
nondeterminate component of the system, which is not to be implemented.

This requirement needs to be formalized in such a way that the implementer cannot cheat
us by letting the system perform some actions that must be reserved to the environment. For
instance, in the administration of a bank, the system is not allowed to generate requests for
money transfer; such requests form a privilege of the authorized clients. Indeed, a system
that invents values to be written may be regarded as a malicious virus. We now provide a
formalization of the separation of responsibilities between environment and system.

3.1 Protocols and reactive specifications

We define a protocol to be a tuple E = (X1, Y1, Ne, Ns, v1) such that X1 is a set (the state
space), Y1 ⊆ X1 (the set of initial states), and Ne and Ns two binary relations over X1, and
v1 : X1 → Obs is an observation function. Relation Ne is required to be reflexive; it is
called the environment relation and is often denoted env(E). Relation Ns is called the system
relation and often denoted sys(E). In concurrent systems, both environment and system are
themselves again split in component relations (processes) env.p and sys.p.

The idea is that X1 is the state space as far as relevant for the environment and every
implementation of the system. Ne defines the steps of the environment. Ns restricts the
possibilities of the system as liberal as possible. In particular, it serves to prohibit the system
from taking actions that are reserved for the environment. The protocol does not yet specify
the behaviours of the system in its environment. This is the reason that a supplementary
property is missing.

In the reactive specification to be defined below, we add specification variables to describe
the allowed behaviours. These specification variables span a component X2 of the state space,
and have initial values in a subset Y2 ⊆ X2. We postulate an environment condition (EC)
to express that the environment can do everything allowed by Ne and does not change the
specification variables, and a protocol constraint (PC) to express that the system keeps the
protocol.

A reactive specification over protocol E = (X1, Y1, Ne, Ns, v1) is defined to be a visible
specification (K , v) with K = (X, Y, N , P) where X is a Cartesian product X1 × X2 and
Y = Y1 × Y2 (so that Y2 ⊆ X2). The step relation N is required to satisfy the conditions

(EC) Ne × 1 ⊆ N ,
(PC) (x, y) ∈ Ni ⇒ (x1, y1) ∈ Ns ,
where Ne × 1 = {(x, y) | (x1, y1) ∈ Ne ∧ x2 = y2} , Ni = N \ (Ne × 1).

Here, we use the convention that x ∈ X1 × X2 always satisfies x = (x1, x2). The supple-
mentary property P is just a property over state space X . The observation function v is given
by v(x) = v1(x1).

Usually, the components X1 and X2 are each spanned by shared and private variables.
The sets Y1 and Y2 indicate their sets of initial states. The steps in Ne ×1 are the environment
steps of K , as restricted by the environment condition (EC). The steps in the implementation
relation Ni are the system steps, which need to be in accordance with the protocol constraint
(PC).

Given protocol E , the reactive specification is completely determined by X2, Y2, Ni ,
and P . Therefore, in practice, the reactive specification is given by declaring the additional
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variables that span X2, with their initial values as given by Y2, the system step relation Ni ,
and the supplementary property P .

Example Consider a system where the environment can tick (write t), and ask a question
(write q) about the history. The system acknowledges the ticks by writing n, and answers
the questions by choosing between n and y. The state of the system is just the latest symbol
written. The state space X1 therefore is the set {t,q,n,y}. The environment can only tick or
ask a question when the system has responded. We therefore choose the initial set Y1 = {n}
and specify the environment relation Ne to consist of the pairs (x, y) with x = y, or x ∈ {n,y}
and y ∈ {t,q}. The system only reacts to steps of the environment. Therefore the system
relation Ns consists of the three pairs (t,n), (q,n), and (q,y). This concludes the protocol.

We can now give a reactive specification for a system that answers y if the number of ticks
after the previous question is at least 7, and n otherwise. For this purpose, we introduce a
specification variable k ∈ N to count the ticks. So we take X2 = N with initial set Y2 = {0}.
We then get to the implementation relation

Ni = {((t, k), (n, k + 1)) | k ∈ N}
∪ {((q, k), (n, 0)) | k < 7} ∪ {((q, k), (y, 0)) | k ≥ 7} .

We choose the supplementary property P = �♦[[ {n,y} ]]. This means that the system always
eventually answers.

Of course, the infinite state space X2 is not necessary for implementations. The reactive
specification can be implemented by means of a three-bit counter.

Now consider an alternative implementation Clock, in which the system also creates
and answers its own ticks t and questions q, e.g., when the environment is idle for some
time. Every behaviour of the combination of Clock with the environment is a behaviour of
the reactive specification. Yet, this is not the intention, and indeed this is ruled out by the
protocol constraint (PC). ��
3.2 Concurrency

We use specifications to model concurrent systems with processes that act on shared variables
and also have private variables. Let Process be the set of processes or process identifiers. In
this setting, a state of the system is given by the values of all variables and the state space X
is the set of all states.

We declare shared variables with the keyword var and write them in type writer font.
Private variables are slanted and declared with the keyword privar. Outside of the programs,
a private variable v of process p is denoted by v.p. Indeed, formally, a private variable is
treated as a (modifiable) function from process identifiers to values. The type PrivState of
the private states is spanned by the private variables, the type SharedState is spanned by the
shared variables. Then global state space X is the Cartesian product

X = SharedState × (Process → PrivState) .

3.3 Read–write systems

In the remainder of this section, we illustrate the formalism by specifying an atomic register
in a system with several concurrent processes that can read and write the register. We first
give the protocol.

Let Item be the set of values to be written and read. Every process p has a private variable
arg.p for the value to be written, a variable result .p for the value to be read, and a location
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pointer pc.p. As announced above, the variables result, arg, and pc are slanted to indicate
that they are private.

privar arg, result : Item := item0 ;
privar pc : Nat := 0 ;
var out : Item := item0 .

Since the values to be written must not be invented by the writing process, and since the need
to read should not be generated by the reading process, we model an environment that calls
the reading and writing routines. Since the environment can use the values read only after the
read action has completed, we model this usage by a separate action of copying result to the
shared variable out. The system for process p is allowed to modify result .p and pc.p, but
only if pc.p �= 0. The protocol for process p is thus the following nondeterministic choice.

env.p : [] pc = 0 → choose arg ; pc := 20 ; // write request
[] pc = 0 → pc := 50 ; // read request
[] pc = 0 → out := result ;

sys.p : [] pc �= 0 → choose result , pc .

We choose arg and out to be the visible variables. We regard result as not visible since a
process can only use the value read after completion of the read action. Indeed, the value
read may be outdated when it becomes available. This concludes the protocol.

3.4 The atomic read–write system

The atomic read–write system is a reactive specification over the protocol, which uses a
single shared variable reg to transfer the value that has to be written and to be read. The
system step relation determines how processes p read from and write to reg:

var reg : Item := item0 ;
Wr.p : [] pc = 20 → reg := arg ; pc := 0 ;
Rd.p : [] pc = 50 → result := reg ; pc := 0 ;
prop: TERM : (∀ p ∈ Process : �♦[[ pc.p = 0 ]]) .

The protocol constraint is satisfied, since Wr.p and Rd.p restrict to the protocol variables
arg.q , result .q , pc.q , and out as special cases of sys.p. Indeed, restricted in this way, they
only modify result .p and pc.p, and that only when pc.p �= 0.

We further specify the progress property TERM that writing and reading always termi-
nates, i.e., �♦[[ pc.p = 0 ]] for all processes p.

The state space AX of the atomic read–write system consists of the two shared variables
reg and out and the private variables arg, result, and pc. Here arg and result are functions
from the set of processes (process identifiers) to Item, whereas pc is a function from processes
to natural numbers. Initially, reg and out and all values of result and arg are equal to item0,
while all values of pc are 0. This concludes the description of the reactive specification ARW .

Every implementation of ARW is supposed to have the same protocol, but to supply
implementations for the shared variable reg and the commands Wr and Rd, possibly con-
sisting of several atomic commands and a different state space. We give an example in the
next subsection.

3.5 A criterion for atomicity

In [3], we developed an assertional criterion for atomicity. We showed that, in order to prove
atomicity of a read–write object, it suffices to add history variables to the processes in a
certain way and then prove some invariants.
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We first present this criterion and reformulate it as a specification HRW in the present for-
malism. Correctness of the criterion is then the assertion that HRW implements specification
ARW of Sect. 3.4. The proof of this implementation relation is postponed to Sect. 5.

According to [3], every process should get private integer history variables start and
sqn, and there should be a shared history variable masq, initialized in an arbitrary way.
Furthermore, there is a shared history variable snlist that holds a list of integer, which is
initially empty.

Every process updates masq at the end of every operation by setting masq :=
max(masq, sqn). In every operation of a process, it sets its private variables start and sqn pre-
cisely once as described now. Whenever a process starts an operation, it sets its start := masq.
In every writing operation, a writing process chooses a value for sqn, attaches it to the item
to be written and adds it to the list snlist. Every process that copies an item, also copies
the number attached to it. When a reading process interprets a value as the item read, it sets
its sqn equal to the attached number. Given this setting, we proved

Theorem 1 Assume that, for every process p, every write action of p has the postcondition
start.p < sqn.p and every read action of p has the postcondition start.p ≤ sqn.p. Assume
that snlist always remains without multiple occurrences. Then the object is atomic.

We now reformulate this informal description as a reactive specification over the read–
write protocol of Sect. 3.3.

The conditions imply that every execution constructs a partial function from sequence
numbers to items. We introduce a shared history variable hist to hold this partial function.
Its domain corresponds to the list snlist mentioned above. We use ⊥ for the value of
hist outside its domain. Since start is used elsewhere in the theory, we replace it here by
the identifier first. This leads to the specification HRW over the protocol of Sect. 3.3 with
the declaration

var hist : N → Item ∪ {⊥} ;
var masq : N ;
privar first, sqn : N ;
initially hist(masq) = item0 ∧ (∀ n : n �= masq ⇒ hist(n) = ⊥) .

The system always first reads first := masq, then chooses sqn, concludes with masq :=
max(masq, sqn), and returns control to the environment. Furthermore, a writing process puts
its argument at hist(sqn).

Wr.p : [] pc = 20 → first := masq ; pc++
[] pc = 21 → choose sqn with first < sqn ∧ hist(sqn) = ⊥ ;

hist(sqn) := arg ; pc++
[] pc = 22 → masq := max(masq, sqn) ; pc++
[] pc = 23 → pc := 0 .

A reading process reads its result from hist(sqn).

Rd.p : [] pc = 50 → first := masq ; pc++
[] pc = 51 → choose sqn with first ≤ sqn ∧ hist(sqn) �= ⊥ ;

result := hist(sqn) ; pc++
[] pc = 52 → masq := max(masq, sqn) ; pc++
[] pc = 53 → pc := 0

prop: TERM .
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This concludes the step relation of HRW . For the sake of symmetry, one may want to replace
first < sqn in command 21 by first ≤ sqn. This is allowed because of the easy invariant
hist(first) �= ⊥. The progress property is the same as for specification ARW .

Now Theorem 1 is formalized as

Theorem 2 Specification HRW implements ARW.

It seems likely that the proof of Theorem 2 can be obtained by reformulating the proof of
Theorem 1 in [3]. This would result in an ad hoc proof without additional value. We prefer to
regard Theorem 2 as a challenge for the theory of refinements or simulations of [1,7]. In the
next section, we develop and extend this theory in such a way that we can prove Theorem 2
in Sect. 5.

4 Simulations

The easiest way to prove implementation relations between different specifications is by
means of refinement mappings. It is well known, however, that refinement mappings are
often too specific for this purpose. Usually, we also need to extend the state space with
history variables [1], prophecy variables [1], or eternity variables [7]. All these methods are
unified as (strict) simulations [4].

4.1 Simulations

Whereas the concept of implementation is defined in terms of the relation between observable
behaviours of the two specifications involved, a simulation is a relation between the two state
spaces that satisfies certain conditions on the observations and the behaviours.

For specifications K and L , let F be a binary relation F between states(K ) and states(L).
We write Fω for the relation between infinite sequences given by

(xs, ys) ∈ Fω ≡ (∀ i : (xs(i), ys(i)) ∈ F) .

A relation F between the state spaces of K and L is called a strict simulation from
specification K to specification L (notation F : K −� L) if, for every xs ∈ Beh(K ), there
exists ys ∈ Beh(L) with (xs, ys) ∈ Fω.

A relation F between the state spaces of K and L is called a simulation (notation F :
K −�� L) if for every xs ∈ Beh(K ) there is ys ∈ Beh(L) and a sequence xt with xs � xt
and (xt, ys) ∈ Fω. Here, xt is a possibly slowed-down version of the concrete behaviour xs
that matches the abstract behaviour ys step by step. Since relation � is reflexive, every strict
simulation is a simulation.

For visible specifications (K , v) and (L , w), a relation F between the state spaces of K
and L is called nondisturbing if F respects the observations in the sense that v(x) = w(y)

for all pairs (x, y) ∈ F . The weakest nondisturbing relation is observational equivalence
OE = {(x, y) | v(x) = w(y)}.

These definitions are justified by the following easy result.

Lemma 1 Let F : K −�� L be an nondisturbing simulation. Then (K , v) is an implemen-
tation of (L , w). Conversely, if (K , v) is a implementation of (L , w), the relation OE =
{(x, y) | v(x) = w(y)} is a nondisturbing simulation K −�� L.

We are therefore interested in simulations only when they are nondisturbing. The ver-
ification whether some relation is nondisturbing, is usually trivial, but it requires explicit
observation functions.
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The need for nonstrict simulations is shown in the next example.

Example Consider the specifications K (m) and K (n) of Sect. 2.3 with m < n. Give both
specifications the binary observation function v with v( j) = min( j, 1). Then (K (m) and
K (n) have the same visible behaviours, namely all stutterings of (01)ω. Therefore K (m)

implements K (n). Yet there is no nondisturbing strict simulation K (m) −� K (n). ��
In the remainder of this paper, we usually forget about the observations. Of course, our

results are only useful when observations are possible and when the simulations are nondis-
turbing.

If F is a relation between sets X and Y and G is a relation between Y and Z , the relational
composition (F; G) is the relation between X and Z given by (F; G) = {(x, z) | ∃ y ∈ Y :
(x, y) ∈ F ∧ (y, z) ∈ G}.
Lemma 2 Let K , L, M be specifications and let F : K −�� L and G : L −�� M be simula-
tions. Then (F; G) is a simulation K −�� M. Moreover, if K , L, M are visible specifications
and F and G are nondisturbing, then (F; G) is nondisturbing. If the simulations F and G
are strict, then (F; G) is strict.

This Lemma allows use to construct simulations step by step. We first present the easy
steps: invariant restriction, refinement mapping, and forward simulation. The first one is so
obvious, it is usually overlooked. The other two are well known.

4.2 Invariant restrictions

Let J be a subset of the state space of a specification K . We can then define the specification
L = res(K , J ) by states(L) = J , start(L) = J ∩ start(K ), step(L) = J 2 ∩ step(K ), and
prop(L) = Jω ∩ prop(K ). The identity function from J into states(K ) clearly defines a
refinement mapping res(K , J ) −� K .

Assume that J is an invariant of K , cf. Sect. 2.5. Then every behaviour xs of K remains
within J . Therefore, the identity relation in states(K ) × J defines a strict simulation
K −� res(K , J ). This simulation is called the invariant restriction.

4.3 Refinement mappings and functions

If K and L are specifications, a function f : states(K ) → states(L) is called a refinement
mapping [1] from K to L iff

(f0) f (x) ∈ start(L) for every x ∈ start(K );
(f1) ( f (x), f (x ′)) ∈ step(L) for every pair (x, x ′) ∈ step(K );
(f2) f ◦ xs ∈ prop(L) for every xs ∈ Beh(K ).

In practice, condition (f1) is often stronger than necessary and convenient. Let us therefore
define a function f to be a refinement function iff it satisfies conditions (f0), (f1f) and (f2),
where (f1f) is given by

(f1f) K has an invariant J
such that ( f (x), f (x ′)) ∈ step(L) for every pair (x, x ′) ∈ step(K ) ∩ (J × J ).

Every refinement mapping is a refinement function since we can use states(K ) itself as
invariant. In the Lemmas 8 and 12 below, we shall encounter refinement functions that are
not refinement mappings.
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Example Consider the specifications K (7) and K (4) of Sect. 2.4. Let f : N → N be given
by f ( j) = min( j, 3). Then f is a refinement mapping from K (7) to K (4). ��
Example To see the difference between refinement mappings and refinement functions, con-
sider the specification L(m) for m > 1 obtained from K (m) by replacing the assignment to
j by j := (j = m − 1? 0 : j+ 1). Now L(m) has a step from m to m + 1, whereas K (m)

has a step from m to 1. It follows that the identity function is not a refinement mapping from
K (m) to L(m), or vice versa. In both specifications, we have the invariant j < m. Using this
one can easily show that the identity function is a refinement function from K (m) to L(m),
and vice versa. ��
4.4 Forward simulations

A natural way to prove that one specification simulates another is by starting at the beginning
and constructing the corresponding behaviour in the other specification inductively. This idea
is formalized in forward simulations [10,15,17], defined as follows.

A relation F between states(K ) and states(L) is called a forward simulation from speci-
fication K to specification L iff

(F0) For every x ∈ start(K ), there is y ∈ start(L) with (x, y) ∈ F .
(F1) For every pair (x, y) ∈ F and every x ′ with (x, x ′) ∈ step(K ), there is y′ with

(y, y′) ∈ step(L) and (x ′, y′) ∈ F .
(F2) For every initial execution ys of L and every behaviour xs of K , we have that (xs, ys) ∈

Fω implies ys ∈ prop(L).

Roughly speaking, condition (F0) is a matter of consistent initialization, condition (F1)
says that the steps of K are faithfully represented by L , and condition (F2) says that no
additional progress conditions are imposed. The conditions (F0) and (F1) go back to [17],
condition (F2) is added in [1].

The following well-known lemma justifies the nomenclature and shows the relationships
between refinement functions, simulations and forward simulations.

Lemma 3 (a) Let f : states(K ) → states(L) be a refinement function from a specification
K to a specification L, say with invariant J . Then the graph {(x, y) | x ∈ J∧ f (x) = y}
is a forward simulation from K to L.

(b) Let F be a forward simulation from K to L. Then F is a strict simulation F : K −� L.

In view of this Lemma, we use the notation f : K −� L also for a refinement function
from K to L . A refinement function is called nondisturbing iff its graph is nondisturbing.

Example Consider the specifications K (4) and K (8) of Sect. 2.4. Let F ⊆ N × N be
given by F = {(x, y) | x = y mod 4}. Then F is a forward simulation K (4) −� K (8).
There is no refinement function f from K (4) to K (8). Indeed, J = {0, 1, 2, 3} is the set
of reachable states of K (4), and hence the smallest invariant. Every function f : J → N

with ( f (x), f (x ′)) ∈ step(K (8)) whenever (x, x ′) ∈ step(K (4)), is constant since a cycle of
eight steps cannot be traversed in four steps. Therefore condition (f1f) cannot be combined
with condition (f2). ��
4.5 Eternity extensions

Since the prophecy variables of [1] only allow finite nondeterminism, we introduced eternity
variables in [4,6]. These variables allow infinite nondeterminism, but they are immutable: the
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(infinite) nondeterministic choice is done upon initialization. Thus, extending a specification
with an eternity variable is like allowing the specification a single initial guess about the
complete future, i.e., about the behaviour that will evolve. The formalism implies that the
nondeterminism is angelic: the guess is always right. Soundness only requires satisfiability:
every behaviour must allow a correct guess. The formalization is as follows.

Let K be a specification. Let M be a set of values, to be called the eternity type. A relation R
between states(K ) and M is called a behaviour restriction of K at M iff, for every behaviour
xs of K , there exists an m ∈ M with (xs(n), m) ∈ R for all n ∈ N

(BR) xs ∈ Beh(K ) ⇒ (∃ m : ∀ n : (xs(n), m) ∈ R) .

If R is a behaviour restriction of K at M , we define the eternity extension W = et(K , R) as
the specification W given by

states(W ) = R ,
start(W ) = R ∩ (start(K ) × M) ,
((x, m), (x ′, m′)) ∈ step(W ) ≡

(x, x ′) ∈ step(K ) ∧ m = m′ ,
ys ∈ prop(W ) ≡ fst ◦ ys ∈ prop(K ) .

Here fst is the function that returns the first component of a pair. It is clear that step(W )
is reflexive and that prop(W ) is a property. Therefore W is a specification. The component
m ∈ M is called an eternity variable since it does not change during the entire behaviour.

It is easy to verify that fst : states(W ) → states(K ) is a refinement mapping. Let relation
cvf between states(K ) and states(W ) be defined as the relational converse of fst. We now
prove soundness (cf. [7]):

Theorem 3 Let R be a behaviour restriction of K at M. Then relation cvf is a strict simu-
lation K −� W .

Proof Let xs ∈ Beh(K ). We have to construct ys ∈ Beh(W ) with (xs, ys) ∈ cvf ω. By (BR),
we can choose m with (xs(n), m) ∈ R for all n ∈ N. Define ys(i) = (xs(i), m). A trivial
verification shows that the sequence ys constructed in this way is a behaviour of W with
(xs, ys) ∈ cvf ω. This proves that cvf is a strict simulation. ��

The strict simulation cvf : K −� et(K , R) of Theorem 3 is called the eternity extension
of K corresponding to behaviour restriction R.

In general, condition (BR) is a heavy proof obligation. It requires to invent a relation R
and then, for every behaviour, it requires to invent an element m. In our practice [6,7], m is
always some kind of limit of some abstraction of the states in xs, and relation R expresses
this fact. Usually, et(K , R) is not machine closed since it has steps that would eventually
lead to violations of R.

4.6 Stutterings

Up to this point, all our simulations were strict. In order to construct nonstrict simulations,
we need to formalize stuttering.

We define a stutter function to be a function N → N that is monotonic and surjective.
This easily implies that the composition of stutter functions is a stutter function. It can
be proved that a function g : N → N is a stutter function iff it satisfies g(0) = 0, and
g(i + 1) − g(i) ∈ {0, 1} for all indices i , and g is unbounded, i.e. for every number n there
is an index i with g(i) ≥ n.
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The stuttering relation is now defined by xs � ys if and and only if xs ◦ g = ys for some
stutter function g. Note that, indeed, even if all elements of xs differ, ys stutters when g stutters
(i.e. is not injective). Since the identity function is a stutter function, and the composition of
stutter functions is a stutter function, relation � is reflexive and transitive.

4.7 Gliding simulations

Gliding simulations form a non-strict generalization of the forward simulations of Sect. 4.4.
For the sake of greater flexibility, relation F is momentarily replaced by two ternary relations
T and W , where T “looks ahead” in K and W “looks ahead” in L . The simulation F will
be defined in terms of T , whereas W takes cares of the additional stutterings in L . The
requirements are phrased in such a way that the construction and its proof are as simple as
possible. In the next section, we give a version that is geared more towards the applications.

Let K and L be specifications with X = states(K ) and Y = states(L). In order to transfer
an execution of K to L , we consider ternary relations T ⊆ X2 × Y and W ⊆ X × Y 2.
Consider the conditions:

(T0) For every pair (x, x ′) ∈ step(K ) with x ∈ start(K ), there is y ∈ start(L) with
(x, x ′, y) ∈ T .

(T1) For every (x, x ′, y) ∈ T , it holds that there is y′ ∈ Y with (x, x ′, y′) ∈ T and
(x, y, y′) ∈ W , or that for every x ′′ with (x ′, x ′′) ∈ step(K ) there is y′ with (y, y′) ∈
step(L) and (x ′, x ′′, y′) ∈ T .

(T2) For every x ∈ states(K ), the binary relation W [x] = {(y, y′) | (x, y, y′) ∈ W }
satisfies that W [x] ⊆ step(L) and that there are no infinite sequences with steps in
W [x].

We distinguish the two alternatives offered in (T1) as follows. A step is called gliding step
if it follows the first alternative, and a computation step if it follows the second alternative.
So, in a gliding step, the concrete states x and x ′ are unchanged and the abstract state y is
replaced by y′ with (y, y′) ∈ W [x]. In a computation step, the triple (x, x ′, y) is replaced by
(x ′, x ′′, y′).

Condition (T2) serves to ensure that all gliding steps are steps of L and that every sequence
of gliding steps is terminated by a computation step.

Lemma 4 Let T and W be given such that (T0), (T1), and (T2) hold. Let xs be an initial
execution of K . Then there is an initial execution ys of L and a stutter function g such that,
for all n:

(*) (xs(g(n)), xs(g(n) + 1), ys(n)) ∈ T ,
(**) if ∃ z : (xs(g(n)), ys(n), z) ∈ W ∧ (xs(g(n)), xs(g(n) + 1), z) ∈ T

then (xs(g(n)), ys(n), ys(n + 1)) ∈ W ∧ g(n) = g(n + 1)

else g(n + 1) = g(n) + 1 end .

Proof This is proved by an inductive simultaneous construction of ys and g, which satisfies
conditions (*) and (**).

We first use condition (T0) to choose y0 ∈ start(L) with (xs(0), xs(1), y0) ∈ T . Then
define ys(0) = y0 and g(0) = 0. Condition (*) for n = 0 follows from (T1). Next, assume
that y = ys(n) and k = g(n) are constructed such that (*) holds. Put x = xs(k) and
x ′ = xs(k + 1) and x ′′ = xs(k + 2).

If the guard of (**) holds, we choose ys(n + 1) = z for some witness z of this guard,
and we define g(n + 1) = k. Otherwise, we define g(n + 1) = k + 1, use the second
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alternative offered in condition (T1), and choose ys(n + 1) = y′ with (y, y′) ∈ step(L)
and (x ′, x ′′, y′) ∈ T . In either case, it follows that (**) holds for n, and that (*) holds
for n + 1.

Sequence ys is an initial execution of L since it begins in start(L) and always takes steps in
L , because of (T2). Condition (**) implies that g(i+1)−g(i) ∈ {0, 1}. It remains to prove that
function g is unbounded. Assume that g bounded. Since it is ascending, it becomes eventually
constant, say g(n) = k for all n ≥ i . Then condition (**) implies that (ys(n), ys(n + 1)) ∈
W [xs(k)] for all n ≥ i . This contradicts the second clause of (T2), thus proving that g is
unbounded. Since g(0) = 0, it follows that g is a stutter function. ��

Provisionally, we define relation F between the state spaces of K and L to be a straight
gliding simulation if there are ternary relations T ⊆ X2 × Y and W ⊆ X × Y 2 that satisfy
the above conditions (T0), (T1), and (T2), and F satisfies condition (F2) of Sect. 4.4, and:
(T3) For every (x, x ′, y) ∈ T , we have (x, y) ∈ F .

Lemma 5 Let F be an straight gliding simulation between specifications K and L. Then F
is a simulation K −�� L.

Proof Let xs be a behaviour of K . We apply Lemma 4 with xs as initial execution. Lemma 4
yields an initial execution ys and a stutter function g, such that (xs ◦ g, ys) ∈ Fω because of
(T3). Since g is a stutter function, xt = xs ◦ g satisfies xs � xt. Since xs is a behaviour of
K , sequence xt is also a behaviour of K . Therefore, condition (F2) of Sect. 4.4 implies that
ys is a behaviour of L . This proves that F is a simulation. ��
4.8 General gliding simulations

Unfortunately, in Lemma 13 below, we have a case where condition (F2) of Sect. 4.4 is
not valid. We therefore weaken it by strengthening its antecedent. Given a sequence xs,
condition (F2) allows the construction of ys in an arbitrary way provided (xs, ys) ∈ Fω.
The construction in Lemma 4, however, is more precise and chooses gliding steps in (**)
whenever these are enabled. By choosing the then part of (**) whenever possible, the guard
of (**) is forced to become false in a finite number of steps because of condition (T2). The
fact that the guard of (**) becomes false in a finite number of steps is used in the concept of
W -immediacy to be introduced now.

Let a pair of infinite sequences xs, ys be called W -immediate if, for every k, there exists
n with k ≤ n and xs(k) = xs(n) and

¬ (∃ z : (xs(n), ys(n), z) ∈ W ∧ (xs(n), xs(n + 1), z) ∈ T ).

We now postulate the condition:
(T4) For every initial execution ys of L and every behaviour xs of K such that (xs, ys) ∈ Fω

and that the pair xs, ys is W -immediate, we have ys ∈ prop(L).
It is clear that condition (F2) implies (T4).
Relation F between the state spaces of K and L is defined to be a gliding simulation if

there are a ternary relations T ⊆ X2 × Y and W ⊆ X × Y 2 that satisfy the above conditions
(T0), (T1), (T2), (T3), and (T4).

Using condition (**) in Lemma 4, the proof of Lemma 5 is easily adapted to yield the
following stronger result:

Theorem 4 Let F be a gliding simulation between specifications K and L. Then F is a
simulation K −�� L.
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Remark 1 The definition of W -immediacy is provisional. It is strong enough for the present
purposes, but there is room for variations and strengthenings.

4.9 Forms of ternary relations

To prove that a given relation is a gliding simulation requires the invention of two ternary
relations. In our two applications, relation T is of the form

T = {(x, x ′, y) | (x, y) ∈ F ∧ (x, x ′) ∈ step(K ) ∧ (x ′, y) ∈ H}
where F is the simulation relation and H is another binary relation between the state spaces
of K and L . If T is of this form, condition (T3) clearly holds.

In these applications, relation W is independent of its first argument. So, in view of (T2),
it is of the form (x, y, y′) ∈ W ≡ (y, y′) ∈ W ′ for some subrelation W ′ ⊆ step(L) that does
not allow infinite sequences of W ′ steps. The greater generality of W is in anticipation of
other applications.

The special forms of T and W do not really reduce the complexity of the proof obligations
(T0), (T1), (T4).

4.10 Summary of simulation concepts

We now summarize the simulation concepts defined above, give some idea about how to use
them, and discuss some related concepts from the literature.

Simulations are introduced to prove implementation between specifications. Simulations
must have no effect on the observations. This is expressed by the condition that the simu-
lation should be nondisturbing, see Lemma 1. A simulation is strict if every concrete step
corresponds to at most one abstract step. It was noted already in [1] that cases occur where
the abstract specification needs more steps than the concrete one. We come back to this at
(2) below.

The primary examples of simulations are refinement mappings or functions, and forward
simulations. When we remove or rename variables, we form a refinement mapping or func-
tion. When we extend a specification with history variables, we get a forward simulation.
In a formal treatment, one also needs the invariant restrictions of Sect. 4.2, but these are
conceptually so innocent that they are often overlooked.

If these methods fail, we try to form an intuitive understanding of the corresponding states
and steps, and to identify the obstacle we encounter. There are two main kinds of obstacles:
(1) the abstract specification makes a choice that is delayed in the concrete specification,
(2) the abstract specification needs more steps than the concrete specification for a certain
subtask.

(1) When the abstract specification makes a nondeterministic choice earlier than the con-
crete specification, one needs “prophecies”. In such cases, we use the eternity exten-
sions of Sect. 4.5. The same role can be played by backward simulations or extensions
with prophecy variables, see [1,7]. Eternity extensions have the advantage that they do
not rely on finite nondeterminacy, as opposed to backward simulations and prophecy
variables.

(2) When the abstract specification needs more steps than the concrete one, the matching
of the steps becomes more complicated. There are several kinds of simulations that
deal with this. The prophecy variables of [1] can deal with it. The paper [14] introduces
stuttering variables for this purpose. In Sects. 4.7, 4.8, and 4.9, we introduced gliding
simulations for it. These are more powerful but also more complicated than stuttering
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variables. The splitting simulations of [9] play the same role but only for specific
specifications.

One can select a smaller repertoire of simulations that is semantically complete [1,7,8].
The simulations presented here are chosen with the aim to provide intermediate specifications
as naturally as possible.

5 Construction of a simulation from HRW to ARW

In the methodology of program design, one prefers to start with an abstract specification
and then to proceed via a number of refinement steps (simulation relations) towards an
implementable specification (program). The challenge of this section is different. Given are
two simple specifications ARW and HRW , and the aim is to prove Theorem 2, that HRW
implements ARW .

The idea of the proof is to create a number of intermediate specifications with simulations
between them. The selection of intermediate specifications is driven by the aim to resolve
the differences between HRW and ARW one by one. For each intermediate refinement step
or simulation, we try to match the states of the two state spaces in such a way that the steps
correspond.

5.1 Roadmap for a simulation from HRW to ARW

We now give an overview of the construction. The starting point is a comparison of the
specifications of HRW of Sect. 3.5 and specification ARW of Sect. 3.4. The first point to
observe is that the sequence numbers sqn chosen in HRW at lines 21 and 51 must be used
to order and synchronize the abstract write and read actions of ARW . Since these abstract
actions may have to occur before execution of the lines 21 and 51, we first have to move the
choices of sqn to the lines 20 and 50. This is done in our main intermediate specification
PRW .

When we are looking for a simulation from HRW to PRW , we regard HRW as the
concrete specification and PRW as the abstract one. The problem is therefore that the abstract
specification PRW does some nondeterministic choice earlier that the concrete specification
HRW . This asks for prophecy variables or an eternity extension. We have chosen to use
an eternity extension KRW −� ERW , preceded by a forward simulation HRW −� KRW to
introduce the history variables needed for prophecy, and followed by a refinement function
ERW −� PRW to remove the superfluous variables. Composing these by means of Lemma 2
yields a strict simulation from HRW to PRW .

In PRW , the actions have their sequence number from the beginning. The next goal is
to reorder the actions according to sequence number. Since the write action with a given
sequence number must precede all read actions with this number, we first have to identify the
writing process for each sequence number. This is done in specification QRW , via a forward
simulation PRW −� QRW . Then the actions can be reordered. Since reordering actions
means delaying some actions, we use a gliding simulation from (an invariant restriction of)
QRW to a specification TRW , in which the writers and the readers are synchronized according
to the sequence numbers. Finally, a refinement function from TRW to ARW is used to remove
the superfluous variables.

Summarizing, we construct the simulation from HRW to ARW as a huge composition

HRW −� KRW −� ERW −� PRW −� QRW −�� TRW −� ARW .
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Apart from ARW , all these specifications use almost the same variables and locations, the
same progress property TERM, and, as far as relevant, the same initializations.

5.2 The prophetic specification PRW

The first intermediate goal is the specification PRW where the sequence numbers sqn are
chosen in the lines 20 and 50, rather than in 21 and 51 as in HRW . Moving a nondeterministic
choice to an earlier point in the code is called a prophecy [1]. Specification PRW is a variation
of HRW in which the private variables first have been removed. The environment commands
and the commands 22, 23, 52, 53 of HRW are retained. The commands 20, 21, 50, 51 are
replaced. The writing code becomes:

Wr.p : [] pc = 20 → choose sqn with masq < sqn ∧ hist(sqn) = ⊥ ;
hist(sqn) := arg ; pc := 22

[] pc = 22 → masq := max(masq, sqn) ; pc++
[] pc = 23 → pc := 0 .

The reading code becomes:

Rd.p : [] pc = 50 → choose sqn with masq ≤ sqn ; pc++
[] pc = 51 ∧ hist(sqn) �= ⊥ → result := hist(sqn) ; pc++
[] pc = 52 → masq := max(masq, sqn) ; pc++
[] pc = 53 → pc := 0 .

Note that the environment is still there, and is unchanged. Again the progress property is
TERM.

The challenge to construct a simulation from HRW to PRW asks for prophecy variables.
Note that specification PRW is not machine closed (Sect. 2.5): if a reader q chooses an
unused sequence number sqn, and masq increases beyond sqn, the reader is blocked, pc.q
can never reach 0, and the execution prefix cannot be extended to a behaviour.

5.3 Construction of an eternity record

In this section, we construct the three strict simulations needed to go from HRW to PRW .
The starting point is specification HRW . At lines 20 and 50, the processes have to prophesy
the value of sqn that will be chosen in lines 21 and 51, respectively. We therefore extend
HRW to a specification KRW with private history variables sqlist to hold the subsequently
chosen values of sqn, and cnt to hold the number of values chosen. For convenience, we
model sqlist as a function.

privar cnt : N := 1 ;
privar sqlist : N → N ;
initially sqlist.q(0) = masq .

These variables are modified in lines 21 and 51 in the following way

[] pc = 21 → choose sqn with first < sqn ∧ hist(sqn) = ⊥ ;
sqlist(cnt) := sqn ; cnt++ ; hist(sqn) := arg ; pc++

[] pc = 51 → choose sqn with first ≤ sqn ∧ hist(sqn) �= ⊥ ;
sqlist(cnt) := sqn ; cnt++ ; result := hist(sqn) ; pc++ .

The remainder of the code remains unchanged. The verification of the following result is
straightforward.
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Lemma 6 Let id be the relation between the state spaces of HRW and KRW that expresses
equality of all common variables. Then id is a nondisturbing forward simulation from HRW
to KRW.

We now form an eternity extension of KRW with a shared eternity variableehist of type
(N → Item ∪ {⊥}) and private eternity variables esql of the type (N → N). The behaviour
restriction R expresses that hist is always a partial version of ehist and that the functions
sqlist and esql agree on the first cnt elements for all readers q . We thus define

R ≡ (∀ n : hist(n) = ⊥ ∨ hist(n) = ehist(n))

∧ (∀ q, i : i < cnt.q ⇒ sqlist.q(i) = esql.q(i)) .

To show that R is a behaviour restriction (i.e. satisfies (BR)), we consider some behaviour
xs of KRW . Function hist is only modified in command 21, and then only at an index
where it was not yet defined. This implies that there is a function ehist that satisfies the
first conjunct of R. If we regard sqlist.q as a list of length cnt, it is modified only in steps
21 and 51, and then by extending the list at the end. We can therefore satisfy the second
conjunct of R by choosing esql as the limit of sqlist if cnt grows to infinity. If cnt stabilizes
at some finite value, the remainder of esql can be chosen arbitrarily. So, for every execution
xs, some function ehist and some set of functions esql.q exists that combined satisfy R.
This proves (BR).

Let ERW be the corresponding eternity extension et(KRW , R). By Theorem 3, we have:

Lemma 7 Let id be the relation between the state spaces of KRW and ERW that expresses
equality of all common variables. Then id is a nondisturbing strict simulation from HRW to
KRW.

At this point the idea is to use esql(cnt) as the prophecy of sqn when the reader is at 21
or 51 (so that sqn has not yet been chosen).

We claim that ERW has the invariants

(Lq0) pc.q = 50 ⇒ masq ≤ esql.q(cnt.q) ,
(Lq1) pc.q = 51 ⇒ first.q ≤ esql.q(cnt.q) ,
(Lq2) pc.q = 20 ⇒ masq < esql.q(cnt.q) ∧ hist(esql.q(cnt.q)) = ⊥ ,
(Lq3) pc.q = 21 ⇒ first.q < esql.q(cnt.q) ∧ hist(esql.q(cnt.q)) = ⊥ .

Note that these predicates are not inductive. They are so-called backward invariants [6]
Sect. 2.2. The proofs of (Lq1) and (Lq3) use the second conjunct of the behaviour restriction.
The proofs of (Lq0) and (Lq2) use (Lq1) and (Lq3), respectively.

We also need the following backward invariants

(Lq4) pc.q = 21 ⇒ ehist(esql.q(cnt.q)) = arg.q ,
(Lq5) pc.q ∈ {20, 21} ∧ pc.r ∈ {20, 21} ∧ esql.q(cnt.q) = esql.r(cnt.r)

⇒ q = r .

The proof of (Lq4) is based on the first conjunct of the behaviour restriction. The proof of
(Lq5) is based on the second conjunct of the behaviour restriction, together with (Lq2) and
(Lq3).

For state x of ERW , n ∈ N, and process q , we define histp(x, n) ∈ Item ∪ {⊥} and
sqnp(x, q) ∈ N by the conditional expressions

histp(x, n) = (∃ q : crit(x, n) ? x .ehist(n) : x .hist(n)) , where
crit(x, n) ≡ (∃ q : x .pc.q = 21 ∧ x .esql.q(x .cnt.q) = n) ,

sqnp(x, q) = (x .pc.q ∈ {21, 51} ? x .esl.q(x .cnt.q) : x .sqn.q) .
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Here crit(x, q, n) expresses that process q is about to write the value x .ehist(n) into
hist(n).

Now, we let fep(x) in the state space of PRW be given by:

fep(x) = (#
out := x .out , masq := x .masq , arg := x .arg , result := x .result ,
hist := λ n : histp(x, n) ,
sqn := λ q : sqnp(x, q) ,
pc := λ q : (x .pc.q = 21 ? 22 : x .pc.q) #) ,

where (# and #) are the datatype delimiters of PVS.

Lemma 8 Function fep is a nondisturbing refinement function ERW −� PRW.

Proof The verifications of the conditions (f0) and (f2) of Sect. 4.3 is straightforward. In
condition (f1f), we use as invariant the conjunction of the invariants (Lq0) up to (Lq5).
Validity of the choice of sqn for fep in steps 20 and 50 follows from the invariants (Lq2) and
(Lq0), respectively. The new value of hist after step 20 of PRW is correct because of (Lq4)
and (Lq5). Here (Lq5) is needed to show that crit(x, n) is false when process p is at 20 and
n = esql.p(x .cnt.p). It follows from (Lq4) and behaviour restriction R that command 21 of
ERW is mapped to skip in PRW . The behaviour restriction is also needed at 51. ��
5.4 Extension of the prophetic specification

We now proceed from PRW towards ARW . The first step is to identify the process that writes
at sequence number sqn. For this purpose, we introduce a shared auxiliary variable wr of
type N → Process. This gives a slight modification at 20.

Wr.p : [] pc = 20 → choose sqn with masq < sqn ∧ hist(sqn) = ⊥ ;
hist(sqn) := arg ; wr(sqn) := p ; pc := 22

[] pc = 22 → masq := max(masq, sqn) ; pc++
[] pc = 23 → pc := 0 .

The reading code and the environment are still there, and are unchanged. Again the progress
property is TERM. Let QRW be the corresponding specification. We construct a forward
simulation Fpq : PRW −� QRW by

(x, y) ∈ Fpq ≡
x .out = y.out ∧ x .hist = y.hist ∧ x .masq = y.masq

∧ x .sqn = y.sqn ∧ x .arg = y.arg ∧ x .result = y.result
∧ x .pc = y.pc .

The verification that Fpq is a forward simulation is completely standard.
The relevance of the extension is in the invariant of QRW that expresses the identity of

the writer when it has written and not yet updated masq:

(Kq0) masq < n ∧ hist(n) �= ⊥ ⇒ pc.(wr(n)) = 22 ∧ sqn.(wr(n)) = n .

Indeed, it is easy to verify that (Kq0) is inductive. At this point, we need to observe three
other invariants of QRW :

(Kq1) pc.q ∈ {22, 23} ⇒ hist(sqn.q) = arg.q ∧ wr(sqn.q) = q ,
(Kq2) pc.q > 51 ⇒ hist(sqn.q) = result .q ,
(Kq3) pc.q = 53 ⇒ sqn.q ≤ masq .
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Indeed, all three predicates are inductive. In (Kq1) and (Kq2), we do not really need the value
of hist(sqn.q), but only that it differs from ⊥, so that (Kq0) may be applicable.

We finally observe and prove the backward invariant:

(Kq4) pc.q = 51 ∧ hist(sqn.q) = ⊥ ⇒ masq < sqn.q .

Let QRWi be the invariant restriction of specification QRW for these invariants. By
Sect. 4.2, the identity relation is a strict simulation QRW −� QRWi. By combining the
results of this section with the Lemmas 6, 7, and 8 by means of the Lemmas 2 and 3, we
obtain

Lemma 9 There is a nondisturbing strict simulation HRW −� QRWi.

5.5 The timed specification

The next step is that we extend writing with serialization points that correspond to the value
of sqn. This gives rise to the timed specification TRW , where we no longer need array wr.
In comparison with PRW , the only change is that, in TRW , the variable masq is never
incremented by readers, but only by the writer with the appropriate sequence number. The
writing code is given by

Wr.p : [] pc = 20 → choose sqn with masq < sqn ∧ hist(sqn) = ⊥ ;
hist(sqn) := arg ; pc := 22

[] pc = 22 ∧ masq < sqn → masq := sqn ; pc++
[] pc = 23 → pc := 0 .

The reading code becomes:

Rd.p : [] pc = 50 → choose sqn with masq ≤ sqn ; pc++
[] pc = 51 ∧ sqn = masq ∧ hist(masq) �= ⊥ →

result := hist(masq) ; pc := 53
[] pc = 53 → pc := 0 .

Just as before, the environment is retained and the progress property is TERM.
Specification TRW has the invariants:

(Mq0) pc.q = 22 ⇒ masq < sqn.q ,
(Mq1) pc.q = 23 ⇒ sqn.q ≤ masq ,
(Mq2) pc.q = 51 ⇒ masq ≤ sqn.q ,
(Mq3) pc.q = 53 ⇒ hist(sqn.q) = result .q ,
(Mq4) hist(masq) �= ⊥ .

At this point, we do not need to prove these invariants for TRW , but we incorporate them
in the simulation relation. Let Mq be the boolean function on the state space of TRW that
expresses, for all processes q , the predicates (Mq0), …, (Mq4).

We construct a gliding simulation Fqt : QRWi −�� TRW . Since the variablesout,hist,
arg, sqn play precisely the same roles in the two specifications, Fqt expresses equality for
these variables. The difference is that, whenever masq is incremented in lines 22 or 52 of
QRWi, several writers may have to execute line 22 of TRW . Therefore, masq may have to
traverse a number of intermediate values. It follows that the two specifications differ in their
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treatments of pc and masq. We thus propose the simulation relation:

(x, y) ∈ Fqt ≡
x .masq ≤ y.masq ∧ x .out = y.out ∧ x .hist = y.hist
∧ x .arg = y.arg ∧ x .sqn = y.sqn
∧ (∀ q : (x .pc.q = y.pc.q ≤ 50 ∨ (x .pc.q = 22 ∧ y.pc.q = 23)

∨ (x .pc.q > 50 ∧ y.pc.q ∈ {51, 53}) )

∧ (x .result .q = y.result .q ∨ x .pc.q > 50) )

∧ Mq(y) .

Lemma 10 Relation Fqt is a nondisturbing gliding simulation QRWi −�� TRW.

Proof We define binary relations Hqt and Wt to play the roles of H and W ′ in Sect. 4.9.
Relation Hqt is given by

(x ′, y) ∈ Hqt ≡ y.masq ≤ x ′.masq .

In this way, the conjunction (x, y) ∈ Fqt ∧ (x ′, y) ∈ Hqt expresses that y.masq is between
x .masq and x ′.masq. Since relation Fqt allows the steps at 22 and 51 to occur at different
moments in QRWi and TRW , we let the gliding steps correspond to the steps of TRW at 22
and 51. We thus define Wt = ⋃

q wt.q where wt.q is the union of the two step relations in
TRW for the steps of process q at 22 and 51.

Let the ternary relations T and W be defined in terms of Fqt, Hqt and Wt as described in
Sect. 4.9. It now remains to verify the conditions (T0), (T1), (T2), and (T4). The verification
of (T0) is straightforward. It is clear that Wt is a subrelation of the step relation of TRW .
In every Wt step, the number of processes q with pc.q ∈ {22, 51} decreases. This proves
condition (T2).

As for (T4), let (xs, ys) ∈ Fqtω for some behaviour xs of QRWi. It suffices to prove that
ys satisfies condition TERM. Let a process q and a number n be given. Since xs satisfies
TERM, there is k ≥ n with xs(k).pc.q = 0. Since (xs(k), ys(k)) ∈ Fqt, this implies that
ys(k).pc.q = 0. Therefore, ys satisfies TERM, thus proving (T4).

It remains to verify condition (T1). Let (x, x ′, y) ∈ T be given, i.e., (x, x ′) is a step
of QRWi, and (x, y) ∈ Fqt, and (x ′, y) ∈ Hqt. We need several case distinctions. In our
experience, the easiest approach is to start by treating and eliminating the gliding steps.

First, assume that there is a process q with y.pc.q = 51 and y.sqn.q = y.masq. Since
y satisfies (Mq4), process q can do step 51 in TRW . So there is y′ with (y, y′) ∈ Wt. An
easy verification shows that (x, x ′, y′) ∈ T , as required. We may therefore assume that such
a process does not exist. Since y satisfies (Mq2), it follows that

∀ q : y.pc.q = 51 ⇒ y.masq < y.sqn.q. (0)

The second case is that y.masq < x ′.masq. Since (x, y) ∈ Fqt, it follows that x .masq <

x ′.masq. Therefore, the step (x, x ′) of QRWi increases x .masq. This implies that there is
a process, say p, that performs step 22 or 52. We then have x ′.masq = x .sqn.p. Since x
satisfies (Kq1) and (Kq2), it follows that x .hist(x ′.masq) �= ⊥. In other words, we have
x ′.masq ∈ S for the set

S = {n ∈ N | y.masq < n ∧ x .hist(n) �= ⊥} .

Let n0 be the minimum of S. We then have x .masq ≤ y.masq < n0 ≤ x ′.masq and
x .hist(n0) �= ⊥. We now use that x satisfies (Kq0) for n := n0. It follows that the process
q0 = x .wr(n0) satisfies x .pc.q0 = 22 and x .sqn.q0 = n0. Since (x, y) ∈ Fqt and since y
satisfies (Mq1), it follows that y.pc.q0 = 22. Therefore TRW can perform step 22 at q0.
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Let y′ be the resulting state. We then have (y, y′) ∈ Wt and y′.masq = n0. It follows that
(x ′, y′) ∈ Hqt holds.

We need to verify that y′ satisfies the predicates (Mq0) up to (Mq4). Since y′ only
differs from y in masq and pc.q0, and since masq is incremented, we need only con-
sider (Mq0), (Mq2), and (Mq4). State y′ satisfies (Mq4) because of y′.hist(y′.masq) =
x .hist(n0) �= ⊥.

As for (Mq0), assume y′.pc.q = 22. Then q �= q0 and x .pc.q = y.pc.q = 22. By (Mq0)
for y, we then have y.masq < y.sqn.q . By (Kq1) for x , we have x .hist(x .sqn.q) �= ⊥
and x .wr(x .sqn.q) = q . Since q �= q0, it follows that x .sqn.q �= n0. On the other hand,
since y.sqn.q = x .sqn.q , it follows that y.sqn.q ∈ S, and hence n0 ≤ y.sqn.q . This proves
y′.masq < y′.sqn.q , thus proving that y′ satisfies (Mq0).

As for (Mq2), assume y′.pc.q = 51 and y′.sqn.q < y′.masq. We then have q �= q0

and y.sqn.q = y′.sqn.q < n0 and y.pc.q = y′.pc.q = 51, so that formula (0) implies
y.masq < y.sqn.q . Since n0 is the minimum of S, it follows that x .hist(y.sqn.q) = ⊥.
Using (x, y) ∈ Fqt and (Kq2) for x , we get that x .pc.q = 51. We now use that x ′.pc.q =
x .pc.q and x ′.hist = x .hist and x ′.sqn.q = x .sqn.q . Since x ′ satisfies (Kq4), it follows
that n0 ≤ x ′.masq < x ′.sqn.q = y′.sqn.q , a contradiction.

Using these results, it is easy to verify that (x, y′) ∈ Fqt and, hence, that (x, x ′, y′) ∈ T .
This concludes the case of y.masq < x ′.masq.

The third and final case is that x ′.masq ≤ y.masq. Since (x ′, y) ∈ Hqt, it follows that
x ′.masq = y.masq. We now make a case distinction over the possible steps (x, x ′) of QRWi.
In all these subcases, however, we shall do computation steps. Therefore, let (x ′, x ′′) be a
next step of QRWi. We need to find a step (y, y′) of TRW such that (x ′, x ′′, y′) ∈ T .

We first treat the case that (x, x ′) is a step of some process p at 22 or 52, which may
modify masq. Since x .masq ≤ y.masq = x ′.masq, we can choose a skipping step y′ = y
in TRW . In the case x .pc.p = 22, we use (Mq0) to infer y.pc.p = 23. In either case, it
is proved that (x ′, y′) ∈ Fqt. Since the step (x ′, x ′′) does not decrease masq, we also have
(x ′, y) ∈ Hqt, so that indeed (x ′, x ′′, y′) ∈ T .

In all remaining cases, the step (x, x ′) does not modify masq and we have x .masq =
x ′.masq = y.masq. In the case of a step (x, x ′) for some process p at 51 or of a skipping
step x = x ′, we choose a skipping step y′ = y in TRW . In the case that (x, x ′) is the step in
QRWi of some process p at 0, 20, 23, 50, or 53, we let (y, y′) be the corresponding step of
p in TRW .

First, consider the case that p does the step at 53. Then (Kq3) implies that x .sqn.p ≤
x .masq. It follows that y.sqn.p ≤ y.masq. Therefore, formula (0) together with Fqt implies
that y.pc.q = 53. So, indeed, y can do the step at 53. We then use (Kq2) for x and (Mq3)
for y to get the equality x ′.result .q = y′.result .q . In the remaining cases, the verifications
required are all straightforward. This concludes the proof of (T1) and, hence, of Lemma 10.

��
5.6 The refinement function from TRW to ARW

Since in TRW , every writing process increases masq to its own sequence number and every
reading process reads its result when its sequence number equals masq, we identify these
steps as the actual writing and reading steps and regard hist(masq) as the implementation
of reg.

For the next step, we need that TRW has the invariant (Mq4) introduced above and the
new invariant

(Mq5) pc.q = 22 ⇒ hist(sqn.q) = arg.q .
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Indeed, (Mq5) is inductive and (Mq4) is preserved at 22 because of (Mq5). Let Mq45 be the
subset of the state space of TRW where (Mq4) and (Mq5) hold.

Recall from Sect. 3.4 that AX is the state space of ARW . We define the function fta :
Mq45 → AX by

fta(x) = (#
out := x .out , arg := x .arg , result := x .result ,
reg := x .hist(x .masq),

pc := λ q : (x .pc.q ∈ {20, 22} ? 20 :
x .pc.q ∈ {50, 51} ? 50 : 0) #) .

This function is well defined because of (Mq4). We have:

Lemma 11 Function fta is a refinement mapping from the invariant restriction for Mq45 of
TRW to ARW. Its graph is a nondisturbing strict simulation TRW −� ARW.

The verification of this lemma is completely standard. The invariant (Mq5) is needed to
show that step 22 in TRW corresponds to step 20 in ARW . By composing the results of the
Lemmas 9, 10, and 11, we obtain:

Theorem 5 There is a nondisturbing simulation HRW −�� ARW.

By Lemma 1, this proves Theorem 2.

6 Universality of the atomicity criterion?

We conjecture that the atomicity criterion of Theorem 2 is universal in the sense that every
specification XRW that implements ARW has a nondisturbing gliding simulation to HRW .
For now, we have no idea how to prove this.

In this section, we prove that ARW itself has a nondisturbing simulation to HRW . This
implies that every specification XRW that implements ARW has a nondisturbing simulation
to HRW . The question remains, whether HRW introduces enough prophecies for all possible
implementations of ARW .

To construct a gliding simulation ARW −�� HRW , we consider the question how to
transfer a behaviour of ARW to HRW . The idea is simple enough. Given a behaviour of
ARW , we let the read and write actions be executed by HRW under mutual exclusion.

We therefore define specification MRW , which is a variation of HRW under mutual
exclusion. The state space of MRW is MX, obtained from the state space HX of HRW by
adding the declaration and initialization

var mutex : Process ∪ {⊥} := ⊥ .

The step relation of MRW is given by

Wr.p : [] pc = 20 ∧ mutex = ⊥ → mutex = p ; first := masq ; pc++
[] pc = 21 → sqn := masq+ 1 ; hist(masq+ 1) := arg ; pc++
[] pc = 22 → masq := masq+ 1 ; pc++
[] pc = 23 → mutex := ⊥ ; pc := 0 .

Rd.p : [] pc = 50 ∧ mutex = ⊥ → mutex = p ; first := masq ; pc++
[] pc = 51 → sqn := masq ; result := hist(masq) ; pc++
[] pc = 52 → pc++
[] pc = 53 → mutex := ⊥ ; pc := 0

prop: TERM .
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We first note the mutual exclusion invariant:

(Nq0) pc.q ∈ {0, 20, 50} ∨ mutex = q .

Let fmh be the projection function from MX to HX that forgets the value of mutex. In order
to show that fmh is a refinement function, we verify that MRW has the invariants

(Nq1) pc.q ∈ {21, 51} ⇒ first.q = masq ,
(Nq2) pc.q = 22 ⇒ sqn.q = masq+ 1 ,
(Nq3) pc.q = 52 ⇒ sqn.q = masq ,
(Nq4) hist(masq+ 1) �= ⊥ ⇒ mutex �= ⊥ ∧ pc.mutex = 22 .

These predicates are preserved under modification of masq because of (Nq0). Preservation
of (Nq4) at 22 follows from the easy invariant

(Nq5) hist(n) �= ⊥ ⇒ n ≤ masq+ 1 .

With these invariants, the next lemma is straightforward to verify.

Lemma 12 Function fmh is a nondisturbing refinement function MRW −� HRW.

We turn to the relation between ARW and MRW . We first observe that MRW also has
the invariants:

(Nq6) mutex �= ⊥ ⇒ pc.mutex ∈ {21, 22, 23, 51, 52, 53} ,
(Nq7) mutex �= ⊥ ∧ pc.mutex = 22 ⇒ hist(masq+ 1) = arg.mutex .

Notice that we do not need to prove these invariants. They only serve as predicates, to be
incorporated in the simulation relation.

Let Nq be the subset of the state space MX where the three predicates (Nq0), (Nq6), and
(Nq7) hold. Let fma : Nq → AX be the function given by

fma(y) = (#
out := y.out , arg := y.arg , result := y.result ,
reg := y.hist(y.masq) ,
pc := pha ◦ y.pc #) ,

where pma is the location projection given by

pma =
(

0 20 21 22 23 50 51 52 53
0 20 20 20 0 50 51 0 0

)

.

Let Fam be the converse relation between AX and MX given by

(x, y) ∈ Fam ≡ x = fma(y) ∧ y ∈ Nq .

Lemma 13 Relation Fam is a nondisturbing gliding simulation ARW −�� MRW.

Proof We choose binary relations Ham and Wm to play the roles of H and W ′ described in
Sect. 4.9. Relation Ham expresses that, when MRW has started a read or write procedure of
some process q , this is the next step of ARW :

(x ′, y) ∈ Ham ≡ (∀ q : y.pc.q ∈ {21, 22, 51} ⇒ x ′.pc.q = 0) .

In view of function pma, we take the steps at the locations 20, 21, 23, 50, 52, and 53 to be
gliding steps. We therefore define Wm = ⋃

q wm.q where wm.q is the union of the six step
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relation in MRW for the steps of process q at 20, 21, 23, 50, 52, and 53. It is easy to verify
that there are no infinite sequences of steps in Wm. Therefore, condition (T2) is satisfied.
Condition (T0) is also easily verified. Condition (T3) holds by definition.

As for (T1), consider (x, x ′, y) ∈ T . This means that (x, y) ∈ Fam and (x ′, y) ∈ Ham and
(x, x ′) is a step of ARW . First, assume that y.mutex �= ⊥. Write p = y.mutex. By (Nq6),
we have pc.p ∈ {21, 22, 23, 51, 52, 53}. First, assume that y.pc.p ∈ {21, 23, 52, 53}. Then
y can do a gliding step with (y, y′) ∈ wm.p while x and x ′ remain unchanged. Otherwise,
we have y.pc.p ∈ {22, 51}. Using Ham, we get x ′.pc.p = 0. For every step (x, x ′) of ARW ,
we can use the MRW step of p at 22 or 51 to get a new triple (x ′, x ′′, y′) ∈ T . At 22, we
need (Nq7) to retain the correspondence x .reg = y.hist(y.masq).

It remains to consider the case with y.mutex = ⊥. Then (Nq0) implies that y.pc.q ∈
{0, 20, 50} for all q , and hence x .pc.q = y.pc.q for all q . We now distinguish according to
the step (x, x ′) of ARW . If this is a skip step or a step of the environment, it can be mimicked
immediately in MRW . It remains that it is a write or read step. Then there is a process q with
x .pc.q = y.pc.q ∈ {20, 50} and x ′.pc.q = 0. In that case, again, y can do a gliding step
with (y, y′) ∈ wm.q while x and x ′ remain unchanged.

It remains to verify condition (T4). Let ys be an initial execution of MRW and let xs be a
behaviour of ARW such that (xs, ys) ∈ Famω and that the pair xs, ys is W -immediate. We
have to prove that ys satisfies the property TERM, that is ∀ q : �♦[[ pc.q = 0 ]]. Let a process
q and a number i be given. We have to prove that there is a k ≥ i with ys(k).pc.q = 0. Since
xs is a behaviour of ARW , there is a number n ≥ i with xs(n).pc.q = 0. W -immediacy
implies that there is k ≥ n with xs(k).pc.q = 0 and such that there is no state z ∈ MX
with (z, xs(k + 1) ∈ Ham and (ys(k), z) ∈ Wm. Since (xs(k), ys(k)) ∈ Fam, we have
ys(k).pc.q ∈ {0, 23, 52, 53}. It follows that, if ys(k).pc.q �= 0, then ys(k) can do a gliding
step in wm.q . This implies that ys(k).pc.q = 0. Therefore ys satisfies TERM. ��

Combining the Lemmas 12 and 13, we obtain

Theorem 6 There is a nondisturbing simulation ARW −�� HRW.

7 The verification with PVS

As announced in the introduction, all results have been verified with the theorem prover PVS.
The proof scripts are available at

www.cs.rug.nl/∼wim/mechver/eternity.

The down-loadable PVS-dumpfile w359dump contains a PVS-theory atomicVar, which
ends with the lemma

simHRWtoARW: LEMMA
simulation?(relHK o cvf(behResHH) o graph(fep) o relPQ

o idd(qinv) o relQT o (idd(mq45) o graph(fta)),
histreg, atreg)

This asserts that the composition of eight explicitly given relations is a simulation from
specification histreg (i.e., HRW ) to specification atreg (i.e., ARW ). Two of these
relations are invariant restrictions: idd(J ) is the identity relation of the invariant restriction
for invariant J . Two relations come from functions: graph( f ) is the relation associated to
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function f . The definition of cvf is given in Sect. 4.5. The other theory atomicVarU ends
with the converse lemma

simARWtoHRW: LEMMA
simulation?(relAM o graph(fmh), atreg, histreg)

Both theories heavily rely on a number of general theories about the various kinds of refine-
ment and simulation relations. These theories are also included in the dumpfile mentioned.
The proofs presented in this paper closely follow the PVS proofs (or vice versa). In order to
verify that we proved these two lemmas with PVS, one just has to “undump” the dumpfile
and to ask PVS to replay the proof as provided. This takes 5 min on our machinery (a Pentium
4, 2 GHz). Of course, in order to see what has been proved in this way, one has to consult the
definitions of simulation?, histreg, and atreg in the proof scripts.

8 Conclusions

Years ago, Groote conjectured that prophecy variables would be needed to prove correctness
of Bloom’s algorithm. At that time, I had proved Bloom’s algorithm by means of the atomicity
criterion I am now revisiting, and I did not see the need for prophecy variables. His conjecture
is now vindicated in the sense that I do need prophecies in the form of eternity variables to
prove the atomicity criterion itself.

The details in the proofs of Theorem 4 and of the Lemmas 8, 10, and 13 are so com-
plicated, that we could only convince ourselves of the proofs by extensive use of the proof
assistant PVS [21]. Indeed, there is ample room for improvement and simplification, in par-
ticular of the strict simulation ERW −� PRW and the gliding simulations QRWi −�� TRW
and ARW −�� MRW . In principle, it is quite possible that there is a way to construct a
simulation from HRW to ARW and vice versa via completely different lists of intermediate
specifications.

Acknowledgments We are grateful for the constructive criticisms of an anonymous referee, which led to
significant improvements of the presentation.
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