Skip to main content
Log in

Role of thalamic diffusion for disease differentiation between multiple sclerosis and ischemic cerebral small vessel disease

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Cerebral small vessel disease (CSVD) and multiple sclerosis (MS) both harbor multiple, T2-hyperintense white matter lesions on conventional magnetic resonance imaging (MRI).We aimed to determine the microstructural changes via diffusion-weighted imaging (DWI) in normal appearing thalami. We hypothesized that the apparent diffusion coefficient (ADC) values would be different in CSVD and MS, since the extent of arterial involvement is different in these two diseases.

Methods

DWI was performed for 50 patients with CSVD and 35 patients with MS along with gender- and age-matched controls whose conventional MRI revealed normal findings. DWI was done with 1.5 Tesla MR devices using echo planar imaging (EPI) for b = 0, 1000 s/mm2. ADC values were obtained from the thalami which appeared normal on T2-weighted and FLAIR images. Standard oval regions of interest (ROIs) of 0.5 cm2 which were oriented parallel to the long axis of the thalamus were used for this purpose.

Results

The mean ADC value of the thalamus was (0.99 ± 0.16) × 10−3 mm2/s in patients with CSVD, whereas the mean ADC value was (0.78 ± 0.06) × 10−3 mm2/s in the control group. The mean ADC value was significantly higher in patients with CSVD compared to the controls (p < 0.001). The mean ADC values of the thalamus were (0.78 ± 0.08) × 10−3 mm2/s in MS patients, and (0.75 ± 0.08) × 10−3 mm2/s in the control group, which are not significantly different (p > 0.05).

Conclusion

Our study revealed a difference in the diffusion of the thalami between CSVD and MS. DWI may aid in the radiological disease differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MS:

Multiple sclerosis

CSVD:

Cerebral small vessel disease

MRI:

Magnetic resonance imaging

DWI:

Diffusion-weighted imaging

ADC:

Apparent diffusion coefficient

ROI:

Region of interest

References

  1. Bekiesińska-Figatowska M (2004) T2-hyperintense foci on brain MR imaging. Med Sci Monit 10:80–87

    PubMed  Google Scholar 

  2. Wingerchuk DM, Weinshenker BG (2000) Multiple sclerosis: epidemiology, genetics, classification, natural history, and clinical outcome measures. In: Frank JA (ed) Neuroimaging clinics of North America. W.B. Saunders Company, Philadelphia, pp 611–648

    Google Scholar 

  3. Putaala J, Metso AJ, Metso TM, Konkola N, Kraemer Y, Haapaniemi E, Kaste M, Tatlisumak T (2009) Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: the Helsinki young stroke registry. Stroke 40(4):1195–1203

    Article  PubMed  Google Scholar 

  4. Calli C, Kitis O, Yunten N (2003) DWI findings of periventricular ischemic changes in patients with leukoaraiosis. Comput Med Imaging Graph 27:381–386

    Article  PubMed  Google Scholar 

  5. Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184

    Article  PubMed  Google Scholar 

  6. Helenius J, Soinne L, Salonen O, Kaste M, Tatlisumak T (2002) Leukoaraiosis, ischemic stroke, and normal white matter on diffusion-weighted MRI. Stroke 33:45–50

    Article  PubMed  Google Scholar 

  7. Eisele P, Szabo K, Griebe M, Rossmanith C, Förster A, Hennerici M, Gass A (2012) Reduced diffusion in a subset of acute MS lesions: a serial multiparametric MRI study. AJNR Am J Neuroradiol 33(7):1369–1373

    Article  CAS  PubMed  Google Scholar 

  8. Bot JC, Barkhof F, Lycklama À, Nijeholt G et al (2002) Differentiation of multiple sclerosis from other inflammatory disorders and cerebrovascular disease: value of spinal MR imaging. Radiology 223(1):46–56

    Article  PubMed  Google Scholar 

  9. Bamford J, Sandercock P, Jones L, Warlow C (1987) The natural history of lacunar infarction: the Oxfordshire Community Stroke Project. Stroke 18:545–551

    Article  CAS  PubMed  Google Scholar 

  10. O’Sullivan M (2008) Leukoaraiosis. Pract Neurol 8:26–38

    Article  PubMed  Google Scholar 

  11. Marks MP (2002) Cerebral ischemia and infarction. In: Atlas WS (ed) Magnetic resonance imaging of the brain and spine, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, USA, pp 919–979

    Google Scholar 

  12. Inglese M, Park SJ, Johnson G et al (2007) Deep gray matter perfusion in multiple sclerosis: dynamic susceptibility contrast perfusion magnetic resonance imaging at 3 T. Arch Neurol 64:196–202

    Article  PubMed  Google Scholar 

  13. Bammer R, Fazekas F (2002) Diffusion imaging in multiple sclerosis. Neuroimaging Clin N Am 12:71–106

    Article  PubMed  Google Scholar 

  14. Filippi M, Iannucci G, Cercignani M, Assunta Rocca M, Pratesi A, Comi G (2000) A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch Neurol 57:1017–1021

    Article  CAS  PubMed  Google Scholar 

  15. Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the ‘McDonald criteria’. Ann Neurol 58(6):840–846

    Article  PubMed  Google Scholar 

  16. Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302

    Article  PubMed Central  PubMed  Google Scholar 

  17. Fazekas F, Barkhof F, Wahlund LO et al (2002) CT and MRI rating of white matter lesions. Cerebrovasc Dis 13:31–36

    Article  PubMed  Google Scholar 

  18. Brown WR, Moody DM, Thore CR, Challa VR, Anstrom JA (2007) Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J Neurol Sci 257:62–66

    Article  PubMed Central  PubMed  Google Scholar 

  19. Minagar A, Barnett MH, Benedict RHB et al (2013) The thalamus and multple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 80(2):210–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Oliveira-Filho J, Ay H, Schaefer PW et al (2000) Diffusion-weighted magnetic resonance imaging identifies the “clinically relevant” small-penetrator infarcts. Arch Neurol 57:1009–1014

    Article  CAS  PubMed  Google Scholar 

  21. Chun T, Filippi CG, Zimmerman RD, Uluğ AM (2000) Diffusion changes in the aging human brain. AJNR Am J Neuroradiol 21:1078–1083

    CAS  PubMed  Google Scholar 

  22. Griffin CM, Chard DT, Ciccarelli O et al (2001) Diffusion tensor imaging in early relapsing-remitting multiple sclerosis. Mult Scler 7:290–297

    CAS  PubMed  Google Scholar 

  23. Ciccarelli O, Werring DJ, Wheeler-Kingshott CA et al (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933

    Article  CAS  PubMed  Google Scholar 

  24. Tovar-Moll F, Evangelou TE, Chiu AW et al (2009) Thalamic involvement and its impact on clinical disability in patients with multiple sclerosis: a diffusion tensor imaging study at 3T. AJNR Am J Neuroradiol 30:1381–1387

    Article  Google Scholar 

  25. Ceccarelli A, Rocca MA, Falini A et al (2007) Normal-appearing white and grey matter damage in MS: a volumetric and diffusion tensor MRI study at 3.0 Tesla. J Neurol 254:513–518

    Article  PubMed  Google Scholar 

  26. Hannoun S, Durand-Dubief F, Confavreux C et al (2012) Diffusion tensor-MRI evidence for extra-axonal neuronal degeneration in caudate and thalamic nuclei of patients with multiple sclerosis. AJNR Am J Neuroradiol 33(7):1363–1368

    Article  CAS  PubMed  Google Scholar 

  27. Kilsdonk ID, Wattjes MP, Lopez-Soriano A et al (2014) Improved differentiation between MS and Vascular brain lesions using FLAIR* at 7 Tesla. Eur Radiol 24(4):841–849

    Article  PubMed  Google Scholar 

  28. Sinnecker T, Dörr J, Pfueller CF et al (2012) Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 79(7):708–714

    Article  PubMed  Google Scholar 

  29. Wuerfel J, Sinnecker T, Ringelstein EB et al (2012) Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 18(11):1592–1599

    Article  PubMed  Google Scholar 

Download references

Ethical standards and patient consent

We declare that all human and animal studies have been approved by the Ethics Committee of Cumhuriyet University School of Medicine (No. 2007-4/8; decided May 1, 2007) and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge Öztoprak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztoprak, B., Öztoprak, İ., Topalkara, K. et al. Role of thalamic diffusion for disease differentiation between multiple sclerosis and ischemic cerebral small vessel disease. Neuroradiology 57, 339–347 (2015). https://doi.org/10.1007/s00234-014-1479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1479-z

Keywords

Navigation