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Abstract
Let S be a semigroup. We shall consider the centres of the semigroup (β S, � ) and
of the algebra (M(β S), � ), where M(β S) is the bidual of the semigroup algebra
(� 1(S), � ), and whether the semigroup and the semigroup algebra are Arens regular,
strongly Arens irregular, or neither. We shall also determine subsets of S∗ and of
M(S∗) that are ‘determining for the left topological centre’ (DLTC sets) of β S and
M(β S). It is known that, when the semigroup S is cancellative, � 1(S) is strongly
Arens irregular and that there is a DLTC set consisting of two points of S∗. In contrast,
there is little that has been published about the Arens regularity of � 1(S) when S is
not cancellative. Totally ordered, abelian semigroups, with the map (s, t) → s ∧ t as
the semigroup operation, provide examples which show that several possibilities can
occur. We shall determine the centres of β S and of M(β S) for all such semigroups,
and give several examples, showing that the minimum cardinality of DTC sets may
be arbitrarily large, and, in particular, we shall give an example of a countable, totally
ordered, abelian semigroup S with this operation for which there is no countable DTC
set for βS or for M(βS). There was no previously-known example of an abelian
semigroup S for which β S or M(βS) did not have a finite DTC set.
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1 Introduction

In this section, we shall recall certain standard definitions and results.
Let S be a semigroup, so that S is a non-empty set together with an associative

binary operation, S × S → S; the operation is usually denoted by juxtaposition. In
this case, we shall write

Ls(t) = st , Rs(t) = ts (t ∈ S)

for the left and right translation operators on S for each s ∈ S. The centre of S is the
sub-semigroup Z(S), where

Z(S) = {t ∈ S : st = ts (s ∈ S)} ,

and S is abelian when Z(S) = S, so that st = ts (s, t ∈ S). An element s ∈ S is
idempotent if s2 = s, and S is an idempotent semigroup if each element is idempotent.
A semigroup is cancellative if each Ls and Rs is injective, and weakly cancellative
if the equations xs = t and sx = t have only finitely-many solutions for x for each
s, t ∈ S.

Let (S,≤) be a non-empty, partially ordered set, and suppose that s∧ t = min{s, t}
exists for all s, t ∈ S. Then (S,∧) is an abelian, idempotent semigroup, called a semi-
lattice, and these are the particular semigroups that we shall consider here. Conversely,
suppose that S is an abelian, idempotent semigroup. Take s, t ∈ S, and set s ≤ t if
st = s. Then (S,≤) is a semilattice and s ∧ t = st (s, t ∈ S) [8, Proposition 1.3.2].
Hence (S,∧) is a semigroup that can be identified with S.

A semigroup S which is also a topological space is: a left (respectively, right)
topological semigroup if Ls (respectively, Rs) is continuous for each s ∈ S. In the
case where the semigroup S is also compact (and Hausdorff) as a topological space,
we say that S is a compact, left or right topological semigroup, respectively.

The Stone–Čech compactification β S of a (discrete) set S is a compact set con-
taining S as a dense subset, and is characterized by the property that every continuous
mapping from S into a compact space K has a continuous extension from β S into K .
We regard the semigroup S as a subset of β S.

Now suppose that S is a discrete semigroup. We start by defining two products �
and ♦ on β S such that (β S, � ) and (β S, ♦ ) are also semigroups. Of course, the
semigroups (β S, � ) and (β S, ♦ ) are very well-known; they are the main topic of
the monograph [7].

For each s ∈ S, the map Ls : S → β S has a continuous extension to a map
Ls : β S → β S; for each v ∈ β S, define s � v = Ls(v). Next, each map

Rv : s �→ s � v , S → β S ,

has a continuous extension to a map Rv : β S → β S. For u, v ∈ β S, set

u � v = Rv(u) .
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174 H. G. Dales, D. Strauss

Then � is a binary operation on β S, and the restriction of � to S × S is the original
semigroup product. Further, for each v ∈ β S, the map Rv : β S → β S is continuous,
and, for each s ∈ S, the map Ls : β S → β S is continuous.

Similarly, we can define a binary operation ♦ on β S by exchanging Ls and Rs .
For u, v ∈ β S, we see that

u � v = lim
α

lim
β

sαtβ , u ♦ v = lim
β

lim
α

sαtβ (1.1)

whenever (sα) and (tβ) are nets in S with limα sα = u and limβ tβ = v in β S. The
maps � and ♦ agree with the maps defined in several different ways in [7].

In the case where S is an abelian semigroup, we have

u ♦ v = v � u (u, v ∈ β S) .

It is immediately checked that both� and ♦ are associative operations on β S, and
so we obtain the following fundamental result; see [7, §4.1] for more details.

Theorem 1.1 Let S be a discrete semigroup. Then (β S, � ) and (β S, ♦ ) are semi-
groups containing S as a sub-semigroup. Further:

(i) for each v ∈ β S, the map Rv : u �→ u � v is continuous, and (β S, � ) is a
compact, right topological semigroup;

(ii) for each s ∈ S, the map Ls : v �→ s � v is continuous. �	
In fact, (β S, � ) is the largest compactification of S which is a compact, right

topological semigroup, in the sense that anyother such compactification is a continuous
homomorphic image of (β S, � ) [7, Theorem 4.8]. We set S∗ = β S \ S, the growth
of S.

The following definitions are well-known; see [4, Definition 6.11], [5, Definition
6.1.1], and [10], for example.

Definition 1.2 Let S be a discrete semigroup. The left and right topological centres of
β S are

Z
(�)
t (β S) = {u ∈ β S : u � v = u ♦ v (v ∈ β S)}

and

Z
(r)
t (β S) = {u ∈ β S : v � u = v ♦ u (v ∈ β S)} ,

respectively. The semigroup S is Arens regular if

Z
(�)
t (β S) = Z

(r)
t (β S) = β S ;

S is left strongly Arens irregular if Z(�)
t (β S) = S, right strongly Arens irregular if

Z
(r)
t (β S) = S, and strongly Arens irregular if it is both left and right strongly Arens

irregular. A non-empty subset V of β S is determining for the left topological centre
(a DLTC set) for β S if u ∈ Z

(�)
t (β S) whenever u ∈ β S and u � v = u ♦ v (v ∈ V ).
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Arens regularity for totally ordered semigroups 175

Our set Z(�)
t (β S) is equal to the topological centre,

�(β S) = {u ∈ β S : Lu is continuous on β S} ,

as defined in [7, Definition 2.4]. Thus S is Arens regular if and only if �(β S) = β S.
In the case where S is an abelian semigroup, we have

Z
(�)
t (β S) = Z

(r)
t (β S) = Z(β S) ,

the centre of both the semigroups (S, � ) and (S, ♦ ); we refer to a ‘DTC set’ when
the semigroup S is abelian.

In [4, Example 6.12], there is an example of a semigroup S that is right, but not
left, strongly Arens irregular.

The following theorem is [4, Theorem 12.20] and extends [7, Theorem 6.54]; the
result also follows from a short argument in [13, Theorem 2.2].

Theorem 1.3 Let S be an infinite, weakly cancellative semigroup. Then S is strongly
Arens irregular, and there is a two-point subset of S∗ that is a DLTC set for β S. �	

In §2, we shall determine the centre of β S for certain totally ordered, abelian,
idempotent semigroups Swith respect to the operation (s, t) �→ s∧t (such semigroups
S are usually not weakly cancellative), and shall consider their DTC sets in §3. We
shall give in Example 2.16 an example of an infinite semilattice (that is not weakly
cancellative) that is Arens regular.

We set D = {ζ ∈ C : |ζ | < 1}. The absolutely convex hull of a subset C of a linear
space is denoted by acoC . This is the set of all elements of the form

⎧
⎨

⎩

n∑

j=1

α j s j : α1, . . . , αn ∈ C with
n∑

j=1

∣
∣α j

∣
∣ ≤ 1, s1, . . . , sn ∈ C, n ∈ N

⎫
⎬

⎭
.

The centre of an algebra A is denoted by Z(A).
Let E be a Banach space with a subset F . Then the closed unit ball of E is E[1]

and F[1] = E[1] ∩ F . The dual and bidual spaces of E are denoted by E ′ and E ′′,
respectively; we regard E as a subset of E ′′, so that E[1] is dense in E ′′[1] with respect
to the weak-∗ topology, σ(E ′′, E ′).

There are two products, � and ♦, on the Banach space A′′, called the first and
second Arens products, that extend the module actions on A′′. Indeed, take λ ∈ A′ and
M ∈ A′′, and define λ · M and M · λ in A′ by

〈a, λ · M〉 = 〈M, a · λ〉 , 〈a, M · λ〉 = 〈M, λ · a〉 (a ∈ A) ,

and then, for M,N ∈ A′′, define

〈M�N, λ〉 = 〈M, N · λ〉, 〈M♦N, λ〉 = 〈N, λ · M〉 (λ ∈ A′) .
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176 H. G. Dales, D. Strauss

The basic theorem of Arens (see [1, §2.6] and [5, §2.3]) is that (A′′, � ) and
(A′′, ♦ ) are Banach algebras and that the embedding of A in A′′ is an isometric
algebra monomorphism in both cases. A Banach algebra A is Arens regular if the two
products � and ♦ agree on A′′; for a commutative Banach algebra A this holds if and
only if (A′′, � ) is commutative. We shall write just A′′ for (A′′, � ).

For M,N ∈ A′′, we see that

M�N = lim
α

lim
β

aαbβ , M♦N = lim
β

lim
α

aαbβ (1.2)

whenever (aα) and (bβ) are nets in A with limα aα = M and limβ bβ = N, where all
limits are in the weak-∗ topology, σ(A′′, A′).
Theorem 1.4 Let A be a Banach algebra. For N ∈ A′′, the map

RN : M �→ M�N , A′′ → A′′ ,

is weak-∗ continuous; for a ∈ A, the map La : M �→ a · M, A′′ → A′′, is weak-∗
continuous. �	

The map LN : M �→ N�M is not necessarily weak-∗ continuous on A′′; this holds
for each N ∈ A′′ if and only if A is Arens regular.

The following definitions of Z(�)
t (A′′) and Z

(r)
t (A′′) were first given in [11]; the

notation is from [4, Definition 2.24]. The definition of a DLTC is a small variant of
the one in [4, Definition 12.3]. See also [5, §6.1].

Definition 1.5 Let A be a Banach algebra. Then the left and right topological centres
of A′′ are

Z
(�)
t (A′′) = {

M ∈ A′′ : M�N = M♦N (N ∈ A′′)
}

,

Z
(r)
t (A′′) = {

M ∈ A′′ : N�M = N♦M (N ∈ A′′)
}

,

respectively. The Banach algebra A is left strongly Arens irregular if Z(�)
t (A′′) = A

and right strongly Arens irregular if Z(r)
t (A′′) = A; the algebra A is strongly Arens

irregular if it is both left and right strongly Arens irregular. A subset V of A′′ is
determining for the left topological centre (a DLTC set) of A′′ if M ∈ Z

(�)
t (A′′)

whenever M ∈ A′′ and M�N = M♦N (N ∈ V ).

Note that A ⊂ Z
(�)
t (A′′) ∩ Z

(r)
t (A′′), and that the empty set is a DLTC set when A

is Arens regular.
In the case where the Banach algebra A is commutative, A is Arens regular when

Z(A′′) = A′′ and strongly Arens irregular when Z(A′′) = A, and we refer to DTC
sets.

Let S be a semigroup, and consider the Banach space (� 1(S), ‖ · ‖1). There is a
continuous product � , called convolution, on the space � 1(S). Indeed, for f , g ∈
� 1(S), define

( f � g)(t) =
∑

{ f (r)g(s) : r , s ∈ S, rs = t} (t ∈ S) . (1.3)
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Arens regularity for totally ordered semigroups 177

(If there are no elements r , s ∈ S with rs = t , then ( f � g)(t) = 0.) Then the structure
(� 1(S), ‖ · ‖1 , � ) is a Banach algebra, called the semigroup algebra on S. This algebra
is commutative if and only if S is abelian.

Let S be a semigroup. A semi-character on S is a map θ : S → D such that
θ(st) = θ(s)θ(t) (s, t ∈ S) and θ �= 0. The space of semi-characters on S is
denoted by �S ; it is a locally compact space with respect to the topology of pointwise
convergence.

Let S be an abelian semigroup. Then the algebra � 1(S) is semisimple if and only
if �S separates the points of S, in the sense that, for each s, t ∈ S with s �= t , there
exists θ ∈ �S with θ(s) �= θ(t) [6, Theorem 3.5], and this holds if and only if S is
separating, in the sense that s = t whenever s, t ∈ S with st = s2 = t2 [6, Theorem
5.8]. Thus � 1(S) is algebraically isomorphic to a Banach function algebra, A(�S), on
�S in this case, and all characters on the Banach function algebra A(�S) are given by
evaluation at a point of �S . Certainly an abelian semigroup that is either cancellative
or an idempotent semigroup is separating. See [5] for an account of Banach function
algebras, including this example.

The commutative Banach algebra of all continuous functions that vanish at infinity
on a non-empty, locally compact space K is denoted byC 0(K ), takenwith the uniform
norm, | · |K . By the Riesz representation theorem, the dual space of the Banach space
(C 0(K ), | · |K ) is (M(K ), ‖ · ‖), the space of all complex-valued, regular Borel mea-
sures on K ; the Borel sets of K are denoted byBK . The space of positive measures in
M(K ) isM(K )+, the total variation of ameasureμ is |μ|, we have ‖μ‖ = |μ| (K ), and
the support of μ ∈ M(K ) is denoted by suppμ. We have M(K ) = Md(K )⊕ Mc(K ),
whereMd(K ) andMc(K ) are the discrete and continuousmeasures on K , respectively,
and we identify Md(K ) with � 1(K ).

Recall that the total variation of a measure μ is defined by

|μ| (B) = sup
n∑

j=1

∣
∣μ(Bj )

∣
∣ (B ∈ BK ) ,

where the supremum is taken over all finite partitions {B1, . . . , Bn} of B for which
B1, . . . , Bn ∈ BK . Thus μ | B = 0 if and only if |μ| (B) = 0.

WewriteMR(K ) for the space of real-valuedmeasures on K . Thus eachμ ∈ M(K )

can be written uniquely as

μ = μ1 + iμ2 ,

where μ1, μ2 ∈ MR(K ), and each μ ∈ MR(K ) can be written as μ = μ+ − μ−,
where μ+ = μ ∨ 0, μ− = (−μ) ∨ 0, and

|μ| = μ ∨ (−μ) = μ+ + μ− .

Let S be a discrete semigroup. The dual space of the Banach space � 1(S) is �∞(S),
identified with C(β S), and so the bidual space of � 1(S) is M(β S), and we have

M(β S) = � 1(S) ⊕1 M(S∗) (1.4)
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178 H. G. Dales, D. Strauss

as a Banach space, where � 1(S) is identified with the measures on S. Then
(M(β S), � ) and (M(β S), ♦ ) denote the space M(β S) taken with the two products
� and ♦ that are defined by identifying M(β S) with the bidual space � 1(S)′′, so
that � 1(S) is a closed subalgebra of (M(β S), � ) and (M(β S), ♦ ). (For full details
of this identification, see [4, Chapter 7] and [5].)

In the case where S is an abelian semigroup, the Banach algebra � 1(S) is Arens
regular whenever Z(M(β S)) = M(β S) and strongly Arens irregular whenever
Z(M(β S)) = � 1(S).

We regard S and β S as subsets of � 1(S) and M(β S) by identifying p ∈ β S with
the point mass δp ∈ M(β S). Let (sα) be a net in β S that converges to p ∈ β S. Then
δsα converges to δp in theweak-∗ topology ofM(β S), and so convergence is consistent
with the previous definitions. We also see that the notations � and ♦ for products on
β S and M(β S) are consistent. For example, δp�q = δp � δq (p, q ∈ β S).

Clearly

Z
(�)
t (M(β S)) ∩ β S ⊂ Z

(�)
t (β S) ;

we do not know a semigroup S for which the above inclusion is proper.
The augmentation character on (M(β S), � ) is the map

ϕ0 : μ �→ 〈1β S, μ〉 = μ(β S) =
∫

β S
dμ .

Clearly ϕ0(μ� ν) = ϕ0(μ)ϕ0(ν) (μ, ν ∈ M(β S)), so ϕ0 is indeed a character on
(M(β S), � ), and ϕ0 is weak-∗ continuous.

The following theorem is [4, Theorem 12.15] and [5, Theorem 6.3.10].

Theorem 1.6 Let S be an infinite, cancellative semigroup. Then the semigroup algebra
� 1(S) is strongly Arens irregular, and there exist a and b in S∗ such that the two-point
set {δa, δb} is determining for the left topological centre of M(β S). �	

Analogues of the above theorem for ‘weighted semigroup algebras’ are given in
[3] and [12].

We do not know whether the fact that � 1(S) is strongly Arens irregular implies that
S is strongly Arens irregular, even for abelian semigroups.

We shall give in §3 examples of abelian, idempotent semigroups S such that the
semigroup algebras � 1(S) are strongly Arens irregular. In one example, there is no
finite DTC set for S, but M(β S) has a two-element DTC set. In another example,
there is no countable DTC set for S or for M(β S).

Let S be a semigroup, and consider the centre Z = Z(M(β S),� ). We write ZR

for Z(MR(β S), �). The following result is immediate.

Proposition 1.7 Let S be a semigroup. Suppose that μ ∈ M(β S) and that μ =
μ1 + iμ2, where μ1, μ2 ∈ MR(β S). Then μ ∈ Z if and only if μ1, μ2 ∈ ZR. �	
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Arens regularity for totally ordered semigroups 179

2 Totally ordered semigroups

In this section, we shall introduce a class of totally ordered, abelian, idempotent semi-
groups, and obtain some results about their Arens regularity and the Arens regularity
of their semigroup algebras.

Throughout the section, T will denote an infinite, totally ordered space. For s, t ∈ T ,
we set

s ∧ t = min{s, t} , s ∨ t = max{s, t} ,

so that T is a lattice and a semigroup with respect to the operations

(s, t) �→ s ∧ t , (s, t) �→ s ∨ t , T × T → T .

Thus T is an abelian, idempotent semigroup with respect to both these operations; we
shall just consider the operation∧. We further suppose that T has a minimum element,
called 0, and a maximum element, called ∞, and that T is complete, in the sense that
every non-empty subset of T has a supremum and an infimum. We give T its interval
topology, so that the closed intervals provide a subbase for the closed sets, and the
intervals of the form (a, b), [0, a), (a,∞], and [0,∞] are a subbase for the open sets
of T , and we shall refer to them as open intervals. The space T is then a compact
topological semigroup. Further, every increasing or decreasing net in T converges to
its supremum or infimum, respectively.

Certain preliminaries about the semigroup S are contained in the paper of Ross
[14].

We shall denote by S an arbitrary, infinite subset of T , so that S is a sub-semigroup
of (T ,∧) that is also an abelian, idempotent semigroup. For subsets A and B of S, we
write A ≤ B if s ≤ t (s ∈ A, t ∈ B). The set S with the discrete topology is denoted
by Sd , and we set X = β Sd and X∗ = X \ S. The closures of a subset A of S in T
and X are clT A and clX A, respectively. The map

π : X → T

denotes the continuous extension of the inclusion map of S into T , so that π(X) =
clT S. We shall write Ft for the fibre {x ∈ X : π(x) = t} for t ∈ clT S. We set
F∗
t = Ft ∩ X∗ throughout, so that

F∗
t = Ft (t ∈ T \ S) and F∗

t = Ft \ {t} (t ∈ S) .

We recall the standard facts, that, for every subset A of S, the set clX A is clopen
in X , and that, for every subsets A and B of S that are disjoint, the two sets clX A and
clX B are disjoint in X .

We let E denote the set of accumulation points of S in T , so that E �= ∅. Take
t ∈ T . Then F∗

t is a closed, and hence compact, subspace of X , and clearly F∗
t �= ∅

if and only if t ∈ E .
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180 H. G. Dales, D. Strauss

For μ ∈ M(X), we define μπ ∈ M(T ) by

μπ(B) = μ(π−1(B)) (B ∈ BT ) .

For example: set T = N ∪ {∞} and S = N, so that E = {∞} and F∞ = N
∗; set

T = {−∞} ∪ R ∪ {∞} and S = Q, so that E = T ; set T = [0, ω1], where ω1 is the
first uncountable ordinal, and S = [0, ω1), so that E is the collection of limit ordinals
in T . These examples are not weakly cancellative.

Consider the space {0, 1}κ , where κ is a non-zero cardinal and a generic element in
{0, 1}κ is (uα : α ≤ κ). Then {0, 1}κ is a complete lattice with respect to the product

(uα) ∧ (vα) = (uα ∧ vα) ((uα), (vα) ∈ {0, 1}κ)

and a compact topological semigroup.
Suppose that S is a semi-lattice, and hence a separating semigroup, so that �S

separates the points of S and (S,∧) is a partially ordered semigroup. Every semi-
character in �S maps S into {0, 1}, and so (S,∧) can be embedded as a semigroup
in C := ({0, 1}κ ,∧), where κ denotes the cardinality of any subset � of �S that
separates the points of S; we regard S as a sub-semigroup of {0, 1}κ . Note that we can
always choose � to have the cardinality |S| by using the fact that each s ∈ S defines
an element θ ∈ �S by setting θ(t) = 1 if and only if s ≤ t . In particular, when S = Q,
we can set C = {0, 1}ℵ0 , the Cantor set, whereas

∣
∣�Q

∣
∣ = c.

Consider the case where (S,∧) is totally ordered, and define T to be the closure
of S in C , so that T is also a complete lattice that is compact in its interval topology.
We observe that every θ ∈ � can be extended to a semi-character defined on C by
putting

θ(x) = sup{θ(s) : s ∈ S, s ≤ x}

for every x ∈ C , where sup(∅) is regarded as the minimum element of C . We claim
that the sub-semigroup (T ,∧) is also totally ordered. To see this, given s ∈ S, take Ts
to be

Ts = {x ∈ C : θ(x) ≤ θ(s) (θ ∈ �)} ∪ {x ∈ C : θ(s) ≤ θ(x) (θ ∈ �)} .

Then Ts is a closed subset of C that contains S, and so it contains T . The set T is
contained in Ts for every s ∈ S. Now take x ∈ T . Then, for every s ∈ S, we have
θ(x) ≤ θ(s) (θ ∈ �) or θ(s) ≤ θ(x) (θ ∈ �). Hence, for each x, y ∈ T , we have
x ≤ y or y ≤ x . This shows that (T ,∧) is also totally ordered, giving the claim.

Thus each totally ordered semigroup (S,∧) can be embedded in a complete, com-
pact, totally ordered topological semigroup (T ,∧), as described above; this fact is
well-known.

Take t ∈ E . Throughout we shall write

At = S ∩ [0, t) and Bt = S ∩ (t,∞] ;
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Arens regularity for totally ordered semigroups 181

at least one of these sets is non-empty. It follows that

F∗
t ⊂ clX At ∪ clX Bt , (2.1)

and hence the sets F∗
t ∩ clX At and F∗

t ∩ clX Bt are disjoint, compact subspaces of F∗
t

whose union is F∗
t .

Lemma 2.1 (i) Take a subset A of S, and suppose that μ ∈ M(X)[1] with suppμ ⊂
clX A. Then the measure μ belongs to the weak-∗ closure of aco{δs : s ∈ A}.

(ii) Suppose that A and B are subsets of S such that A ≤ B. Take μ, ν ∈ M(X)

with suppμ ⊂ clX A and supp ν ⊂ clX B. Then

μ� ν = ν �μ = ϕ0(ν)μ .

(iii) Take p, q ∈ X with π(p) < π(q). Then p� q = q � p = p.

Proof (i) Certainly, by [2, Corollary 4.4.16], μ is in the weak-∗ closure of the set

aco{δu : u ∈ clX A} ,

and each δu for u ∈ clX A is the weak-∗ limit of a net in {δs : s ∈ A}.
(ii) We may suppose that μ, ν ∈ M(X)[1]. Take σ ∈ aco{δs : s ∈ A} and τ ∈

aco{δt : t ∈ B}. We have

δs � δt = δt � δs = δs (s ∈ A, t ∈ B) ,

and so σ � τ = τ � σ = ϕ0(τ )σ . Using (i) and equation (1.2), we can take weak-∗
limits to see that

μ� ν = lim
σ→μ

lim
τ→ν

σ � τ = lim
σ→μ

lim
τ→ν

ϕ0(τ )σ = lim
σ→μ

ϕ0(ν)σ = ϕ0(ν)μ .

Similarly, ν �μ = ϕ0(ν)μ, and so μ� ν = ν �μ.
(iii) We may suppose that there exists t ∈ [π(p), π(q)] such that p ∈ clX At and

q ∈ clX Bt , and so this follows from clause (ii). �	
Lemma 2.2 Take p ∈ F∗

t , where t ∈ E. Then

p ∈ clX (S ∩ ([0, t) ∪ (t,∞])) = clX (S \ {t}).

Proof The element p is a point of accumulation of S in X , and so π(p) = t is a point
of accumulation of S in T , giving the result. �	
Lemma 2.3 Take p, q ∈ X∗, and t ∈ E.

(i) Suppose that p, q ∈ F∗
t ∩ clX At . Then p� q = p.

(ii) Suppose that p, q ∈ F∗
t ∩ clX Bt . Then p� q = q.

(iii) Suppose that p ∈ F∗
t ∩clX At and that q ∈ F∗

t ∩clX Bt . Then p� q = q � p =
p.

123



182 H. G. Dales, D. Strauss

Proof To prove (i), choose nets (sα)α∈I and (sβ)β∈J in At which converge to p and q,
respectively, in X . Now π(sα) = sα → π(p) = t and π(sβ) = sβ → π(q) = t . So,
for eachα ∈ I , the net (sβ)β∈J ,sβ>sα converges toq in X . Since p�q = lim

sα→p
lim
sβ→q

sα∧
sβ and sα ∧ sβ = sα if sβ > sα , it follows that p�q = lim

sα→p
sα = p.

The proof of (ii) is similar, and (iii) is a special case of Lemma 2.1(ii). �	
We have seen that, for p, q ∈ X with p �= q, we have p� q = q � p unless p

and q both belong to sets of the form F∗
t ∩ clX At or of the form F∗

t ∩ clX Bt for some
t ∈ E . These sets will play a crucial rôle in the description of Z(X) and Z(M(X)).

Lemma 2.4 Take t ∈ E. Then
∣
∣F∗

t

∣
∣ ≥ 2c.

Proof We may suppose that t ∈ clT At .
We first note that, since T is totally ordered, there is an infinite limit ordinal τ and

a strictly increasing net (sα : α < τ) in S ∩ [0, t) that converges to t in T .
Let (Nk) be a family of pairwise-disjoint, infinite subsets of N. For each k ∈ N,

take Ek to be the set of sα such that α = λ + n, where λ is 0 or a limit ordinal
and n ∈ Nk . The sequence {Ek : k ∈ N} partitions the set {sα : α < τ } into an
infinite number of disjoint subnets. The sets clX Ek are pairwise-disjoint in X and
(clX Ek) ∩ Ft �= ∅ (k ∈ N). Thus Ft is infinite.

Since F∗
t is an infinite, compact subspace of X , we have

∣
∣F∗

t

∣
∣ ≥ 2c by [7, Theorem

3.59]. �	
Theorem 2.5 The semigroup (S,∧) is strongly Arens irregular, and the semigroup
algebra (� 1(S), � ) is not Arens regular.

Proof Consider a point p ∈ X∗, say p ∈ F∗
t , where t ∈ E . We may suppose that

p ∈ clX At , and so there exists q ∈ F∗
t ∩clX At with q �= p by Lemma 2.4. By Lemma

2.3(i), it follows that p� q �= q � p, and so p /∈ Z(X). Hence Z(X) = S, showing
that S is strongly Arens irregular.

Clearly δp /∈ Z(M(X)), and so � 1(S) is not Arens regular. �	
It follows that, in the special case that we are considering, we have Z(M(X))∩X =

Z(X).
We shall now consider when the semigroup algebra (� 1(S), � ) is strongly Arens

irregular.

Lemma 2.6 Let μ ∈ M(X), and take t ∈ E. Suppose that

μ | (F∗
t ∩U ) = 0 ,

where U = clX At or U = clX Bt . Then μ� p = p�μ (p ∈ F∗
t ∩U ).

Proof We may suppose that μ ∈ MR(K ) because μ = ν1 + iν2, where ν1, ν2 ∈
MR(K ). We may also suppose that U = clX At , and that there exists p ∈ F∗

t ∩ U .
Furthermore, we may suppose thatμ({s}) = 0 for every s ∈ S because we can replace
μ by μ − ∑

s∈S μ({s})δs as � 1(S) ⊆ Z(M(X).
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Now
⋂

u∈At
clX (S∩[u, t]) is contained in {t}∪ (F∗

t ∩U ) if t ∈ S, and is contained
in F∗

t ∩U if t ∈ E \ S. In either case, we have |μ|(⋂{clX (S ∩ [u, t]) : u ∈ At }) = 0.
Choose ε > 0. Since |μ| is regular, there exists u ∈ At such that |μ|(clX (S ∩

[u, t])) < ε. So ‖μ | cl(S ∩ [u, t])‖ < ε. Let μ1 = μ | clX Au and μ2 = μ | clX Bt ,
so that μ1 � p = p�μ1 and μ2 � p = p�μ2 by Lemma 2.1(ii).

Now μ = μ | clX (S ∩ [u, t]) + μ1 + μ2 because

X = clX (S ∩ [u, t]) + clX Au + clX Bt

and these are disjoint subsets of X . It follows that

‖μ� p − p�μ‖ < 2ε .

This holds for each ε > 0, and so μ� p = p�μ. �	
Proposition 2.7 Let μ ∈ M(X)[1]. Take t ∈ E, and set

U = F∗
t ∩ clX At or U = F∗

t ∩ clX Bt .

Suppose that p ∈ U and that μ� p = p�μ. Then μ | U = zp for some z ∈ D.
Suppose also that q ∈ U with q �= p and that μ� q = q �μ. Then μ | U = 0.

Proof We suppose that U = F∗
t ∩ clX At .

Setν = μ | U . Since (μ−ν) | U = 0, it follows fromLemma2.6 that (μ−ν)� p =
p� (μ − ν). By hypothesis, μ� p = p�μ, and so ν � p = p� ν.

Take s ∈ [0, t). By Lemma 2.1(i), the measure ν belongs to the weak-∗ closure of
Cs := aco{δr : r ∈ S ∩ (s, t)}. Each σ ∈ Cs has the form σ = ζ1δs1 + · · · + ζmδsm ,
where m ∈ N, ζ1, . . . , ζm ∈ C with |ζ1| + · · · + |ζm | ≤ 1, and s1, . . . , sm ∈ (s, t). We
have s � σ = ϕ0(σ )s, and so

p� ν = lim
s→p

lim
σ→ν

s � σ = lim
s→p

ϕ0(ν)s = zp ,

where z = ϕ0(ν) ∈ D.
On the other hand, take σ ∈ aco{δr : r ∈ At } of the above form. Then σ � s = σ

for s > si (i ∈ Nm), and so

ν � p = lim
σ→ν

lim
s→p

σ � s = lim
σ→ν

σ = ν .

We conclude that ν = ν � p = p� ν = zp, as required.
Now suppose also that q ∈ U with q �= p and that μ� q = q �μ. Then there

exist z, w ∈ D such that ν = zp and ν = wq. Since q �= p, we have zw = 0, and so
ν = 0. �	
Lemma 2.8 Let [a, b] be a closed interval in T . Suppose thatF is a finite family of open
intervals in T whose union contains [a, b]. Then there exist n ∈ N and t0, . . . , tn ∈ T
such that

a = t0 < t1 < · · · < tn−1 < tn = b
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and such that each interval [ti , ti+1] is contained in a member of F .

Proof This is an immediate induction on the cardinality of the family F . �	
Proposition 2.9 Let μ ∈ M(X) be such that μ | F∗

t = 0 (t ∈ E). Then μ ∈
Z(M(X)).

Proof Since � 1(S) ⊂ Z(M(X)), we may suppose that μ({s}) = 0 for every s ∈ S,
because we can replace μ by μ − ∑

s∈S μ({s})δs . If t ∈ E \ S, then μπ({t}) =
μ(F∗

t ) = 0. It follows that μπ(t) = 0 for every t ∈ T .
Take ν ∈ M(X)[1] and ε > 0.
Each t ∈ T is contained in an open interval, say Ut , of T such that |μ|π (Ut ) < ε,

and, since T is compact, we can suppose that the union of finitely many sets of the
form Ut is T . By Lemma 2.8, there exist n ∈ N and t0, . . . , tn ∈ T with 0 = t0 <

t1 < · · · < tn−1 < tn = ∞ such that |μ|π (Ii ) < ε for i = 0, 1, . . . , n − 1, where
Ii := [ti , ti+1].

Set μi = μ | π−1(Ii ) and νi = ν | π−1(Ii ) for i = 0, 1, . . . , n − 1, so that μ =∑n−1
i=0 μi and ν = ∑n−1

i=0 νi . It follows from Lemma 2.1(ii) that μi � ν j = ν j �μi

whenever i, j ∈ {0, 1, . . . , n − 1} and i �= j . Take i ∈ {0, 1, . . . , n − 1}. Since
|μ|π (Ii ) < ε, we have ‖μi � νi‖ < ε ‖νi‖, and so

∥
∥
∥
∥
∥

n−1∑

i=0

μi � νi

∥
∥
∥
∥
∥

< ε and

∥
∥
∥
∥
∥

n−1∑

i=0

νi �μi

∥
∥
∥
∥
∥

< ε .

Hence ‖μ� ν − ν �μ‖ < 2ε.
This holds for each ε > 0, and soμ� ν = ν �μ. We conclude thatμ ∈ Z(M(X)).

�	
Proposition 2.10 Let μ ∈ M(X), and suppose that there exists t ∈ E such that
μ | F∗

t �= 0. Then μ /∈ Z(M(X)).

Proof We fix t ∈ E as specified.
We again set U = F∗

t ∩ clX At , and we may suppose that μ | U �= 0, using
equation (2.1). By Lemma 2.4, there are two distinct points, say p and q, in U . It
follows from Proposition 2.7 that either μ� p �= p�μ or μ� q �= q �μ, and hence
μ /∈ Z(M(X)). �	
Theorem 2.11 Letμ ∈ M(X). Thenμ ∈ Z(M(X)) if and only ifμ | F∗

t = 0 (t ∈ E).

Proof This now follows from Propositions 2.9 and 2.10. �	
Corollary 2.12 (i) Let μ ∈ M(X). Then μ ∈ Z(M(X)) if and only if |μ| ∈ Z(M(X)).

(ii) Let μ ∈ MR(X). Then the following are equivalent:
(a) μ ∈ Z(M(X));
(b) |μ| ∈ Z(M(X));
(c) μ+, μ− ∈ Z(M(X)).
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Proof (i) This is immediate from Theorem 2.11.
(ii) Clearly (a) ⇔ (b), and (c) ⇒ (a).
Suppose that (a) and (b) hold. Then μ+ = (μ + |μ|)/2 ∈ Z(M(X)) and μ− =

(μ − |μ|)/2 ∈ Z(M(X)), giving (c). �	
Let E be a Banach space, and denote byB(E) the Banach algebra of bounded linear

operators on E . An element P ∈ B(E) is a projection if P2 = P . A closed linear
subspace F of E is complemented if there is a closed linear subspace G of E such
that E = F ⊕ G. Suppose that P is a projection in B(E). Then the spaces P(E) and
ker P are complemented in E and E = P(E) ⊕ ker P; both are 1-complemented if
‖P‖ = 1.

Let E be a (complex) Banach lattice, so that E is the complexification of the real
Banach lattice ER. A Banach lattice is Dedekind complete if every increasing net in
E+ = E+

R
that is bounded above has a supremum.

Let K be a non-empty, compact space. Then M(K ) is a Dedekind complete Banach
lattice. Let B ∈ B K , and set

MB = {μ ∈ M(K ) : μ | B = 0} .

Since |μ ∨ ν| ≤ |μ| + |ν| (μ, ν ∈ M(K )), it follows that MB is a sublattice of
M(K ). Also MB is Dedekind complete because, for any increasing, bounded net
(μα) in M+

B , we have μ := ∨
α μα exists in M(K )+, and clearly μ ∈ MB . Thus

{μ ∈ M(K ) : μ | B = 0 (B ∈ F)} is a Dedekind complete lattice for each family F
inB K .

(We remark that, for each compact space K , the Banach lattice M(K ) is an AL-
space; that eachAL-space is order-continuous; and that, in an order-continuousBanach
lattice, a set is order-closed if and only if it is norm-closed. Thus every norm-closed
sublattice of M(K ) is Dedekind complete. For definitions and proofs of these state-
ments, see [17], for example.)

Corollary 2.13 The space Z(M(X)) is 1-complemented in M(X), and Z(M(X)) is a
Banach sublattice of M(X) that is Dedekind complete.

Proof Take μ ∈ M(X). The set E0 := {t ∈ E : |μ|(F∗
t ) > 0} is countable because

{F∗
t : t ∈ E} is a pairwise-disjoint family of sets. Define P : M(X) → M(X) by

Pμ =
∑

{μ | F∗
t : t ∈ E} =

∑
{μ | F∗

t : t ∈ E0} .

The sum converges in M(X), and P is a projection in B(M(X)) with ‖P‖ = 1. By
Theorem 2.11, ker P = Z(M(X)), and hence Z(M(X)) is 1-complemented in M(X).

It follows from the above remarks that Z(M(X)) is a Banach sublattice of M(K )

that is Dedekind complete. �	
A topological space Y is scattered if each non-empty subset of Y contains a point

that is isolated in the subset. In the case where K is a compact space, the following
conditions are equivalent:

(a) K is scattered;
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(b) f (K ) is countable for each f ∈ C(K );
(c) � 1(K ) = M(K ).

For this, see [9, §5], where several other equivalent conditions are given. For example,
Z

+ ∪ {∞} and [0, ω1] are scattered, but the spaces Q and {−∞} ∪ R ∪ {∞} are not
scattered.

Theorem 2.14 The semigroup algebra (� 1(S), � ) is strongly Arens irregular if and
only if clT S is scattered.

Proof First, suppose that clT S is scattered. Take μ ∈ Z(M(X)). Then |μ|π ∈
� 1(clT S). By Theorem 2.11, μ | F∗

t = 0 (t ∈ E), and so |μ|π ({t}) = |μ| ({t}) (t ∈
clT S). Also, |μ|π ({t}) = 0 (t ∈ clT S \ S) because π−1({t}) ⊂ X∗. Thus
|μ|π ∈ � 1(S). Since

∥
∥ |μ|π

∥
∥
1 = ‖ |μ| ‖1, it follows that |μ| ∈ � 1(S), and so

μ ∈ � 1(S). Hence Z(M(X)) = � 1(S), showing that � 1(S) is strongly Arens irregular.
Conversely, suppose that clT S is not scattered. Choose a continuous probability

measure, say μ, on clT S, and set

F = { f ◦ π : f ∈ C(clT S)} ,

so that F is a closed linear subspace ofC(X). We define a continuous linear functional
ν on F by setting

ν( f ◦ π) = μ( f ) ( f ∈ C(clT S)) ,

so that ‖ν‖ = ν(1clT S) = 1. By the Hahn–Banach theorem, we can extend ν to be a
continuous linear functional on C(X), still with ‖ν‖ = ν(1clT S) = 1; we regard ν as a
probability measure on X . Since ν(F∗

t ) = 0 (t ∈ E), it follows from Proposition 2.9
that ν ∈ Z(M(X)). Since ν /∈ � 1(S), the Banach algebra � 1(S) is not strongly Arens
irregular. �	

The following corollary includes the case where S = (Q,∧). Analogous results
for the algebra L1([0, 1]), where [0, 1] is a compact, totally ordered semigroup with
respect to the operation ∧, are given by Saghafi in [15].

Corollary 2.15 Suppose that clT S is not scattered. Then

� 1(S) � Z(M(X)) � M(X) ,

and so the algebra (� 1(S), � ) is neither Arens regular nor strongly Arens irregular.�	
Example 2.16 We conclude this section by noting that, in Theorem 2.5, we cannot
take T to be just partially ordered. Indeed, set T = {0, 1}ℵ0 , as above, so that T is
a partially ordered set that is a lattice. Then take S to consist of the elements of T
that have at most one non-zero component, so that (S,∧) is an abelian, idempotent
semigroup, and S is not weakly cancellative. The zero sequence is denoted by 0. It
follows from equation (1.1) that u � v = 0 for u, v ∈ β S, save when u = v ∈ S.
Thus S and � 1(S) are both Arens regular. �	
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3 DTC sets

We recall from Theorems 1.3 and 1.6 that an infinite, weakly cancellative semigroup
is strongly Arens irregular and has a two-point DLTC set, and an infinite, cancellative
semigroup S is such that the semigroup algebra � 1(S) is strongly Arens irregular and
has a two-point DLTC set contained in S∗. We now consider some related results for
the semigroups (S,∧) considered above.

Let S, T , X , and E be as above. We can obtain a DTC set V for M(X) that is
contained in X∗ as follows.

For each t ∈ E , we choose two distinct points in F∗
t ∩clX At and two distinct points

in F∗
t ∩ clX Bt whenever the respective sets are non-empty. The collection of these

points is called V . Now take μ ∈ M(X), and suppose that μ� p = p�μ for each
p ∈ V . It follows from Proposition 2.7 that μ | F∗

t ∩ clX At = μ | F∗
t ∩ clX Bt = 0

for each t ∈ E . Thus μ | F∗
t = 0. By Theorem 2.11, this implies that μ ∈ Z(M(X)),

and hence V is a DTC set for M(X). It follows that, if E is infinite, M(X) has a DTC
set consisting of at most 2κ points of X , where κ = |S|; this is a small subset of X
because |X | = 22

κ
.

Suppose that E is finite. Then the above DTC set V is also finite.
Suppose that E is infinite, so that |V | = |E |. Then there cannot be a finite DTC set

for the semigroup S. For suppose that V is a finite subset in X , and choose t ∈ E\π(V ),
and then choose p ∈ F∗

t . We have p� v = v � p (v ∈ V ) by Lemma 2.1(iii), but
p /∈ S. Since S is strongly Arens irregular by Theorem 2.5, this shows that V is not a
DTC set for S. Similarly, there is no countable DTC set for S when E is uncountable.

Thus we obtain the following result.

Proposition 3.1 Suppose that the set E is finite. Then there is a finite DTC set for the
semigroup S.

Suppose that the set E is infinite or uncountable. Then there is no finite or countable
DTC set for the semigroup S, respectively. �	
Theorem 3.2 Suppose that the set E is countable. Then the semigroup algebra � 1(S)

is strongly Arens irregular and has a DTC set consisting of at most four measures in
M(X∗)+.

Proof The set E is scattered because it is a countable, compact space, and so clT S is
scattered. By Theorem 2.14, � 1(S) is strongly Arens irregular.

Set

A = {t ∈ E : F∗
t ∩ clX At �= ∅}

and

B = {t ∈ E : F∗
t ∩ clX Bt �= ∅} .

(One of these two sets might be empty, but at least one is non-empty.) Take {sn : n ∈ I }
and {tn : n ∈ J } to be enumerations of A and B, respectively, where I and J are subsets
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of N. For each n ∈ I , choose two distinct points, say p1,n and p2,n , in F∗
sn ∩ clX Asn ,

and, for each n ∈ J , choose two distinct points, say q1,n and q2,n , in F∗
tn ∩ clX Btn .

Consider the two measures

μ j =
∑

n∈I

1

2n
δp j,n ( j = 1, 2) ,

defined when A �= ∅, and similarly μ3, μ4, defined when B �= ∅. We obtain at most
four measures in M(X∗)+, forming a set V .

We claim that V is a DTC set for M(X). Indeed, suppose that μ ∈ M(X) and that
μ� ν = ν �μ (ν ∈ V ).

Take n ∈ I , and set νn = μ | (F∗
sn ∩ Asn ). It follows from Lemma 2.6 that

(μ − νn)� p j,n = p j,n � (μ − νn) ( j = 1, 2).
Set ν = ∑

n∈I νn . Then, for each n ∈ I , we have

(μ − ν) | (F∗
sn ∩ Asn ) = (μ − νn) | (F∗

sn ∩ Asn )

because νm | (F∗
sn ∩ Asn ) = 0 (m ∈ I \ {n}). Now take m, n ∈ I with m �= n. Again

by Lemma 2.6, we have

νm � p j,n = p j,n � νm ( j = 1, 2) . (3.1)

It follows that (μ − νm)� p j,n = p j,n � (μ − νm) ( j = 1, 2). This shows that

(μ − ν)� p j,n = p j,n � (μ − ν) (n ∈ I , j = 1, 2) ,

and hence

(μ − ν)�μ j = μ j � (μ − ν) ( j = 1, 2) .

By the hypothesis, we have

ν �μ j = μ j � ν ( j = 1, 2) .

It now follows from equation (3.1) that

νn � p j,n = p j,n � νn ( j = 1, 2) .

By Proposition 2.7, νn = 0 (n ∈ I ), i.e., μ | (F∗
sn ∩ Asn ) = 0 (n ∈ I ).

Similarly μ | (F∗
tn ∩ clX Btn ) = 0 (n ∈ J ).

It then follows thatμ | F∗
t = 0 (t ∈ E), and so, byTheorem2.11,μ ∈ Z(M(X)) =

� 1(S), completing the proof. �	
Corollary 3.3 Suppose that the semigroup S is countable and the semigroup algebra
� 1(S) is strongly Arens irregular. Then � 1(S) has a DTC set consisting of at most
four measures in M(X∗)+.
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Proof Consider the space clT S. Since S is countable, this space is second countable
because open intervals in clT S are unions of open intervals of the form [0, s), (s, t),
and (s,∞], where s, t ∈ S. Since � 1(S) is strongly Arens irregular, the set clT S is
scattered by Theorem 2.14. By [16, Proposition 8.5.5], clT S is countable, and so the
set E is countable. Hence the result follows from the theorem. �	
Proposition 3.4 Suppose that |E | = κ , where κ ≥ ℵ1. Then there is no DTC set for
M(X) with cardinality less than κ .

Proof Assume that V is aDTC set forM(X)with |V | < κ . For each ν ∈ V , the set {t ∈
E : ν | F∗

t �= 0} is countable because {F∗
t : t ∈ E} is a family of pairwise-disjoint,

non-empty, compact sets. Hence there exists t ∈ E such that ν | F∗
t = 0 (ν ∈ V ).

Choose p ∈ F∗
t . It follows from Lemma 2.6 that p� ν = ν � p (ν ∈ V ). By the

assumption, p ∈ Z(M(X)), a contradiction of Proposition 2.10.
It follows that there is no DTC set for M(X) with |V | < κ . �	

Corollary 3.5 Suppose that the set E is uncountable. Then there is no countable DTC
set for M(X). �	
Example 3.6 (i) Consider the semigroup (N,∧). Then we see that

μ� ν = ϕ0(ν) μ (μ ∈ M(β N), ν ∈ M(N∗)) .

It follows that any two distinct points in N
∗ form a two-point DTC set for (N,∧).

Further, � 1(N,∧) is strongly Arens irregular and any two distinct points in N
∗ form a

DTC set for M(β N).
(ii) Consider the semigroup (Q,∧). By Proposition 3.1, there is no countable

DTC set for this semigroup. By Corollary 2.15, � 1(Q,∧) is neither Arens regular
nor strongly Arens irregular, and, by Corollary 3.5, there is no countable DTC for
M(X).

(iii) Consider the subset S of T := {−∞} ∪ R ∪ {∞} that consists of numbers of
the form n − x , where n ∈ Z and x ∈ {1/2, 1/4, 1/8, . . . }. Then the corresponding
set E is equal to {−∞} ∪ Z ∪ {∞}, a countable set, and so, by Theorem 3.2, the
semigroup algebra � 1(S) is strongly Arens irregular. By Proposition 3.1, there is no
finite DTC set for the semigroup S, but, by the argument of Theorem 3.2, M(X) has
a two-element DTC set in M(X∗)+.

(iv) Consider the semigroup S = T = ([0, κ],∧), where κ is a cardinal with
κ ≥ ℵ1, so that the corresponding set E has cardinality κ . Since T is scattered, the
algebra � 1(S) is strongly Arens irregular by Theorem 2.14. By Proposition 3.4, there
is no DTC set for M(X) with cardinality strictly less than κ . This shows that the
cardinality of a DTC set can be arbitrarily large, even when � 1(S) is strongly Arens
irregular. �	
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