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Abstract
We study transport processes on infinite networks. The solution of these processes can
be modeled by an operator semigroup on a suitable Banach space. Classically, such
semigroups are strongly continuous and therefore their asymptotic behaviour is quite
well understood. However, recently new examples of transport processes emerged
where the corresponding semigroup is not strongly continuous. Due to this lack of
strong continuity, there are currently only few results on the long-term behaviour of
these semigroups. In this paper, we discuss the asymptotic behaviour for a certain class
of these transport processes. In particular, it is proved that the solution semigroups
behave asymptotically periodic with respect to the operator norm as a consequence of
a more general result on the long-term behaviour by positive semigroups containing
a multiplication operator. Furthermore, we revisit known results on the asymptotic
behaviour of transport processes on infinite networks and prove the asymptotic peri-
odicity of their extensions to the space of bounded measures.

Keywords Transport equations · Infinite metric graphs · Long-term behaviour ·
Operator semigroups

1 Introduction

Consider a transport process on an infinite network, modeled by an infinite, directed
graph G = (V , E), which is assumed to be simple, locally finite and non-degenerate.
Moreover, one can consider G as a metric graph by identifying each edge with the
unit interval [0, 1] and parameterizing it contrarily to its direction (see Sects. 2 and 4
for definitions).
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The distribution of mass transported along one edge e j , j ∈ J ⊆ N, at some time
t ≥ 0 is described by a function u j (t, x) for x ∈ [0, 1] and the material is transported
along e j with a constant velocity c j > 0 satisfying

0 < cmin ≤ c j ≤ cmax < ∞.

Define BC := C−1
BC , where B denotes the weighted (transposed) adjacency matrix

of the graph G and C := diag(c j ) denotes the (diagonal) velocity matrix. In addition,
suppose that the functions u j satisfy the generalized Kirchhoff law

∑

j∈J

φ−
i j c j u j (1, t) =

∑

j∈J

φ+
i j c j u j (0, t)

for all i ∈ I and t > 0. Then the transport process can be modeled by the initial value
problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂t
u j (t, x) = c j

∂

∂x
u j (t, x), x ∈ (0, 1), t ≥ 0,

u j (0, x) = f j (x), x ∈ (0, 1),

u j (1, t) =
∑

k∈J

B
C
jkuk(0, t), t ≥ 0,

(1.1)

where f j , j ∈ J , are the initial distributions of mass along the edges of G.
The investigation of systems of the form (1.1) on metric graphs by methods from

the theory of strongly continuous semigroups has a history. The first results in this
direction are due to Kramar and Sikolya (see [21]). This paper was followed by a
series of papers [4,8–10,13] from several different authors studying various transport
processes. In all these papers, the state space is L1([0, 1]; �1), where the solution
semigroups turn out to be strongly continuous, and, the asymptotic behaviour of the
solution semigroup is a major point of interest.

Motivated by results from [28,29], Budde andKramar Fijavž in [6] discuss transport
processes on the state space L∞([0, 1]; �1). In this setting the solution semigroup is
bi-continuous with respect to the weak∗-topology on L∞([0, 1]; �1) (see [22] for a
definition) but not strongly continuous. However, the asymptotic behaviour of the
solutions in the bi-continuous case is not discussed.

In the present paper, we shall discuss the asymptotic behaviour in the bi-continuous
case (see Theorem 3.4) by combining spectral theoretic observations, the concept of
the semigroup at infinity (see [7]) and classical Perron–Frobenius theory. In particular,
our approach does not make use of any regularity assumptions on the semigroup.
Moreover, it allows us to revisit a result on the asymptotic behaviour from [9] (see
Proposition 4.1) and improve slightly upon the statement as well as its proof.

Finally, inspired by [23], we extend the semigroup on L1([0, 1]; �1) from [9] to the
space of �1-valued measures of bounded variation and show that their extension has
still some regularity and converges with respect to operator norm exponentially fast
to a periodic semigroup.
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258 A. Dobrick

Structure of the article

In Sect. 2 we first recall some basic facts from graph theory and on metric graphs.
Moreover, we discuss vector-valued multiplication operators on L p(�; E) for a given
Banach space E and a givenσ -finitemeasure space (�,�,μ), and prove some spectral
theoretic results. In Sect. 3 we utilize our spectral observations from Sect. 2 to prove
an abstract result on the long-term behaviour for positive semigroups containing a
multiplication operator. In Sect. 4 we apply that result to several different transport
semigroups on infinite networks and we prove that, under certain conditions, these
transport semigroups are asymptotically periodic with respect to the operator norm.
Finally, in Sect. 5 we extend the solution semigroup of (1.1) from the state space of
�1-valued L1-functions to the space of �1-valued measures of bounded variation and
prove that this extension is asymptotically periodic with respect to the operator norm.

Notation and terminology

Let E, F be Banach spaces. We endow the spaceL(E; F) of bounded linear operators
from E to F with the operator norm topology throughout; moreover, we use the
abbreviation L(E) := L(E; E). Further a semigroup is a map T : [0,∞) → L(E)

with T (0) = idE satisfying the semigroup law T (s + t) = T (s)T (t) for all s, t ≥ 0.
In this case, we call (T (t))t≥0 an operator semigroup. Note that we do not make any
assumption on the regularity of (T (t))t≥0. An operator T ∈ L(E) is called quasi-
compact if it has less than distance one in the operator norm to the space of compact
operators on E . The dual Banach space of E will be denoted by E ′. If (�,�,μ) is
a measure space, then L p(�; E), 1 ≤ p ≤ ∞, denotes the space of L p-Bochner-
integrable functions with values in E . For the definition of the space M(�; E) we
refer to Appendix A.1. For f ∈ L p(�) and x ∈ E we define f ⊗ x ∈ L p(�; E) by
( f ⊗ x)(s) := f (s)x for almost all s ∈ �.

Throughout the paper, we will make free use of the theory of real and complex
Banach lattices (cf. [24,26,30]). Here we only recall that if E is a Banach lattice, then
an operator T : E → E is called positive if T f ≥ 0 for all 0 ≤ f ∈ E and strictly
positive if T f > 0, whenever 0 < f ∈ E . Moreover, T is said to be irreducible if for
each 0 < f ∈ E and 0 < f ′ ∈ E ′ there exists n ∈ N such that 〈T n f , f ′〉 > 0.

If the underlying scalar field is complex, the spectrum of a linear operator A : E ⊇
D(A) → E will be denoted by σ(A); for λ ∈ C \ σ(A), the resolvent of A at λ is
denoted by R(λ, A) := (λ − A)−1. Further, the point spectrum of A will be denoted
by σp(A). If T is a bounded operator on E , then r(T ) denotes the spectral radius of
T . Finally, the set {λ ∈ σ(T ) : |λ| = r(T )} is called the peripheral spectrum of the
operator T .
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2 Preliminaries

2.1 Basic graph theory

A directed graph G is a pair (V , E), where V = {vi : i ∈ I } is a set of vertices
and E = {e j : j ∈ J } ⊆ V × V a set of directed edges for index sets I , J ⊆ N. If
e = (vi , v j ) ∈ E is some directed edge, then vi is called the tail and v j is called the
head of e. In particular, e is considered to be directed from vi to v j and we call e and
outgoing edge with respect to vi and analogously an incoming edge with respect to
v j .

A very natural way to describe the structure of graphs are incidence matrices. The
incoming incidence matrix 	+ = (φ+

i j )i∈I , j∈J is defined by

φ+
i j :=

{
1, if vi is the head of e j ,

0, else,

and the outgoing incidence matrix 	− = (φ−
i j )i∈I , j∈J by

φ−
i j :=

{
1, if vi is the tail of e j ,

0, else.

As the graph G will be assumed to be weighted in what follows, we consider also the
weighted outgoing incidence matrix 	−

w = (φ−
w,i j )i∈I , j∈J which is defined by

φ−
w,i j :=

{
wi j , if vi is the tail of e j ,

0, else.

Here wi j ∈ [0, 1] are weights for all i ∈ I and j ∈ J such that

∑

j∈J

wi j = 1. (2.1)

This condition ensures that nomaterial of the network flow is absorbed by the network.
Another way to describe the structure of a given graph is the adjacency matrix. For

our approach the weighted (transposed) adjacency matrix B = (Bi, j )i∈I , j∈J graph
defined by B := (	−

w)T	+ will play the most prominent role. Its entries are given by

Bi j =
{

wki , if vk is the head of e j and the tail of ei ,

0, else.

By positivity of the weights and (2.1), B is a column-stochastic matrix and thus cor-
responds to a stochastic operator on �1 with r(B) = ‖B‖ = 1.
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260 A. Dobrick

A directed path p from the vertex v ∈ V to the vertexw ∈ V is a tuple (e1, . . . , e�)

of edges e1, . . . , e� ∈ E such that the tail of e1 is v, the head of e� isw and the head of
ei is the tail of ei+1 for all i = 1, . . . , � − 1. In this case, v is called the starting point
and w the endpoint of p and � is called the length of p. A directed graph G = (V , E)

is called strongly connected if for any v,w ∈ V there is a directed path of finite length
between them.

A finite vertex setW ⊆ V is called an attractor if there exist L ∈ N and δ > 0 such
that for each vertex v ∈ V there is a path p with head v of length at most L that has
an endpoint if W and such that the sum of the weights of all paths with this property
is greater or equal to δ. Here the weight of a path p = (e1, . . . , e�) is defined by the
product of all weights belonging to its edges ei .

Many graph-theoretic properties of G = (V , E) translate into properties of the
operator B and vice versa. The following proposition collects some of these corre-
spondences (cf. [9, Proposition 4.8, Proposition 4.9]) that are relevant to this paper.

Proposition 2.1 Let G be a locally finite graph. Then the following assertions hold:

(i) G is strongly connected if and only if the adjacency matrix B is irreducible.
(ii) G has an attractor if and only if the adjacency matrix B is quasi-compact.

2.2 Vector-valuedmultiplication operators

Let T be a bounded operator on a Banach space E , (�,�,μ) a σ -finite measure space
and 1 ≤ p ≤ ∞. Consider the operator-valued multiplication operator

MT : L p(�; E) → L p(�; E), (MT f )(s) := T f (s).

It is easy to see that this operator is well-defined and it is easy to see that MT is a
bounded operator. Moreover, the map

M : L(E) → L(L p(�; E)), T �→ MT

is an isometric, unital algebra homomorphism (cf. [27, Proposition 2.2.14] for a more
general result). In particular, projections are mapped to projections byM. Finally, in
the case that E is a Banach lattice,MT is positive if and only if T is positive andM
maps strictly positive operators to strictly positive operators.

The next lemma lists some rather obvious properties.

Lemma 2.2 Let T be a bounded operator on a Banach space E. Then the following
assertions hold:

(i) If F is a closed, T -invariant subspace of E, then L p(�; F) is a closed MT -
invariant subspace of L p(�; E) and MT |F = MT |L p(�;F).

(ii) If E decomposes as E = E1 ⊕ E2 into closed T -invariant subspaces E1 and E2,
then L p(�; E) decomposes as L p(�; E) = L p(�; E1)⊕ L p(�; E2) into closed
MT -invariant subspaces and MT = MT |E1 ⊕ MT |E2 .
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On the asymptotic behaviour of... 261

Now we turn to spectral theoretic results. A simple calculation shows that σ(T ) =
σ(MT ) with

R(λ,MT ) = MR(λ,T ) (λ ∈ ρ(T )).

Recall that in case the spectrum of T contains isolated subsets, one can define
spectral projection of T by virtue of the Dunford functional calculus: Namely, for any
isolated subset σ of σ(T ), the spectral projection Pσ of T associated to σ is

Pσ := 1

2π i

∫

γ

R(z, T ) dz,

where γ is a contour in ρ(T ) such that the winding number around each element of
σ is equal to 1 and around each element of σ(T ) \ σ is equal to 0. Note that such a
contour always exists and that Dunford’s integral does not depend on the choice of
the contour by Cauchy’s theorem.

In the situation above, as the spectra of T and MT coincide, it is natural to ask,
whether the spectral projections of T andMT associated to σ are related to each other.
This is the content of the following result.

Proposition 2.3 Let (�,�,μ) be a σ -finite measure space, E a Banach space and
X := L p(�; E), 1 ≤ p ≤ ∞. Let T be a bounded operator on E, let σ be an isolated
subset of σ(T ) and P the spectral projection of T associated to σ . Then the following
assertions hold:

(i) X decomposes as X = MP X ⊕ kerMP into the MT -invariant subspaces
MP X = L p(�; PE) and kerMP = L p(�; ker P).

(ii) The spectral projection ofMT associated to σ coincides with the operator-valued
multiplication operator MP .

Proof of Proposition 2.3 Although the following proof is almost trivial, we present it
here for the convenience of the reader:

(i) E can be decomposed as E = PE ⊕ ker P . Moreover, PE and ker P are
T -invariant. Therefore, Lemma 2.2(ii) yields the decomposition

X = L p(�; PE) ⊕ L p(�; ker P)

intoMT -invariant subspaces. Finally, we have f ∈ MP X ( f ∈ kerMP ) if and only
if f (ω) ∈ PE ( f (ω) ∈ ker P) for a.e. ω ∈ �. Therefore, MP X = L p(�; PE) and
kerMP = L p(�; ker P).

(ii) By (i), one has the decomposition X = MP X ⊕ kerMP into MT -invariant
subspaces. Furthermore,

σ(MT |MP X ) = σ(MT |L p(�;PE)) = σ(MT |PE ) = σ(T |PE ) = σ,

σ (MT |kerMP ) = σ(MT |L p(�;ker P)) = σ(MT |ker P ) = σ(T |ker P ) = σ(T ) \ σ,

by Lemma 2.2(i). Thus, the claim follows from the uniqueness of the spectral projec-
tions on σ and σ(T ) \ σ of MT , respectively. ��
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262 A. Dobrick

The next result is concerned with isolated points of the spectrum of operator-valued
multiplication operators and their spectral properties. The first assertion in the follow-
ing theorem is a special case of [18, Theorem 6].

Proposition 2.4 Let (�,�,μ) be a σ -finite measure space, let E be a Banach space,
X := L p(�; E), 1 ≤ p ≤ ∞ and let T ∈ L(E). Then the following assertions hold:

(i) σp(T ) = σp(MT ).
(ii) If λ is an eigenvalue of T , then its geometric (algebraic) multiplicity with respect

to T is less than or equal to its geometric (algebraic) multiplicity with respect to
MT .

(iii) λ is a pole of order k of the resolvent of T if and only if λ is a pole of order k of
the resolvent of MT .

Proof (i) Let λ ∈ σp(T ) and x ∈ E an associated eigenvalue. Choose any non-zero
f ∈ L p(�). Then it is easy to see that (λ − MT )( f ⊗ x) = 0. Hence, σp(T ) ⊆
σp(MT ).

On the other hand, suppose that λ /∈ σp(T ) and that there is f ∈ L p(�; E) such
that (λ−MT ) f = 0. Then (λ−T ) f (ω) = 0 and therefore f (ω) = 0 for a.e. ω ∈ �.
Hence, f = 0, i.e. λ /∈ σp(MT ).

(ii) Let x ∈ E such that (λ − T )nx = 0 for some n ∈ N. Choose any non-zero
f ∈ L p(�). Then

(λ − MT )n( f ⊗ x) = M(λ−T )n ( f ⊗ x) = f ⊗ (λ − T )nx = 0,

which shows the claim.
(iii) Suppose that λ is an isolated point of the spectrum of T , or equivalently, of

MT . Consider the Laurent expansion of the respective resolvents about λ given by

R(μ, T ) =
∞∑

n=−∞
Un(μ − λ)n, R(μ,MT ) =

∞∑

n=−∞
Vn(μ − λ)n

for coefficients Un ∈ L(E) and Vn ∈ L(L p(�; E)). We show that Vn = MUn for all
n ≤ −1. The case n = −1 follows directly from Proposition 2.3(ii) as the residua in
λ coincide with the respective spectral projections. For the general case, observe

V−n = (MT − λ)n−1V−1 = M(T−λ)n−1MU−1 = M(T−λ)n−1U−1
= MU−n

by [12, Formula IV.1.13]. AsM is injective, one has V−n = 0 if and only ifU−n = 0.
Hence, the claim follows. ��
Remark 2.5 LetT be aboundedoperator on aBanach space E and (�,�) ameasurable
space. Then it is not hard to show that the operator-valued multiplication operator

MT : M(�; E) → M(�; E), (MTμ)(A) := Tμ(A)
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On the asymptotic behaviour of... 263

is a well-defined bounded operator. However, in contrast to the L p-case, the map

M : L(E) → L(M(�; E)), T �→ MT

is just an injective algebra homomorphism and not necessarily isometric. On the other
hand, this operator shares all other properties of the operator-valued multiplication
operator mentioned in the beginning of this section. For this reason all proofs of the
propositions that followed can be carried out for multiplication operators onM(�; E);
this yields that all of these propositions hold for multiplication operators on M(�; E)

as well.

3 An abstract result on semigroup asymptotics

The asymptotic behaviour of C0-semigroups is a topic widely covered in the existing
literature and much less is known when the semigroups are not strongly continuous.
Recently, however, recently several authors investigated the asymptotic behaviour of
semigroups with weaker regularity properties or even no at all (cf. [7,15–17]). In [17]
Glück and Haase introduced the concept of the semigroup at infinity to investigate the
asymptotic behaviour of semigroup representations with respect to the strong operator
topology. Following this idea, Glück and the author of the present paper adapted this
concept in [7] to study convergence of semigroup representations with respect to the
operator topology. In the present paper we use the semigroup at infinity to prove an
abstract convergence result, which will be then applied to network flows in Sect. 4.

Let T be a bounded operator on a Banach space E . Then T := {T n : n ∈ N0} is a
semigroup of operators, and we call the set

T∞ :=
⋂

m∈N
{T n : n ≥ m}

the semigroup at infinity associated with the semigroup T . If T∞ is non-empty and
compact, then one can apply the Jacobs–deLeeuw–Glicksberg decomposition (see e.g.
[11, Chapter 16]) to the semigroup T∞ to obtain the projection at infinity P∞ ∈ T∞
(see the discussion before [7, Theorem 4.3]). Using the semigroup at infinity we can
easily prove the following lemma.

Lemma 3.1 Let T be a power-bounded, positive operator on a Banach lattice E such
that all spectral values of T on the unit circle are poles of the resolvent. Then the
spectral projection of T associated with σ(T ) ∩ T is positive.

Proof Let P be the spectral projection of T associated with σ(T )∩T. By [7, Proposi-
tion 4.12], the semigroup at infinity T∞ associated to the semigroup T := {T n : n ∈
N0} is non-empty and compact. Since T consists only of positive operators and since
the projection at infinity P∞ is contained in the closure of T , it follows that P∞ is
positive. Now the claim follows as P∞ = P by [7, Proposition 4.12]. ��

The following lemma is basically the spectral theoretic core of the arguments in
the proof of [9, Proposition 4.3]. However, assertion (iii) below is missing in [9]. In
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264 A. Dobrick

the following section, we will be mainly interested in the case that T is an infinite
column-stochastic matrix with additional properties.

Lemma 3.2 Let T be a power-bounded, positive and irreducible operator on a Banach
lattice E such that r(T ) = 1 is a pole of the resolvent of T . Then the following
assertions hold:

(i) The peripheral spectrum of T consists of the kth roots of unity for some k ∈ N.
Moreover, these roots of unity are all first order poles of the resolvent.

(ii) The spectral projection P of T associated to the peripheral spectrum yields a
decomposition E = PE ⊕ ker P such that T k |PE = idPE and r(T |ker P ) < 1,
where k ∈ N is the index of imprimitivity of T .

(iii) P is strictly positive. In particular, PE is a sublattice of E.

Proof Since T is positive and irreducible and r(T ) is a pole of the resolvent of T ,
it follows from [26, Theorem V.5.4] that the peripheral spectrum of T is cyclic and
consists of first order poles of the resolvent, only. In particular, the peripheral spectrum
of T is a finite group consisting of the kth roots of unity for some k ∈ N. This shows
(i).

In the followingwedenote the primitive kth root of unity by ζ . By spectral decompo-
sition it is clear that T acts on PE as the multiplication with the tuple (1, ζ, . . . , ζ k−1)

and r(T |ker P ) < 1. Hence, T k acts as the identity on PE which shows (ii).
To show (iii), observe first that P is positive by Lemma 3.1. To see that P is even

strictly positive, we consider the absolute kernel

R := {x ∈ E : P|x | = 0}.

Clearly, R is an ideal in E and that is enough to show that R = {0}. For each x ∈ R
one has

0 ≤ P|T x | ≤ PT |x | = T P|x | = 0

and therefore P|T x | = 0. Hence, R is a T -invariant ideal and thus trivial by the
irreducibility of T . Since P �= 0, one has R = {0}, i.e., P is strictly positive. Finally
[26, Proposition III.11.5] shows that PE is a sublattice of E . ��
Definition 3.3 We call a bounded semigroup (T (t))t≥0 on a Banach space E asymp-
totically exponentially periodic on E if there exists a projection P that commutes with
the semigroup (T (t))t≥0 such that

(i) (T (t)|PE )t≥0 can be extended to a periodic group on PE .
(i) T (t)|ker P is uniformly exponentially stable as t → ∞.

The following theorem is a generalized version of [9, Proposition 4.3] by Dorn. In
contrast to Dorn’s result, it does not require any regularity assumptions on the semi-
group. Hence, it is applicable to semigroups with no or weaker regularity properties,
e.g., to bi-continuous semigroups.
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Theorem 3.4 Let � = (�,�,μ) be a measure space, E a Banach lattice and
(T (t))t≥0 a bounded, positive semigroup on X := L p(�; E), 1 ≤ p ≤ ∞. Sup-
pose that there is t0 ∈ [0,∞) such that T (t0) = MB for some irreducible operator
B on E with r(B) = 1. If r(B) is a pole of the resolvent of B, then there is a strictly
positive projection P commuting with (T (t))t≥0 and with the following properties:

(i) (T (t)|PX )t≥0 can be extended to a positive, periodic group on the Banach lattice
PX.

(ii) (T (t)|ker P )t≥0 is uniformly exponentially stable, i.e., there exist M ≥ 1 and
ω > 0 such that ‖T (t) − T (t)P‖ ≤ Me−ωt .

Proof As (T (t))t≥0 is a bounded, positive semigroup, B is power-bounded and posi-
tive. Hence, B satisfies the assumptions of Lemma 3.2 which yields the decomposition
E = PE⊕ker P , where P denotes the spectral projection of B associated to its periph-
eral spectrum. Moreover, Bk acts as the identity on PE , where k ∈ N is the index of
imprimitivity of B, and r(B|ker P ) < 1. Proposition 2.3 yields the decomposition

X = MP X ⊕ kerMP = L p(�; PE) ⊕ L p(�; ker P) =: X1 ⊕ X2,

which coincides with the spectral decomposition corresponding to MB .
Now observe that T (t0)k = MBk and therefore

T (t0)
k |X1 = MBk |X1 = MBk |PE

= MidPE
= idX1

by Lemma 2.2(i). Furthermore,

r(T (t0)|X2) = r(MB|ker P ) = r(B|ker P ) < 1.

So the semigroup (T (t0)n|X1)n∈N0 is periodic. Furthermore, there exists q ∈
(r(T (t0)), 1) such that ‖T (t0)n|X2‖ < qn for n sufficiently large. As MP coincides
with the spectral projection ofMB = T (t0) associated with the peripheral spectrum,
it commutes with the operators of the semigroup (T (t))t≥0 and hence the spaces
X1 and X2 are both invariant under the action of (T (t))t≥0. So (T (t))t≥0 restricts
to semigroups on X1 and X2, respectively. Moreover, P is strictly positive on E by
Lemma 3.2(iii) and hence so is MP . In particular, X1 is a Banach lattice by [26,
Proposition III.11.5] and the semigroup (T (t)|X1)t≥0 is clearly positive in this situa-
tion.

Finally, (T (t)|X1)t≥0 extends to a group on X1. As ‖T (t0)n|X2‖ < qn for n big
enough and (T (t)|X2)t≥0 is bounded, it follows that ‖T (t)|X2‖ ≤ Me−ωt for suitable
constants M ≥ 1 and ω > 0. Therefore, (T (t))t≥0 is asymptotically exponentially
periodic in the sense of Definition 3.3. ��

As the proof of the theorem above only used results from Sect. 2 and some spectral
theory on the Banach space in which the L p-functions took their values in, one can
obtain the Theorem 3.4 also on spaces of measures due to the observations made in
Remark 2.5. For later reference we state here this version of the theorem explicitly.
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266 A. Dobrick

Theorem 3.5 Let � = (�,�) be a measurable space, E a Banach lattice and
(T (t))t≥0 a bounded, positive semigroup on X := M(�; E), 1 ≤ p ≤ ∞. Sup-
pose that there is t0 ∈ [0,∞) such that T (t0) = MB for some irreducible operator
B on E with r(B) = 1. If r(B) is a pole of the resolvent of B, then there is a strictly
positive projection P commuting with the semigroup (T (t))t≥0 with the following
properties:

(i) (T (t)|PX )t≥0 can be extended to a positive, periodic group on the Banach lattice
PX.

(ii) (T (t)|ker P )t≥0 is uniformly exponentially stable, i.e., there exist M ≥ 1 and
ω > 0 such that ‖T (t) − T (t)P‖ ≤ Me−ωt .

4 Applications to transport equations in infinite networks

4.1 Transport equation on infinite networks

In this section we consider transport processes on infinite networks. The network will
be modeled by an infinite, directed graph G = (V , E) which is assumed to be

(a) simple, i.e., the graph contains no loops and no multiple edges,
(b) locally finite, i.e., each vertex only has finitely many incident edges,
(c) non-degenerate, i.e., each vertex of the network has at least one incoming as well

as at least one outgoing edge.

Moreover, G will be considered as a metric graph by identifying each edge with the
unit interval [0, 1] and parameterizing it contrarily to its direction. This means, under
this identification, that each edge is assumed to have its endpoint at 0 and its starting
point at 1.

The distribution of mass transported along one edge e j , j ∈ J ⊆ N, at some time
t ≥ 0 will be described by a function u j (t, x) for x ∈ [0, 1]. The material in the
network will be transported along e j with constant velocity c j > 0 and we assume
that

0 < cmin ≤ c j ≤ cmax < ∞.

Furthermore, we define

B
C := C−1

BC,

where C := diag(c j ) denotes the diagonal velocity matrix. In each vertex the material
is distributed to the outgoing edges as governed by the weights of the respective
edges. This will be modeled by assuming that the functions u j satisfy the generalized
Kirchhoff law

∑

j∈J

φ−
i j c j u j (1, t) =

∑

j∈J

φ+
i j c j u j (0, t)
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for all i ∈ I and t > 0. Altogether this transport process is modelled by the partial
differential equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂t
u j (t, x) = c j

∂

∂x
u j (t, x), x ∈ (0, 1), t ≥ 0,

u j (0, x) = f j (x), x ∈ (0, 1),

u j (1, t) =
∑

k∈J

B
C
jkuk(0, t), t ≥ 0,

(4.1)

j ∈ J , where f j are the initial distributions of mass along the edges. Solutions to this
equation were investigated by using semigroup theorymainly in two different settings:

(i) It is shown in [9] that the solutions of (4.1) form a strongly continuous semigroup
on the space L1([0, 1]; �1) in the case that c j = 1 for all j ∈ J .

(ii) In [6] it is shown that the solutions of (4.1) form a so-called bi-continuous
semigroup on the space L∞([0, 1]; �1) under some conditions on the velocities c j .

Although the same equation is investigated (however in different spaces), in [9] the
asymptotic behaviour of the solutions is discussed, whereas no such results can be
found in [6] for the solutions in the bi-continuous case. By making use of the theory
developed in the prior section we close this gap.

But first, we revisit Dorn’s asymptotics result [9, Proposition 4.3]. Our argument
shows that the asymptotical periodicity of the solution obtained by Dorn does not
depend on the strong continuity of the semigroup. On the other hand, the exponential
speed of convergence in the theorem does rely on the strong continuity. In addition, it
is proven that the involved projection is strictly positive.

4.2 Strongly continuous flows on L1([0, 1]; �1)

Let us first assume that

c j = 1 for all j ∈ J

and equip the space L1([0, 1]; �1) with the usual norm given by

‖ f ‖ :=
∫ 1

0
‖ f (s)‖�1 ds ( f ∈ L1([0, 1]; �1)).

Consider the differential operator

A := diag

(
d

dx

)
, dom A := { f ∈ W 1,1([0, 1]; �1) : f (1) = B f (0)}.

Notice that W 1,1([0, 1]; �1) embeds continuously into C([0, 1]; �1) so that the above
operator is well-defined. By [9, Proposition 3.1], we can translate (4.1) into the abstract
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Cauchy problem

{
u′(t) = Au(t), t ≥ 0,

u(0) = ( f j ) j∈J
(4.2)

on the space L1([0, 1]; �1). Now [9, Proposition 3.3] shows that A generates a strongly
continuous semigroup (T (t))t≥0 on L1([0, 1]; �1) given by

T (t) f (s) = B
n f (s + t − n) ( f ∈ L1([0, 1]; �1)),

if n ∈ N0 is such that n ≤ s+t < n+1.Moreover, it is easy to see that this semigroup is
both contractive and positive. So (T (t))t≥0 is basically a shift semigroup on the graph
with a “jump" at the end of each edge governed by the weighted adjencency matrix
B.

Proposition 4.1 Let X := L1([0, 1]; �1). Suppose that B is quasi-compact and irre-
ducible. Then there is a strictly positive projection P commuting with the semigroup
(T (t))t≥0 with the following properties:

(i) (T (t)|PX )t≥0 can be extended to a positive, periodic C0-group on the Banach
lattice PX.

(ii) (T (t)|ker P )t≥0 is uniformly exponentially stable, i.e., ‖T (t) − T (t)P‖ ≤ Me−ωt

for some constants M ≥ 1 and ω > 0.

Proof Clearly, (T (t))t≥0 is a positive, contractive semigroup on L1([0, 1]; �1) with
T (1) = MB. Moreover, B is irreducible by hypothesis with r(B) = 1. Since B is
assumed to be quasi-compact, the peripheral spectrum σ(B) ∩ T consists of poles
of the resolvent. Hence, by Theorem 3.4 there is a strictly positive projection P on
X such that (T (t)|PX )t≥0 can be extended to a positive, periodic C0-group on the
Banach lattice PX and (T (t)|ker P )t≥0 is uniformly exponentially stable, i.e., there
are constants M ≥ 1 and ω > 0 such that ‖T (t) − T (t)P‖ ≤ Me−ωt . ��

Remark 4.2 The strict positivity of the projection P in the theorem above could
alternatively be deduced from the irreducibility of the semigroup (T (t))t≥0 (cf. [9,
Proposition 4.9]).

However, on other state spaces where the solution semigroup is not strongly con-
tinuous (see Sect. 4.3) there is no characterization of irreducibility of the semigroup
via the resolvent of the generator to the best of the author’s knowledge.

Now let us consider the case where not all velocities c j are equal to 1. However,
assume that the velocities c j are linearly dependant overQ, i.e., cic j ∈ Q for all i, j ∈ J ,
with a common finite multiplier c > 0. This means that

� j := c

c j
∈ N for all j ∈ J .
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Consider the differential operator

AC := diag

(
c j · d

dx

)
, dom AC := { f ∈ W 1,1([0, 1]; �1) : f (1) = B

C f (0)}.

The assumption on the velocities allows us to construct a new graph by adding � j −
1 vertices on each edge e j , j ∈ J of the graph and let the so-created new edges
inherit the orientation of the original edge. Carrying out this construction one can
show that the operator AC generates a strongly continuous semigroup (TC (t))t≥0 on
a space isometrically isomorphic to L1([0, 1]; �1), i.e., there exists a strictly positive
isomorphism S ∈ L(L1([0, 1]; �1)) such that

TC (ct) f = S
−1T (t)S f ( f ∈ L1([0, 1]; �1))

for all t ≥ 0. Here, (T (t))t≥0 denotes the semigroup defined above. For more details
on the construction we refer to [2, Sect. 3]; or see [25] for even more detail.

Now, the following asymptotics result is an immediate consequence of Proposi-
tion 4.1.

Corollary 4.3 Let X := L1([0, 1]; �1). Suppose that B is quasi-compact and irre-
ducible. Then there is a strictly positive projection PC commuting with the semigroup
(TC (t))t≥0 with the following properties:

(i) (TC (t)|PC X )t≥0 can be extended to a positive, periodic C0-group on the Banach
lattice PC X.

(i) (T (t)|ker PC )t≥0 is uniformly exponentially stable.

Remark 4.4 By Proposition 2.1 the above results are applicable to each strongly con-
nected graphwith an attractor. In particular, theflowson suchgraphs are asymptotically
periodic.

4.3 Bi-continuous flows on L∞([0, 1]; �1)

Now we turn our attention to the bi-continuous case considered in [6]. The abstract
theory developed in Sect. 3 allows to prove analogous results to those in the L1-setting.
Again, we assume first that

c j = 1 for all j ∈ J

and consider the space L∞([0, 1]; �1) equipped with the usual norm

‖ f ‖ := esssups∈[0,1]‖ f (s)‖�1 ( f ∈ L∞([0, 1]; �1)).

Moreover, we consider the operator

A := diag

(
d

dx

)
, dom A := { f ∈ W 1,∞([0, 1]; �1) : f (1) = B f (0)},
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notice that it is well-defined since W 1,∞([0, 1]; �1) embeds continuously into
C([0, 1]; �1) and that (4.1) can be translated into the abstract Cauchy problem

{
u′(t) = Au(t), t ≥ 0,

u(0) = ( f j ) j∈J .
, (4.3)

but this time on the space L∞([0, 1]; �1). Completely analogously to [9, Theorem 3.2]
one obtains the following resolvent formula on L∞([0, 1]; �1) (see also [6, Proposi-
tion 3.8]).

Theorem 4.5 For λ > 0 one has

(R(λ, A) f )(s) =
∞∑

n=0

e−λn
∫ 1

0
e−λ(t+1−s)

B
n+1 f (t) dt +

∫ 1

s
eλ(s−t) f (t) dt

for all f ∈ L∞([0, 1]; �1) and s ∈ [0, 1]. Furthermore, for λ ∈ C one has the
characteristic equations

λ ∈ σ(A) �⇒ eλ ∈ σ(B), (4.4)

.λ ∈ σp(A) ⇐⇒ eλ ∈ σp(B) (4.5)

As seen in the section before, the solution semigroup of (4.1) on L1([0, 1]; �1)

is basically a shift with some jump. So would be a reasonable guess that something
similar if not the same stays true for L∞([0, 1]; �1). However, it is well known that the
shift semigroups are generally not strongly continuous on L∞-spaces. Hence, one can
not expect that A generates a strongly continuous semigroup. However, it is proven
in [6, Theorem 3.9] that A generates a semigroup with a weaker regularity property,
a so called bi-continuous semigroup (see e.g. [22] for a definition).

Theorem 4.6 The operator A generates a contractive, bi-continuous semigroup
(T (t))t≥0 on L∞([0, 1]; �1) given by

T (t) f (s) = B
n f (s + t − n) ( f ∈ L∞([0, 1]; �1)),

if n ∈ N0 is such that n ≤ s + t < n + 1, with respect to the weak∗-topology.

In [9, Theorem 4.10] Dorn gives a characterization for asymptotic periodicity of
the strongly continuous flow semigroup on L1([0, 1]; �1). Using the abstract theory
from Sect. 3 and ideas from the proof of [9, Theorem 4.10], we can prove that the
same characterization holds for the bi-continuous semigroup (T (t))t≥0.

Theorem 4.7 Let G be a strongly connected graph. Then the following two assertions
are equivalent:

(i) G has an attractor.
(ii) (T (t))t≥0 is asymptotically exponentially periodic in the sense of Definition 3.3.
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In this case, the period θ of (T (t)|X1)t≥0 is given by the greatest common divisor of
all cycle lengths which occur in the graph G.

Proof (i) ⇒ (ii): As G is strongly connected and has an attractor, B is irreducible
and quasi-compact. In particular, the peripheral spectrum of B consists of poles of the
resolvent ofB. So it follows fromTheorem3.4 that (T (t))t≥0 is asymptotically periodic
since the flow semigroup is bounded and positive with T (1) = MB. Moreover, it
follows from the proof of Theorem 3.4 that θ is smaller than or equal to the index of
imprimitivity of the matrix k, i.e., by the number of spectral values of Bwith modulus
equal to 1.But due to the characteristic equation (4.5) and the spectralmapping theorem
for the point spectrum (see [14, Corollary 1.5.2]) it follows that θ = k. Hence, by the
arguments given in the first part of the proof of [9, Theorem 4.10], θ equals the greatest
common divisor of all cycle lengths which occur in the graph G.

(ii) ⇒ (i): Suppose that there exists a strictly positive projection P on X such that
(T (t))t≥0 commutes with P and satisfies the assertions from Definition 3.3. Then
X = PX ⊕ ker P and we have

σ(T (1)) = σ(T (1)|PX ) ∪ σ(T (1)|ker P ).

Moreover, σ(T (1)|PX ) ⊆ T as T (1)|PX is doubly power-bounded and σ(T (1)|ker P )

is contained in a ball with center 0 with radius 0 < r < 1 because (T (1))n|ker P tends
to 0 with respect to the operator norm as n → ∞. Moreover, we have σ(B) = σ(T (1))
and therefore, the peripheral spectrum of B is isolated. So denote by P the spectral
projection onto the peripheral spectrum of B. ThenMP is the spectral projection onto
the peripheral spectrum of T (1) and it follows from the uniqueness of the spectral
projection that P = MP.

Moreover, (T (t)|PX )t≥0 is periodic. Denote the period of (T (t)|PX )t≥0 in the
following by θ . Since (T (t)|PX )t≥0 is periodic, one has 1 ∈ σp(B|T). Hence, [20,
Proposition 2.1] shows that there exists a strictly positive fixed vector x ∈ �1 of B and
this fixed vector is clearly an element of P�1. In particular, f ⊗ x is an element of
L∞([0, 1];P�1) for each f ∈ L∞([0, 1]). Now choose k ∈ N such that k ≤ θ < k+1.
Suppose that k < θ and fix ε < θ − k. Then

1[0,ε](s)x = (1[0,ε] ⊗ x)(s) = T (θ)(1[0,ε] ⊗ x)(s)

= 1[0,ε](θ + s − k)Bk x = 1[0,ε](θ + s − k)x

for a.e. s ∈ [0, 1] which is absurd. Hence, we infer that θ = k which means that
T (1)|PX is algebraic, i.e., mapped to 0 by a polynomial. Therefore, the spectrum of
T (1)|PX is finite and consists of poles of the resolvent and, by Proposition 2.4(iii),
the same holds true for the spectrum of B|P�1 . Now it follows just as in the proof of
[9, Theorem 4.10] that the peripheral spectrum of B consists of entirely of first order
poles which implies that B is quasi-compact. ��

Consider again the case where not all velocities c j are equal to 1 but the velocities
c j are linearly dependant over Q, i.e., ci

c j
∈ Q for all i, j ∈ J , with a common finite
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multiplier c > 0, i.e.,

� j := c

c j
∈ N for all j ∈ J .

Analogously to the L1-case, consider the differential operator

AC := diag

(
c j · d

dx

)
, dom AC := { f ∈ W 1,∞}([0,1];�1): f (1)=B

C f (0).

By using the same construction as mentioned in the former section one shows that
the operator AC generates a bi-continuous semigroup (TC (t))t≥0 on L∞([0, 1]; �1)

(see [6, Proposition 3.11]) and that there exists a strictly positive isomorphism S ∈
L(L∞([0, 1]; �1)) such that

TC (ct) f = S
−1T (t)S f ( f ∈ L1([0, 1]; �1))

for all t ≥ 0. Consequently, we obtain the following result.

Corollary 4.8 Let X := L∞([0, 1]; �1). Suppose that B is quasi-compact and irre-
ducible. Then there is a strictly positive projection PC commuting with the semigroup
(TC (t))t≥0 with the following properties:

(i) (TC (t)|PC X )t≥0 can be extended to a positive, periodic C0-group on the Banach
lattice PC X.

(ii) (T (t)|ker PC )t≥0 is uniformly exponentially stable.

5 Extension toM([0, 1]; �1)

In this section, it is shown that the semigroup from Sect. 4.2 can be naturally extended
to the space of �1-valued measures of bounded variation and it is be shown that this
extension has still some regularity properties. Furthermore, the abstract argument
from Sect. 3 can be used to show that this extended semigroup is still asymptotically
periodic. This is motivated by [23], where something similar was done for a different
kind of flow on finite networks. Furthermore, the asymptotic behaviour of such an
extended semigroup was investigated in [23, Corollary 4.17] (just for the case of finite
networks) but this investigation relied on a non-constructive argument.

For the introduction of �1-valued measures of bounded variation and for the used
notation, we refer the reader to Appendix A.

Define the operators S(t) : M([0, 1]; �1) → M([0, 1]; �1), t ≥ 0, by

(S(t)μ) = δ−(t−n) ∗ (MBnμ|[t−n,1]) + δn+1−t ∗ (MBn+1μ|[0,t−n)),
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where n ∈ N0 such that n ≤ t < n + 1. In particular, one has

(S(t)μ)(A) = B
nμ((A ∩ [t − n, 1]) − (t − n))

+ B
n+1μ((A ∩ [0, t − n)) + n + 1 − t),

for each Borel measurable set A ∈ B([0, 1]). It is not hard to see that (S(t))t≥0 is a
contractive semigroup on M([0, 1]; �1).

Lemma 5.1 (S(t))t≥0 defines a contractive semigroup on M([0, 1]; �1) such that
S(1) = MB.

Proof It is easy to see that (S(t))t≥0 defines a semigroup on M([0, 1]; �1) such that
S(1) = MB.

To see that (S(t))t≥0 is contractive, letμ ∈ M([0, 1]; �1) and A1, . . . , AN ⊆ [0, 1]
measurable, pairwise disjoint sets such that [0, 1] = ⋃N

k=1 Ak . Now let t > 0 and
pick n ∈ N such that n ≤ t < n + 1 and consider the sets

Bk := (Ak ∩ [t − n, 1]) − (t − n), Ck := (Ak ∩ [0, t − n)) + (1 + n − t)

for k = 1, . . . , N . Observe that all these sets are pairwise disjoint and [0, 1] =⋃
n∈N Bk ∪ Ck . Hence,

N∑

k=1

‖S(t)μ(Ak)‖1 ≤
N∑

k=1

‖Bnμ(Bk)‖1 +
N∑

k=1

‖Bn+1μ(Ck)‖1

≤
N∑

k=1

‖μ(Bk)‖1 +
N∑

k=1

‖μ(Ck)‖1 ≤ ‖μ‖

and therefore ‖S(t)μ‖ ≤ ‖μ‖ by taking the supremum over all finite partitions of the
unit interval [0, 1]. ��

In the following, we call (S(t))t≥0 the extended flow semigroup on M([0, 1]; �1).
This is motivated by the following result which shows that the semigroup (S(t))t≥0
actually extends the semigroup (T (t))t≥0 on L1([0, 1]; �1) from Sect. 4.2 for the case
that all velocities c j are equal to 1. To clarify what we mean by this extension, note if
f ∈ L1([0, 1]; �1), then

( f ds) : B([0, 1]) → �1, ( f ds)(A) =
∫

A
f ds

defines a �1-valued measure of bounded variation with ‖ f ds‖ = ‖ f ‖1. Hence,

L1([0, 1]; �1) → M([0, 1]; �1), f �→ f ds

is a linear isometry and therefore, in what follows, elements of L1([0, 1]; �1) will be
freely identified with their respective images in M([0, 1]; �1) under this embedding.
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Proposition 5.2 The identity

(T (t) f ) ds = S(t)( f ds)

holds for all f ∈ L1([0, 1]; �1).

Proof Let f ∈ L1([0, 1]; �1). By Dynkin’s Lemma A.1 it is enough to show that both
measures (T (t) f ) ds and S(t)( f ds) coincide on all intervals [a, b], where 0 ≤ a ≤
b ≤ 1 and by the semigroup law it suffices to suppose 0 ≤ t < 1. Firstly, one has

(T (t) f ) ds([a, b]) =
∫ 1

0
1[a,b](s)T (t) f (s) ds

=
∫

[a,1−t]
f (t + s) ds +

∫

[1−t,b]
B f (t + s − 1) ds.

On the other hand,

S(t)( f ds)([a, b])

=
∫ 1

0
1[a,b](s) d(δ−t ∗ ( f ds)|[t,1])(s)

+
∫ 1

0
1[a,b](s) d(δ1−t ∗ MB( f ds)|[t,1])(s)

=
∫

[t,1]
1[a,b](s − t) f (s) ds +

∫

[0,t)
1[a,b](s + 1 − t)B f (s) ds

=
∫

[0,1−t]
1[a,b](s) f (s + t) ds +

∫

[1−t,1)
1[a,b](s)B f (s + t − 1) ds

=
∫

[a,1−t]
f (s + t) ds +

∫

[1−t,b]
B f (s + t − 1) ds.

Hence, (T (t) f ) ds = S(t)( f ds) for all f ∈ L1([0, 1]; �1) and t ≥ 0. ��
Now the regularity of (S(t))t≥0 is investigated. In the appendix, the nilpotent left

shift semigroup (τ0(t))t≥0 on the spaceM([0, 1]; E ′) is defined for an arbitraryBanach
space E . For E = c0, i.e., E ′ = �1, we obtain the following regularity result as a direct
consequence of Proposition A.5.

Lemma 5.3 The nilpotent left shift semigroup (τ0(t))t≥0, given by

(τ0(t)μ)(A) := (δ−t ∗ μ|[t,1])(A) = μ((A ∩ [t, 1]) − t) (A ∈ B([0, 1])),

is weak∗-continuous on M([0, 1]; �1).

Now we turn back our attention to the flow semigroup and its regularity.
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Theorem 5.4 The flow semigroup (S(t))t≥0 is a weak∗-continuous semigroup on
M([0, 1]; �1).

Proof Let f ∈ C([0, 1], c0) andμ ∈ M([0, 1]; �1). As in the proof of PropositionA.5,
we consider the trivial extension f̃ ∈ B(R; c0) of f to R. Then for t ∈ [0, 1), one has

|〈 f , S(t)μ − μ〉| = ∣∣〈 f , δ−t ∗ μ|[t,1]〉
∣∣ + 〈 f , δ1−t ∗ MBμ|[0,t)〉 − 〈 f , μ〉

≤ |〈 f , τ0(t)μ − μ〉| +
∣∣∣∣
∫

R

∫

R

f̃ (s + r) d(MBμ|[0,t))(s) dδ1−t (r)

∣∣∣∣

= |〈 f , τ0(t)μ − μ〉| +
∣∣∣∣
∫

R

f̃ (s + 1 − t) d(MBμ|[0,t))(s)
∣∣∣∣

= |〈 f , τ0(t)μ − μ〉| +
∣∣∣∣
∫

[0,t)
f̃ (s + 1 − t) d(MBμ)(s)

∣∣∣∣ −→ 0,

where the first term goes to 0 due to Lemma 5.3 and the second by the dominated
convergence theorem (Theorem A.2). ��

Using the framework of operator-valued multiplication operators, one can obtain
an asymptotic result for the extended flow semigroup similar to [9, Proposition 4.3].
The proof works analogously to our proof of Proposition 4.1 with the only difference
being that one needs to employ Theorem 3.5 instead of Theorem 3.4.

Proposition 5.5 Let X := M([0, 1]; �1). Suppose that B is quasi-compact and irre-
ducible. Then there is a strictly positive projection P commuting with the semigroup
(S(t))t≥0 with the following properties:

(i) (S(t)|PX )t≥0 can be extended to a positive, periodic C0-group on the Banach
lattice PX.

(ii) (S(t)|ker P )t≥0 is uniformly exponentially stable, i.e., ‖S(t) − S(t)P‖ ≤ Me−ωt

for some constants M ≥ 1 and ω > 0.
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Appendix A: Vector valuedmeasures and the Bartle integral

The Pettis integral is a well-known generalisation of the Bochner integral which has
various applications in operator theory. The Bartle integral, although not as general as
the Pettis integral, is another such generalization far less known. It has many appli-
cations to integration theory in vector-valued function spaces and will be used it
frequently throughout Sect. 5 of this paper. In this paper it is used to identify the
duality of the space of vector valued continuous functions that vanish at infinity. This
brief appendix shall serve as a short introduction to the topic.

A.1. Vector valuedmeasures

Let (�,�) be a measurable space and let E be a Banach space. A σ -additive function
μ : � → E is called a vector measure if μ(∅) = 0. If μ is a vector measure, its
variation |μ| : � → [0,∞] is

|μ|(A) = sup
π

∑

B∈π

‖μ(B)‖,

where the supremum is taken over all finite partitions π of A. The total variation |μ|
is a positive measure with ‖μ(A)‖ ≤ |μ|(A) for all A ∈ �. Moreover, μ is said to be
of bounded variation if |μ|(�) < ∞. The set of all vector measures μ : � → E with
bounded variation is denoted by M(�; E). M(�; E) is clearly a vector space and one
can show that ‖μ‖ := |μ|(�) defines a norm on M(�; E) that renders M(�; E) a
Banach space. Obviously, Dynkin’s lemma [19, Lemma A.1.3] still holds for vector
valued measures.

Lemma A.1 (Dynkin) Let μ, ν : � → E be two vector measures andD ⊆ � with the
following properties:

(a) � ∈ D.
(b) A, B ∈ D implies A ∩ B ∈ D.
(c) The σ -algebra σ(D) generated by D coincides with �.

If μ(A) = ν(A) for all A ∈ D, then μ = ν.

A.2. The Bartle integral

Let (�,�) be a measurable space and let E be a Banach space. Then function f :
� → E is called simple if there are finitely many vectors x1, . . . , xn ∈ E and sets
A1, . . . An ∈ � such that f = ∑n

i=1 1Ai xi . The space of simple functions on � with
values in E will be denoted by S(�; E). If f ∈ S(�; E) and μ ∈ M(�; E ′) then

∫

�

f dμ :=
n∑

i=1

〈xi , μ(Ai )〉 ∈ C
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is independent of the representation of f and is called the Bartle integral of f with
respect to μ (cf. [3, Sect. 4]). In particular, the map

S(�; E) × M(�; E ′) → C, ( f , μ) �→
∫

�

f dμ

is bilinear and one has

∣∣∣∣
∫

�

f dμ

∣∣∣∣ ≤
n∑

i=1

‖xi‖‖μ(Ai )‖ ≤
n∑

i=1

‖xi‖|μ|(Ai ) =
∫

�

‖ f ‖ d|μ| ≤ ‖ f ‖∞‖μ‖.

Hence, themap admits a continuous bilinear extension of normofmost one to the space
B(�; E)×M(�; E ′). Here B(�; E) denotes the space of Bartle integrable functions,
which is the closure of S(�; E) in the space of bounded E-valued functions on�with
respect to the supremumnorm. The following dominated convergence theorem follows
directly from the scalar one.

Theorem A.2 (Dominated Convergence Theorem) Let E be a Banach space and μ ∈
M(�; E ′). Further let ( fn)n∈N be a bounded sequence in B(�; E) and f ∈ B(�; E)

such that fn → f pointwise. Then

lim
n→∞

∫

�

fn dμ =
∫

�

f dμ.

A.3. The vector-valued Riesz representation theorem

Let � be a σ -compact metrizable space, B(�) the Borel σ -algebra on � and E
some Banach space. Since B(�; E) is the closure of S(�; E) with respect to the
supremum norm, one easily sees that C0(�; E) ⊆ B(�; E). This observation is
interesting because it allows to use the concept of the Bartle integral to generalize
the Riesz Representation Theorem to the space C0(�; E) (cf. [5] or [1, Appendix,
Theorem 2.2.4]).

Theorem A.3 The mapping

M(�; E ′) → C0(�; E)′, μ �→
(
f �→

∫

�

f dμ

)

is a isometric isomorphism. In particular, M(�; E ′) is isometrically isomorphic to
the dual of C0(�; E).
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A.4. Convolution of measures and nilpotent shifts

Let E be a Banach space. For measures μ ∈ M(R) and ν ∈ M(R; E ′) we define their
convolutional product ∗ : M(R) × M(R; E ′) → M(R; E ′) via

∫

R

f d(μ ∗ ν) =
∫

R

∫

R

f (s + r) dν(s) dμ(r) (A.1)

for all f ∈ S(R; E). By density of S(R; E) in B(R; E) the identity above holds even
for all f ∈ B(R; E).

Consider the left shift group (τt )t∈R on the space M(R; E ′), given by

τt : M(R; E ′) → M(R; E ′), (τtμ)(A) := μ(A − t).

Since the left shift (τt )t∈R on M(R; E ′) is the dual semigroup of the right shift semi-
group on C0(R; E) by Theorem A.3, which is well-known to be strongly continuous,
(τt )t∈R is a weak∗-continuous semigroup on M(R; E ′). In particular, one has

∫

R

f (s) d(τtμ)(s) =
∫

R

f (s − t) dμ(s) (A.2)

for all f ∈ C0(R; E). As a straightforward application of (A.1) and (A.2) one obtains
the following lemma which shows that we can express shifts by convolutions with
Dirac measures.

Lemma A.4 The identity δ−t ∗ μ = τtμ holds for all μ ∈ M(R; E ′) and t ∈ R.

Let B be a closed subset of R and μ ∈ M(R; E ′). Recall from that the measure
μ|B ∈ M(B; E ′), defined by μ|B(A) := μ(A ∩ B), is called the restriction of μ to
B. Moreover, μ|B can be seen as an element of M(R; E ′) via identification with its
canonical zero extension to R.

Using this identification, we can define the nilpotent left shift semigroup (τ0(t))t≥0
on M([0, 1]; E ′) by

(τ0(t)μ)(A) := (δ−t ∗ μ|[t,1])(A) = μ((A ∩ [t, 1]) − t),

for all A ∈ B([0, 1]). Note that supp(δ−t ∗ μ|[t,1]) ⊆ [0, 1] for all t ≥ 0 – so the
semigroup is indeed well-defined.

Proposition A.5 Let E be a separable Banach space. Then the nilpotent left shift
semigroup (τ0(t))t≥0 is weak∗-continuous on M([0, 1]; E ′).

Proof Let f ∈ C([0, 1]; E) and consider its trivial extension

f̃ : R → E, f (s) :=
{
f (s), if s ∈ [0, 1],
0, else.
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Then f̃ ∈ B(R; E). So for t ∈ [0, 1) one has

|〈 f , τ0(t)μ − μ〉| = ∣∣〈 f̃ , τ0(t)μ〉∣∣ − 〈 f , μ〉
=

∣∣∣∣
∫

R

f̃ d(δ−t ∗ μ|[t,1]) −
∫

[0,1]
f dμ

∣∣∣∣

=
∣∣∣∣
∫

R

∫

R

f̃ (s + r) dμ|[t,1](s) dδ−t (r) −
∫

[0,1]
f (s) dμ(s)

∣∣∣∣

=
∣∣∣∣
∫

R

f̃ (s − t) dμ|[t,1](s) −
∫

[0,1]
f (s) dμ(s)

∣∣∣∣

=
∣∣∣∣
∫

[t,1+t]
f (s − t) dμ(s) −

∫

[0,1]
f (s) dμ(s)

∣∣∣∣ −→ 0

as t ↘ 0 by the dominated convergence theorem (Theorem A.2). ��

References

1. Amann, H.: Linear and Quasilinear Parabolic Problems. Volume II: Function Spaces. Monographs in
Mathematics, vol. 106. Birkhäuser, Cham (1995)

2. Banasiak, J., Namayanja, P.: Asymptotic behaviour of flows on reducible networks. Netw. Heteroge-
neous Media 9(2), 197–216 (2014)

3. Bartle, R.G.: A general bilinear vector integral. Stud. Math. 15, 337–352 (1956)
4. Bayazit, F., Dorn, B., Kramar Fijavž, M.: Asymptotic periodicity of flows in time-depending networks.

Netw. Heterogeneous Media 8(4), 843–855 (2013)
5. Brooks, J.K., Lewis, P.W.: Linear operators and vector measures. Trans. Am. Math. Soc. 192, 139–162

(1974)
6. Budde, C., Kramar Fijavž, M.: Bi-continuous semigroups for flows in infinite networks. Preprint,

available online from arXiv:1901.10292
7. Dobrick, A., Glück, J.: Uniform convergence to equilibrium for coupled parabolic PDEs and linear

evolution equations. Preprint, available online from arXiv:2001.00523
8. Dorn, B., Kramar Fijavž, M., Nagel, R., Radl, A.: The semigroup approach to transport processes in

networks. Phys. D 239(15), 1416–1421 (2010)
9. Dorn, B.: Semigroups for flows in infinite networks. Semigroup Forum 76(2), 341–356 (2008)

10. Dorn, B., Keicher, V., Sikolya, E.: Asymptotic periodicity of recurrent flows in infinite networks. Math.
Z. 263(1), 69–87 (2009)

11. Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory. Graduate
Texts in Mathematics, vol. 272. Springer, Cham (2015)

12. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts
in Mathematics, vol. 194. Springer, New York (2000)

13. Engel, K.-J., Kramar Fijavž, M., Nagel, R., Sikolya, E.: Vertex control of flows in networks. Netw.
Heterogeneous Media 3(4), 709–722 (2008)

14. Farkas, B.: Perturbations of bi-continuous semigroups. Ph.D. thesis, Eötvös Loránd University (2003)
15. Gerlach, M., Glück, J.: On a convergence theorem for semigroups of positive integral operators. C. R.

Math. 355(9), 973–976 (2017)
16. Gerlach, M., Glück, J.: Lower bounds and the asymptotic behaviour of positive operator semigroups.

Ergodic Theory Dyn. Syst. 38(8), 3012–3041 (2018)
17. Glück, J., Haase, M.: Asymptotics of operator semigroups via the semigroup at infinity. In: Buskes,

G., et al. (eds.) Positivity and Noncommutative Analysis, pp. 167–203. Birkhäuser, Cham (2019)
18. Heymann, R.: Eigenvalues and stability properties of multiplication operators and multiplication semi-

groups. Math. Nachr. 287(5–6), 574–584 (2014)

123

http://arxiv.org/abs/1901.10292
http://arxiv.org/abs/2001.00523


280 A. Dobrick

19. Hytönen, T., van Neerven, J., Veraar, M., Weis, L.: Analysis in Banach spaces. Volume I. Martingales
and Littlewood–Paley Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series
of Modern Surveys in Mathematics, vol. 63. Springer, Cham (2016)

20. Keicher, V.: Almost periodicity of stochastic operators on �1(N). Tbil. Math. J. 1, 105–131 (2008)
21. Kramar, M., Sikolya, E.: Spectral properties and asymptotic periodicity of flows in networks. Math.

Z. 249(1), 139–162 (2005)
22. Kühnemund, F.: A Hille–Yosida theorem for bi-continuous semigroups. Semigroup Forum 67(2),

205–225 (2003)
23. Mátrai, T., Sikolya, E.: Asymptotic behavior of flows in networks. Forum Math. 19, 429–461 (2007)
24. Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (1991)
25. Namayanja, P.: Transport on network structures. Ph.D. thesis, University of KwaZulu-Natal, Durban

(2013)
26. Schaefer, H.H.: Banach Lattices and Positive Operators. Die Grundlehren der mathematischen Wis-

senschaften, vol. 215. Springer, Berlin (1974)
27. Thomaschewski, S.: Form methods for autonomous and non-autonomous Cauchy problems. Ph.D.

thesis, Universität Ulm (2003). https://doi.org/10.18725/OPARU-41
28. von Below, J., Lubary, J.A.: The eigenvalues of the Laplacian on locally finite networks. Results Math.

47(3–4), 199–225 (2005)
29. von Below, J., Lubary, J.A.: The eigenvalues of the Laplacian on locally finite networks under gener-

alized node transition. Results Math. 54(1–2), 15–39 (2009)
30. Zaanen, A.C.: Introduction to Operator Theory in Riesz Spaces. Springer, Berlin (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.18725/OPARU-41

	On the asymptotic behaviour of semigroups for flows in infinite networks
	Abstract
	1 Introduction
	Structure of the article
	Notation and terminology

	2 Preliminaries
	2.1 Basic graph theory
	2.2 Vector-valued multiplication operators

	3 An abstract result on semigroup asymptotics
	4 Applications to transport equations in infinite networks
	4.1 Transport equation on infinite networks
	4.2 Strongly continuous flows on L1([0,1]; ell1)
	4.3 Bi-continuous flows on Linfty([0,1]; ell1)

	5 Extension to M([0,1]; ell1)
	Acknowledgements
	Appendix A: Vector valued measures and the Bartle integral
	A.1. Vector valued measures
	A.2. The Bartle integral
	A.3. The vector-valued Riesz representation theorem
	A.4. Convolution of measures and nilpotent shifts

	References




