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Abstract
We describe structural and quantitative properties of type-dependent sets in monoids
with suitable analytic structure, including simple analytic monoids, introduced by
Kaczorowski (Semigroup Forum 94:532–555, 2017. https://doi.org/10.1007/s00233-
016-9778-9), and formations, as defined by Geroldinger and Halter-Koch (Non-
unique factorizations, Chapman and Hall, Boca Raton, 2006. https://doi.org/10.1201/
9781420003208). We propose the notions of rank and degree to measure the size of a
type-dependent set in structural terms. We also consider various notions of regularity
of type-dependent sets, related to the analytic properties of their zeta functions, and
obtain results on the counting functions of these sets.

Keywords Semigroups with divisor theory · Analytic monoids · Formations ·
Type-dependent sets · Subsets defined by factorization properties

1 Introduction

The goal of quantitative factorization theory is to describe, as precisely as possible,
the distribution of elements of a monoid subset A defined by factorization-related
conditions. The monoid must be equipped with a norm function ‖·‖making it possible
to define the counting function

A(x) = |{a ∈ X : ‖a‖ ≤ x}| . (1)

In the present paper we study the growth of A(x) for a class of reduced monoids with
divisor theory S ⊆ F(P), called shifted formations, defined in Sect. 2. The inclusion
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of an element a in A ⊆ F(P) depends on the type of factorization of a in F(P). The
kind of result that we expect is that A(x) follows an asymptotic law of the type

A(x) ∼ Cxb(log x)c(log log x)d , x → ∞, (2)

where the numbers b, c and d depend on the structural properties of A. The goal
of this paper is to introduce appropriate functions describing the structure of A, to
determine their properties, and to show that versions of (2) hold for certain classes
of subsets of the divisor monoid, that we call regular, almost-regular, semi-regular,
etc., cf. Theorem 35. We attempt to provide an easily extendible general framework
to show regularity for a variety of sets.

As examples of applications we show: a technical, but still flexible result (Propo-
sition 37) about the regularity of sets of a specific form, and the asymptotics for the
counting functions of four specific sets, given below. The result on Fk is classical,
although it was never considered in this particular setting.

Theorem 1 Let S be a shifted formation with a principal shift λ ≥ 0, S the set
generated by absolutely irreducible elements of S (i.e. irreducibles which are powers
of prime divisors [3]), S1 the set of products of distinct absolutely irreducible elements
of S, and Ek the set of k-powerful divisors, where k ∈ N. We have

S(x) ∼ Cx (1+λ)(log x)−1+1/h, x → ∞,

S1(x) ∼ C ′x (1+λ)(log x)−1+1/h, x → ∞,

and

Ek(x) ∼ C ′′x (1+λ)/k, x → ∞

for some C,C ′,C ′′ > 0.

Theorem 2 (cf. Narkiewicz [6]) Let S be a shifted formation with a principal shift λ ≥
0 and Fk the set of elements of S with at most k distinct factorizations to irreducibles
in S, where k ∈ N. We have

Fk(x) ∼ Cx (1+λ)(log x)−1+1/h(log log x)Nk , x → ∞,

for some C > 0, and a non-negative integer Nk.

The setting of shifted formations, arguably somewhat artificial, was chosen, because
the proofs work essentially without change for simple analytic monoids, as defined by
Kaczorowski [5], and for formations, considered, among others, by Geroldinger and
Halter-Koch [2, Section 8.3]. Shifted formations include both, allowing us to avoid
repetition. Of course, more precise information on the counting functions (such as
bounds for and oscillations of the error term) would require stronger assumptions,
similar to those in the definition of an analytic monoid, or an L-semigroup [8]. On
the other hand, weaker assumptions, such as to include non-simple analytic monoids,
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would make the quantitative theory more complex. The author hopes to address this
problem in a future paper.

Quantitative factorization theory was initiated by Fogels [1] and further developed
by Narkiewicz and other authors, cf. Geroldinger and Halter-Koch [2, Chapter 9]
and the references cited there. Narkiewicz [6] was the first to treat type-dependent
sets, including Fk , that do not necessarily belong to the smaller class of �-sets (see
the end of Sect. 3 for a definition of �-sets). He introduced the notion of depth and
proposed an inductive reasoning to find the asymptotics of the counting function of a
type-dependent set of height 1 whose elements have bounded depth. In the language
of the present paper the sets treated in [6], subsets of rings of integers in algebraic
number fields, are algebraic products of: the set of elements with all prime divisors in
the principal class, and an arbitrary set of height 1 and rank 0 whose elements have
no principal divisors. The idea to use induction over depth is also used in the present
paper (in Lemma 22). Unfortunately, Lemma 2 in [6] only applies to a set of elements
of a single type. In the proof of Corollary 4 in [6], where sets with an infinite number of
types may arise, the author only mentions that they can be dealt with in the same way.
Kaczorowski [4, Theorem 3] obtained the asymptotics for the counting function of
S (another “properly” type-dependent set), in the context of algebraic number fields,
with C explicitly determined, and an upper bound for the error term.

Geroldinger and Halter-Koch [2, Theorem 9.1.2] gave a more general result on
type-dependent sets. They introduced the height, i.e. the most important of the metrics
of type-dependent sets, although not explicitly as set metrics, cf. Definition 9.1.1 and
the formula for e0 in Theorem 9.1.2. They developed a number of ideas from [6],
adapting them to the setting of (quasi-)formations and sets of height greater than
1. Sets treated in [2, Theorem 9.1.2] are algebraic products of three type-dependent
components (with elements in distinct components relatively prime) that we describe
as follows: a set C of height e0, a set B1 of all elements with all prime divisors in
a subset U1 ⊆ Cl(S) and exponents divisible by e1, and a set B2 of all elements
with all prime divisors in a subset U2 ⊆ Cl(S) and exponents greater or equal to
e2. Moreover e2 > min(e0, e1) and rk(C) = 0 unless e0 > e1. Bearing in mind the
different setting, Theorem 9.1.2 can be applied directly to the set Fk of Theorem 2, but
not to S, S1 or Ek of Theorem 1. Asymptotic lower and upper bounds for S(x) of the
correct order are given instead, cf. [2, p. 633]. The set Ek is of the same general shape
as required in Theorem 9.1.2, with B2 = Ek and C = B1 = {1}, however, it does not
meet the technical assumption e2 > min(e0, e1). In their proof of [2, Theorem 9.1.2]
the authors attempted to close the gap left in [6]. Unfortunately, their argument also
contains gaps, namely, on page 619, line 3, they do not take into account the repetitions
that may occur when multiplying two Dirichlet series, and a similar problem occurs in
the fourth display from bottom on the same page. For comparison, our Proposition 37
implies Theorems 1 and 2. It does not quite re-prove [2, Theorem 9.1.2], because we
do not determine the constant factors in the asymptotic relationship ∼.

The paper is organized as follows. Section 2 contains known definitions and
notation. Section 3 provides the language to describe the structural “size” of a type-
dependent set. Notions of rank and degree, previously defined for�-sets, are extended
to type-dependent sets. We show the basic properties of rank, degree and height, and
how they behave under set operations like disjoint union and algebraic product. In
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Sect. 4 we define regular type-dependent sets, whose zeta functions have appropriate
analytic properties, agreeing with the set’s height, rank and degree. We also consider
other, weaker and stronger regularity properties, and show how they behave under
basic set operations. In Sect. 5 we show that type-dependent sets of rank 0 are regular
(Theorem 23). In Sect. 6 we construct a large family of regular sets (Theorem 30).

In Sect. 7 we apply the results of previous sections to obtain asymptotics for vari-
ous counting functions. Theorem 35 gives asymptotics for the counting functions of
almost regular sets and bounds for semi-regular sets. In the same theorem we also
give upper and lower bounds for A(x) for general type-dependent sets, using Theo-
rems 30 and 23 respectively. It follows from Theorem 36 that these bounds cannot
be improved in general, at least not using the language of the present paper. We also
prove Proposition 37 and Theorems 1 and 2.

2 Preliminaries

Wedenote byN,N0,Z,R andC respectively the sets of positive integers, non-negative
integers, integers, real numbers and complex numbers, and by s = σ + i t a complex
variable with real part σ and imaginary part t . We make use of Landau’s O and o, and
Vinogradov’s� notation.Wewrite f � g for f � g and g � f . Wewrite f ∼ g for
f (x) = g(x)(1 + o(1)), x → +∞. Function support is denoted as Supp, symmetric
difference of sets as
, the cardinality of A as |A| or #A. The infimum of the empty set
is assumed to equal +∞. When G is a finite abelian group we let E denote the neutral
element, ord(X) the order of X ∈ G, and ̂G the group of characters of G, with χ0 for
the trivial character. ForU ⊆ G the subgroup generated byU is denoted as 〈U 〉, while
〈χ | U 〉 = |G|−1∑

X∈U χ(X) for χ ∈ ̂G. We compare functions α : G → N0 using
the product order, so β ≤ α means β : G → N0 and β(X) ≤ α(X) for all X ∈ G.
For comparing pairs and triples we use lexicographic order with the first term always
being the most significant.

Suppose λ ≥ 0 and S is a Krull monoid contained in a free semigroup F(P)

generated by a set of primes P such that:

(i) for every a, b ∈ S divisibility a | b in S is equivalent to a | b in F(P),
(i i) every p ∈ P gcd(a1, . . . , an) for some a1, . . . , an ∈ S.
Hence the inclusion map S ⊆ F(P) is a divisor theory for S. Let G be the quotient of
the groups generated by F(P) and S. The intersection of an element of G with F(P)

is called a divisor class. We let Cl(S) denote the divisor class group, i.e. the set of
divisor classes with multiplication induced by that in G. We let h denote the number
of divisor classes and E the principal class. For χ ∈ ̂Cl(S) and a ∈ F(P) we write
χ(a) instead of χ([a]). We assume:

(i i i) the order h of the class group Cl(S) is finite.

Moreover, there is a norm function ‖·‖ : F(P) → N such that:

(iv) ‖·‖ is a multiplicative homomorphism, i.e. ‖1‖ = 1 and ‖ab‖ = ‖a‖ ‖b‖ for all
a, b ∈ F(P),

(v) ‖a‖ > 1 for all a ∈ F(P) \ {1},
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(vi) for every x > 0 and every ε > 0 the set {a ∈ F(P) : ‖a‖ ≤ x} has �ε x1+λ+ε

elements.

In particular, for every χ ∈ ̂Cl(S) the Dirichlet series

L(s,S, χ) =
∑

a∈F(P)

χ(a)

‖a‖s

is absolutely convergent for σ > 1 + λ. Moreover, we assume that

(vi i) the functions L(s,S, χ), for χ �= χ0, and the function (s − 1 − λ)L(s,S, χ0),
have holomorphic, non-vanishing extensions to σ ≥ 1 + λ.

If conditions (i)−(vi i) are satisfied, we callS a shifted formationwith a principal shift
λ. It follows from the properties of simple analytic monoids [5] that a simple analytic
monoid with a principal shift λ is also a shifted formation with a principal shift λ.
Every formation [2] is a shifted formation with a principal shift 0. We remark that
condition (vi i) may be relaxed, to include quasi-formations. In that case one needs to
assume the same functions mentioned in (vi i) to be holomorphic and non-vanishing in
{1 + λ} ∪ {s : σ > 1 + λ} only, replace ∼ with � in Theorems 1, 2 and 35, moreover,
in the proof of Theorem 35, one needs to claim that ˜Hi (s) in (34) are holomorphic in
{σ0} ∪ {s : σ > σ0} only.

When A ⊆ F(P) we consider the counting function (1) and the zeta function

ZA(s) =
∑

a∈A

‖a‖−s , σ > 1 + λ.

For f : A → C such that for every ε > 0 we have f (a) � ‖a‖ε on A, we also put

ZA(s, f ) =
∑

a∈A

f (a) ‖a‖−s , σ > 1 + λ.

We make use of auxiliary functions

PX (s) =
∑

p∈X∩P
‖p‖−s , σ > 1 + λ, X ∈ Cl(S).

For e ∈ N we let Ae denote the set of Dirichlet series absolutely convergent for
σ > (1 + λ)/e. We also use the classical function ω(a) = ∑

p∈P
p|a

1. The following

lemma shows, in particular, that PX /∈ A2, so the set P ∩ X is infinite for every
X ∈ Cl(S). Its countability follows from condition (vi).

Lemma 3 Let X ∈ Cl(S). We have

PX (s) = 1

h

∑

χ∈ ̂Cl(S)

χ(X) log L(s,S, χ) + RX (s), σ > 1 + λ,
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for some RX ∈ A2.

Proof We have

PX (s) = 1

h

∑

χ∈ ̂Cl(S)

χ(X)
∑

p∈P
χ(p) ‖p‖−s , σ > 1 + λ

and

log L(s,S, χ) =
∑

log
(

(

1 − χ(p) ‖p‖−s)−1
)

p∈P σ > 1 + λ.

The assertion follows from log
(

(

1 − χ(p) ‖p‖−s
)−1

)

− ‖p‖−s χ(p) � ‖p‖−2σ ,

σ > (1 + λ)/2. ��
Factorization-related properties of an element a ∈ S, such as uniqueness of factoriza-
tion to irreducibles, factorization lengths, etc., depend, in general, on its factorization
in F(P). Each element a ∈ F(P) has a unique factorization

a =
∏

p∈P
pvp(a),

where almost all the vp(a) vanish. We say that elements a, b ∈ F(P) have the same
factorization type, and write a ≈ b, if for each X ∈ Cl(S) there is a permutation π of
P ∩ X such that

vp(a) = vπ(p)(b)

for all p ∈ P ∩ X . We can think of “factorization type” as an equivalence class of
the relation ≈. This definition is equivalent to that of a normalized type given by
Geroldinger and Halter-Koch [2, Definition 3.5.7], cf. also Narkiewicz [6, (1) and
3.(a)]. We call a subset A ⊆ F(P) type-dependent if it is closed upon ≈. We say that
A is trivial if A = ∅ or A = {1}.

3 Metrics of a type-dependent set

For a ∈ F(P) we call

γ (a) = inf
p∈P

vp(a)≥1

vp(a)

the (minimal) height of a. This is similar to [2, Definition 9.1.1], except γ (1) = +∞.
For A ⊆ F(P) we define the (minimal) height as

γ (A) = inf
a∈A

γ (a).
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The height of A is therefore finite if and only if A is non-trivial. Height should be
thought of in terms of sparsity, not size of a set. Indeed, the height of a subset is
always less or equal to the height of a superset. We define a related measure

ed(A) = 1 + λ

γ (A)

and call it the exponential density of A. Following [2, Definition 9.1.1] we put, for
a ∈ F(P), e ∈ N, X ∈ Cl(S),

δe,X (a) = ∣

∣

{

p ∈ P ∩ X : vp(a) = e
}∣

∣ .

Narkiewicz [6] considered
∑

X �=E δ1,X (a) and called it the depth of a. For e ∈ N,
U ⊆ Cl(S), and α : Cl(S) → N0 such that α(X) = 0 for all X ∈ U , let

�e(U , α) = {

a ∈ F(P) : γ (a) ≥ e and δe,X (a) = α(X) for all X ∈ Cl(S) \U}

.

We call such sets cubes. In particular

�e(Cl(S), 0) = {a ∈ F(P) : γ (a) ≥ e}

and

�e(∅, 0) = {a ∈ F(P) : γ (a) ≥ e + 1} = �e+1(Cl(S), 0). (3)

It follows from the infinitude of primes in each class that γ (�e(U , α)) = e whenever
U �= ∅ or α �= 0. If α �= 0, we have γ (a) = e for all a ∈ �e(U , α). If α = 0, then
�e(U , α) contains all elements of height ≥ e + 1.

Let A ⊆ F(P) be a non-trivial, type-dependent set of height e. We define the rank
of A, denoted rk(A), as the smallest r such that A is contained in a finite union

m
⋃

i=1

�e(Ui , αi ), (4)

where |Ui | ≤ r for i = 1, . . . ,m. We also define the degree of A, denoted deg(A), as
the supremum of all d ∈ N0 such that the intersection �e(U , α) ∩ A is of the same
height and rank as A for some U and α such that

∑

X α(X) = d. For trivial sets we
put:

rk ({1}) = 0, deg ({1}) = 0,

rk (∅) = −∞, deg (∅) = +∞.

In [7] the present author defined rank and degree for a subclass of type-dependent sets
called �-sets. We show at the end of the section that the notions defined here extend
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the previous ones. Let

metrics(A) = (ed(A), rk(A), deg(A)).

We use the standard lexicographic ordering on [0,+∞) × ({−∞} ∪ N0) ×
(N0 ∪ {+∞}), with the first coordinate most significant, to compare such triples.

Fact 4 If A ⊆ B ⊆ F(P) and A and B are type-dependent, then

metrics(A) ≤ metrics(B).

Proof Follows from the definition of height, rank and degree. ��
Lemma 5 The intersection of two cubes

A = �e(U , α) ∩ �e′(U ′, α′)

is either empty or is itself a cube. If e > e′ and α′ �= 0, then A = ∅. If e > e′ and
α′ = 0, then A = �e(U , α). If e = e′, then A is non-empty if and only ifα(X) = α′(X)

for every X ∈ Cl(S)\(U ∪U ′). In that case A = �e(U∩V , β), where β(X) = α(X)

for X ∈ Cl(S) \U and β(X) = α′(X) for X ∈ Cl(S) \U ′.

Proof Follows from the definition of a cube. ��
Fact 6 If A ⊆ F(P) is a non-trivial type-dependent set of height e and rank r, then
deg(A) equals the smallest d ′ such that A is contained in a finite union (4)with |Ui | ≤ r
for all i and

∑

X /∈U αi (X) ≤ d ′ for all i with |Ui | = r . In particular deg(A) < +∞.

Proof Let d = deg(A), d ′ be as in the assertion, and suppose A is contained in (4) with
|Ui | ≤ r for all i and d ′ = maxi :|Ui |=r

∑

X /∈Ui
αi (X). We may assume that the choice

of pairs (Ui , αi ) is minimal, i.e. the number of i with |Ui | = r is the smallest possible,
and each intersection A ∩ �e(Ui , αi ) is non-empty. Moreover we can suppose that
|U1| = r and

∑

X /∈U1
α1(X) = d ′. First we show that

rk (A ∩ �e(U1, α1)) = r ,

implying that d ≥ d ′. Indeed, if rk (A ∩ �e(U1, α1)) < r , then A ∩ �e(U1, α1) ⊆
⋃n

i=1 �e(Vi , βi ) for some Vi , βi such that |Vi | ≤ r − 1 for all i . Then

A ⊆
(

n
⋃

i=1

�e(Vi , βi )

)

∪
(

m
⋃

i=2

�e(Ui , αi )

)

,

contrary to the minimality of the choice of pairs (Ui , αi ). To see that d ≤ d ′ let U , α
be such that rk (�e(U , α) ∩ A) = r . We have

�e(U , α) ∩ A ⊆
m
⋃

i=1

(�e(U , α) ∩ �e(Ui , αi )) .
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Each non-empty intersection �e(U , α) ∩ �e(Ui , αi ) is of the form �e(U ∩ Ui , α
′
i ),

and we have |U ∩Ui | < r unless

|Ui | = r , Ui ⊆ U , and α(X) = αi (X) for all X ∈ Cl(S) \U . (5)

Since rk (�e(U , α) ∩ A) = r we must have (5) for at least one i , impying that
∑

X /∈U α(X) ≤ ∑

X /∈Ui
αi (X) ≤ d ′. ��

We call

A ⊆
m
⋃

i=1

�e(Ui , αi ) (6)

a fair covering if maxi |Ui | = rk(A), maxi :|Ui |=rk(A)

∑

X /∈Ui
αi (X) ≤ deg(A). It

follows from Fact 6 that every non-trivial type-dependent set has a fair covering and
that in fact maxi :|Ui |=rk(A)

∑

X /∈Ui
αi (X) = deg(A).

Fact 7 Let A ⊆ F(P) be non-trivial. We have rk(A) ∈ {0, . . . , h} and deg(A) ∈ N0.
The rank and degree cannot both be equal to zero.

Proof Let e = γ (A). The assertion follows from the existence of a fair covering (6). If
Ui = ∅ and αi = 0 for all i , then γ (a) > e for all a ∈ A, contrary to the assumption.

��
Fact 8 Let A, B ⊆ F(P) be type-dependent. Then

metrics(A ∪ B) = max (metrics(A),metrics(B)) .

Proof The fact that γ (A ∪ B) = min(γ (A), γ (B)) follows from the definition of
height. Suppose, as we may, that A �= B and A, B �= ∅, moreover

metrics(A) ≤ metrics(B) = max (metrics(A),metrics(B)) .

This implies that B is non-trivial. Let e = γ (B), r = rk(B) and d = deg(B). By
Fact 4 we have metrics(A ∪ B) ≥ metrics(B), so it is enough to show the converse.
Suppose

B ⊆
n
⋃

i=1

�e(Vi , βi )

is a fair covering. If γ (A) > e, then A ∪ B ⊂ �e(∅, 0) ∪ ⋃n
i=1 �e(Vi , βi ), so

metrics(A ∪ B) ≤ metrics(B). Otherwise γ (A) = e and rk(A) ≤ r . Moreover there
exists a fair covering (6). The covering

A ∪ B ⊆
(

m
⋃

i=1

�e(Ui , αi )

)

∪
(

n
⋃

i=1

�e(Vi , βi )

)
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shows that rk(A ∪ B) ≤ r , so rk(A ∪ B) = r . If rk(A) = r , then metrics(A) ≤
metrics(B) implies that deg(A) ≤ deg(B), so

max

⎛

⎝ max
i :|Ui |=r

∑

X /∈Ui

αi (X), max
i :|Vi |=r

∑

X /∈Vi
βi (X)

⎞

⎠ = d,

hence deg(A ∪ B) ≤ d. Otherwise rk(A) < r , so |Ui | < r for all i and
maxi :|Vi |=r

∑

X /∈Vi βi (X) = d implies deg(A ∪ B) ≤ d. ��

Fact 9 Let A ⊆ F(P) be a type-dependent set, m ∈ N, and

B = {

am : a ∈ A
}

.

Then γ (B) = mγ (A), rk(B) = rk(A) and deg(B) = deg(A).

Proof Let e = γ (A). We may suppose that A is non-trivial. The equality γ (B) = me
follows from the definition. The other equalities follow from the fact that a ∈ �e(U , α)

is equivalent to am ∈ �me(U , α), so (6) is a fair covering of A if and only if

B ⊆
m
⋃

i=1

�me(Ui , αi )

is a fair covering of B. ��

Proposition 10 Let A, B ⊆ F(P) be non-empty, type-dependent sets such that
γ (A) ≥ γ (B). Then γ (AB) = γ (B). If gcd(a, b) = 1 for all a ∈ A, b ∈ B,
then rk(AB) = r + rk(B), and deg(AB) = d + deg(B), where r = rk(A) and
d = deg(A) if γ (A) = γ (B), and r = 0 and d = 0 if γ (A) > γ (B).

Proof The assertion is easy to check if A is a trivial set, so we assume that A is non-
trivial, hence so is B. The equality γ (AB) = γ (B) follows by taking any b ∈ B with
γ (b) = γ (B), and any a ∈ A relatively prime to b (again, it exists by the infinitude of
primes in each class and the fact that A is type-dependent). Then γ (ab) = γ (b) and
ab ∈ AB.

Suppose gcd(a, b) = 1 for all a ∈ A, b ∈ B. If p, q ∈ P are such that [p] = [q],
p | a for some a ∈ A, and q | b for some b ∈ B, then there exists a′ ∈ F(P),
a′ ≈ a, such that q | a. Since A is type-dependent, we have a′ ∈ A and q | gcd(a′, b),
contrary to the assumptions. Therefore the sets ˜U and ˜V , of classes of prime divisors
of elements of A and B, respectively, are disjoint. Let e = γ (B). Consider a fair
covering

B ⊆
n
⋃

j=1

�e(Vj , β j ).
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If γ (A) = e, let (6) be a fair covering, otherwise let m = 1, U1 = ∅, and α1 = 0. In
any case we have

r = max
i

|Ui | , and d = max
i :|Ui |=r

∑

X /∈Ui

αi (X).

Ourgoal is to show thatγ (AB) = e, rk(AB) = r+rk(B), and deg(AB) = d+deg(B).
We may assume that Ui ⊆ ˜U and Vj ⊆ ˜V , i = 1, . . . ,m, j = 1, . . . , n. Since
Supp(αi ) ⊆ ˜U \Ui and Supp(β j ) ⊆ ˜V \ Vj , we have

�e(Ui , αi )�e(Vj , β j ) ⊆
⋃

η≤αi+β j

�e(Ui ∪ Vj , η)

for all i, j . Hence

AB ⊆
m
⋃

i=1

n
⋃

j=1

⋃

α′≤αi
β ′≤βi

�e(Ui ∪ Vj , α
′ + β ′). (7)

This implies (rk(AB), deg(AB)) ≤ (r + rk(B), d + deg(B)) in the lexicographic
order, where the first coordinate is more significant. It also follows from (7) that if
AB is covered with sets of the form �e(W , η), we can replace each �e(W , η) with
the union of

�e(W , η) ∩ �e(Ui ∪ Vj , α
′ + β ′), i = 1, . . .m, j = 1, . . . , n, α′ ≤ αi , β

′ ≤ βi ,

(8)

skipping the empty summands. If non-empty, the intersection (8) equals �e((W ∩
Ui ) ∪ (W ∩ Vj ), α

′′ + β ′′), where

α′′(X) =

⎧

⎪

⎨

⎪

⎩

η(X), X ∈ ˜U \ W ,

α′(X), X ∈ ˜U \Ui ,

0, X ∈ (W ∩Ui ) ∪ (

Cl(S) \ ˜U
)

,

β ′′(X) =

⎧

⎪

⎨

⎪

⎩

η(X), X ∈ ˜V \ W ,

β ′(X), X ∈ ˜V \ Vj ,

0, X ∈ (W ∩ Vi ) ∪ (

Cl(S) \ ˜V
)

.

Moreover
∑

X α′′(X) ≤ ∑

X αi (X) unless W ∩ Ui � Ui , likewise
∑

X β ′′(X) ≤
∑

X β j (X) unlessW ∩Vj � Vj , and finally
∑

X α′′(X)+β ′′(X) ≤ ∑

X η(X) unless
(W ∩Ui ) ∪ (W ∩ Vj ) � W . Therefore there exists a fair covering of AB of the form

AB ⊆
l
⋃

k=1

�e(U
′
k ∪ V ′

k, α
′
k + β ′

k), (9)

123



426 M. Radziejewski

where, for all k, we haveU ′
k ⊆ ˜U , V ′

k ⊆ ˜V , Supp(α′
k) ⊆ ˜U \Uk , Supp(β ′

k) ⊆ ˜V \ Vk ,
and

(

∣

∣U ′
k

∣

∣ ,
∑

X

α′
k(X)

)

≤ (r , d) and

(

∣

∣V ′
k

∣

∣ ,
∑

X

β ′(X)

)

≤ (rk(B), deg(B)) (10)

in the lexicographic order. Let I and J be the sets of those k, for which the first,
respectively the second, inequality in (10) is sharp. By Fact 6 (and by I = ∅ in the
case γ (A) > e) there exist

a ∈ A \
⋃

k∈I
�e(U

′
k, α

′
k)

and

b ∈ B \
⋃

k∈J

�e(V
′
k, β

′
k).

Fix k such that ab ∈ �e(U ′
k ∪ V ′

k, α
′
k + β ′

k). We have a ∈ �e(U ′
k, α

′
k) and

b ∈ �e(V ′
k, β

′
k) so k /∈ I ∪ J , and thus

∣

∣U ′
k ∪ V ′

k

∣

∣ = r + rk(B) and
∑

X α′
k(X) +

β ′
k(X) = d + deg(B). The covering (9) is fair, so this implies the converse inequality

(rk(AB), deg(AB)) ≥ (r + rk(B), d + deg(B)). ��

Next we show that when A is a special kind of type-dependent set called �-set, as
defined in [7], the values of rank and degree introduced there agree with the ones
defined here. We do that without re-introducing the language of [7], only a bare
minimum. For a ∈ F(P) and X ∈ Cl(S) let

�X (a) =
∑

p∈P∩X

vp(x).

We call A ⊆ F(P) an �-set if for all a ∈ A and all b ∈ F(P) such that

�X (a) = �X (b) for all X ∈ Cl(S) (11)

we have b ∈ A. Of course, every �-set is type-dependent. For U ⊆ Cl(S), and
α : Cl(S) → N0 such that α(X) = 0 for all X ∈ U , let

�(U , α) = {a ∈ F(P) : �X (a) = α(X) for all X ∈ Cl(S) \U } .
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Proposition 11 Let A be a non-trivial �-set. Then γ (A) = 1. The rank of A equals
the smallest r ′ such that A is contained in a finite union of the form

n
⋃

i=1

Xi ∩ �(Ui , αi ), (12)

where Xi ∈ Cl(S) and |Ui | ≤ r ′ for i = 1, . . . , n. The degree of A equals the
supremum d ′ of all d ∈ N0 such that

rk (Y ∩ �(U , α) ∩ A) = rk(A)

for some Y ∈ Cl(S), U ⊆ Cl(S) and α : Cl(S) → N0 such that α(X) = 0 for X ∈ U
and

∑

X /∈U α(X) = d.

Proof Let r = rk(A) and d = deg(A). Let r ′ and d ′ be as in the assertion and consider
the smallest d ′′ such that A is contained in a finite union (12) with |Ui | ≤ r for all i
and

∑

X /∈U αi (X) ≤ d ′′ for all i with |Ui | = r . If a ∈ A\{1}, then, by the infinitude of
primes in each class, there exists b ∈ F(P) which is a product of distinct primes and
satisfies (11), hence b ∈ A. Therefore γ (A) = 1. For every a ∈ F(P), X ∈ Cl(S) we
have 0 ≤ δ1,X (a) ≤ �X (a), therefore if A is contained in (12), it is also contained in

m
⋃

i=1

⋃

β:Cl(S)→N0
β≤αi

�1(Ui , β).

Hence r ≤ r ′ and, by Fact 6, also (r , d) ≤ (r ′, d ′′) in the lexicographic order. On
the other hand, if A is contained in (4) with e = 1, and a ∈ A, we can find (again)
b ∈ A which is a product of distinct primes and satisfies (11). Let i be such that
b ∈ �1(Ui , αi ). Then a ∈ �(Ui , αi ). The choice of a is arbitrary, so A is contained
in

m
⋃

i=1

⋃

X∈Cl(S)

X ∩ �(Ui , αi ).

This implies (r ′, d ′′) ≤ (r , d) in the lexicographic order. The equality d ′′ = d ′ follows
from [7, Lemma4.4] and the basic properties of the “old” rank and degree proved there.

��

4 Regular type-dependent sets

Wecall a non-trivial, type-dependent subset A of the divisormonoidF(P) (of a shifted
formation S) regular if ZA(s) has an extension of the form
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ZA(s) =
n
∑

i=1

Hi (s)
∏

χ∈ ̂Cl(S)

L(es,S, χ)wi,χ (log L(es,S, χ))ki,χ , (13)

where e = γ (A), Hi ∈ Ae+1, wi,χ ∈ C, and ki,χ ∈ N0 for all i, χ , moreover the
limit

lim
s→σ+

0

ZA(s)(s − σ0)
rk(A)/h(log((s − σ0)

−1))− deg(A), (14)

where σ0 = ed(A), is finite and non-zero. In addition the trivial sets are also considered
regular. We call A regular across classes if for every X ∈ Cl(S) such that X ∩ A �= ∅
the intersection X ∩ A is regular with metrics(X ∩ A) = metrics(A), and completely
regular across classes if, in addition, X ∩ A �= ∅ for all X . Further, A is almost regular
if there exists a type-dependent set B such that metrics (B) < metrics(A) and A 
 B
is regular. Finally, A is semi-regular if there are almost regular, type-dependent sets
B and B ′ such that B ⊆ A ⊆ B ′ and metrics(B) = metrics(B ′) = metrics(A).

Lemma 12 Let e ∈ N and

A ⊆ �e(Cl(S), 0) = {a ∈ F(P) : γ (a) ≥ e} .

Then ZA(s, f ) ∈ Ae for every f : A → C such that ∀ε>0 f (a) � ‖a‖ε for a ∈ A.

Proof Let σ > (1+ λ)/e, ε = (σ − (1 + λ)/e) /2, σ ′ = σ − ε = (1+ λ)/e + ε. We
have

∑

a∈A

| f (a)| ‖a‖−s �
∑

a∈F(P)
γ (a)≥e

‖a‖−σ ′

<
∏

p∈P

(

1 + ‖p‖−eσ ′ + ‖p‖−(e+1)σ ′ + . . .
)

=
∏

p∈P

(

1 + ‖p‖−eσ ′ (
1 − ‖p‖−σ ′)−1

)

< +∞.

��
Lemma 13 Suppose A is a type-dependent set and

metrics(A) < (σ0, r , d)

for some σ0 = (1 + λ)/e, e ∈ N, and r , d ∈ N0 not both zero. If γ (A) > e or A is
regular, then

lim
s→σ+

0

ZA(s)(s − σ0)
r/h(log((s − σ0)

−1))−d = 0.
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Proof The assertion is obvious when A = ∅, so we assume that A �= ∅. If γ (A) >

e, then lims→σ+
0
ZA(s) is finite by Lemma 12. This implies the assertion. Suppose

γ (A) = e. Then the limit (14) is finite and either r > rk(A) or r = rk(A) and
d > deg(A). Therefore

lim
s→σ+

0

(s − σ0)
(r−rk(A))/h(log((s − σ0)

−1))deg(A)−d = 0,

so the assertion holds again. ��
Fact 14 Suppose A is a type-dependent set. If A is regular (respectively completely
regular across classes), then so is A 
 B for every type-dependent set B satisfying
γ (B) > γ (A).

Proof Suppose A is regular and B �= ∅. We have metrics(A 
 B) = metrics(A) by
Fact 8. Both B \ A and A ∩ B are of greater height than A by Fact 4. Lemma 12 and

ZA
B(s) = ZA(s) + ZB\A(s) − ZA∩B(s), σ > 1 + λ,

imply that ZA
B(s) is of the form (13). Fact 7 and Lemma 13 show that the limit (14)
for ZA
B(s) is the same as for ZA(s). By replacing A and B with X ∩ A and X ∩ B
and using Fact 4 we obtain the assertion for sets completely regular across classes. ��
Fact 15 Suppose A is a type-dependent set. If A is almost regular (respectively semi-
regular), then so is A 
 B for every type-dependent set B satisfying metrics(B) <

metrics(A).

Proof We have metrics(A 
 B) = metrics(A) by Fact 8. If A is almost regular and
A 
 B ′ is regular for some B ′ satisfying metrics(B ′) < metrics(A), then

(A 
 B) 
 (

B 
 B ′) = A 
 B ′.

Facts 4 and 8 imply that metrics
(

B 
 B ′) < metrics(A), hence A 
 B is almost
regular. If A is semi-regular and B ′ ⊆ A ⊆ B ′′ where B ′, B ′′ are almost regular with
the same metrics as A, then

B ′ \ B ⊆ A ⊆ B ′′ ∪ B.

Again, Fact 8 implies that metrics(B ′ \ B) = metrics(B ′′ ∪ B) = metrics(A), and
the first assertion shows that B ′ \ B and B ′′ ∪ B are almost regular. This implies the
assertion. ��
Fact 16 Suppose A, B ⊆ F(P) are disjoint, type-dependent sets. If A and B are
regular, then so is A ∪ B. If A and B are regular across classes and metrics(A) =
metrics(B), then A ∪ B is regular across classes. If A is completely regular across
classes, B is regular across classes and metrics(B) ≤ metrics(A), then A ∪ B is
completely regular across classes.
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Proof Suppose A and B are regular. It follows from

ZA∪B(s) = ZA(s) + ZB(s), σ > 1 + λ,

that ZA∪B(s) is of the form (13). Facts 7 and 8, and Lemma 13, imply that A ∪ B
is regular when metrics(A) �= metrics(B), otherwise it follows from the additivity
of limits. The other assertions follow from the first one and the fact that for every
X ∈ Cl(S) the sets X ∩ A and X ∩ B are empty or regular, so their disjoint sum is
regular. Moreover, for every X ∈ Cl(S) such that X ∩ (A ∪ B) �= ∅ the value

metrics (X ∩ (A ∪ B)) = max (metrics (X ∩ A) ,metrics (X ∩ B))

equals metrics(A ∪ B), because either

metrics (X ∩ A) = metrics(A) ≥ metrics(B)

or

metrics (X ∩ B) = metrics(B) = metrics(A).

��
Fact 17 Suppose A is a type-dependent set. If A is completely regular across classes,
it is regular across classes. If it is regular across classes, it is regular. If it is regular,
it is almost regular. If it is almost regular, it is semi-regular.

Proof By Fact 16 if X ∩ A is regular for every X ∈ Cl(S), then so is the disjoint union

A =
⋃

X∈Cl(S)

X ∩ A.

This implies the second assertion. The others are obvious. ��
Fact 18 Suppose A, B ⊆ F(P) are type-dependent sets such that B � A and
metrics(B) < metrics(A). If A and B are regular (respectively regular across classes,
completely regular across classes), then so is A \ B.

Proof Suppose A and B are regular. We have metrics(A \ B) = metrics(A) by Fact 8.
The identity

ZA\B(s) = ZA(s) − ZB(s), σ > 1 + λ,

Fact 7 and Lemma 13 imply the first assertion. The assertions across classes follow
from the first one upon observing that X ∩ B �= ∅ implies X ∩ A �= ∅. ��
Fact 19 Let A ⊆ F(P) be a type-dependent set, m ∈ N, and B = {am : a ∈ A}. If A
is regular, then so is B. If A is regular across classes, then so is B.
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Proof Let e = γ (A), σA = ed(A), r = rk(A), d = deg(A) and σB = ed(B). We
have γ (B) = me, σB = σA/m, rk(B) = r and deg(B) = d by Fact 9. Suppose A is
regular. It follows from

ZB(s) = ZA(ms), σ > 1 + λ,

that ZB(s) has the required form. Moreover

lim
s→σ+

B

ZB(s)(s − σB)r/h(log((s − σB)−1))−d

= lim
s→σ+

A

ZA(s)(s/m − σB)r/h(log((s/m − σB)−1))−d

= m−r/h lim
s→σ+

A

ZA(s)(s − σA)r/h(log(m) + log((s − σA)−1))−d > 0.

Hence B is regular. Let Y ∈ Cl(S) and let X1, . . . , Xn be all the solutions of Xm = Y .
If A is regular across classes, then

⋃n
j=1

(

X j ∩ A
)

is regular by Fact 16 and

Y ∩ B =
{

am : a ∈
n
⋃

j=1

(

X j ∩ A
)

}

,

so the second part of the assertion follows from the first one. ��
Proposition 20 Let A, B ⊆ F(P) be type-dependent sets such that gcd(a, b) = 1
for all a ∈ A, b ∈ B. If A and B are regular (respectively regular across classes,
completely regular across classes), then so is AB. If γ (B) > γ (A) and A is regular
(respectively regular across classes, completely regular across classes), then so is AB.

Proof Suppose metrics(B) ≤ metrics(A) and let e = γ (A) and σ0 = ed(A).

Case 1. A and B are regular and γ (B) = e.
We have γ (AB) = e, rk(AB) = rk(A) + rk(B) and deg(AB) = deg(A) +
deg(B) by Proposition 10. We also have

ZAB(s) = ZA(s)ZB(s), σ > 1 + λ,

so ZAB(s) has the required form, because both ZA(s) and ZB(s) do. More-
over

lim
s→σ+

0

ZAB(s)(s − σ0)
(rk(A)+rk(B))/h(log((s − σ0)

−1))−(deg(A)+deg(B))

= lim
s→σ+

0

ZA(s)(s − σ0)
rk(A)/h(log((s − σ0)

−1))− deg(A)

· lim
s→σ+

0

ZB(s)(s − σ0)
rk(B)/h(log((s − σ0)

−1))− deg(B).
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Case 2. A is regular and γ (B) > e.
We have γ (AB) = e, rk(AB) = rk(A) and deg(AB) = deg(A) by Proposi-
tion 10. Moreover

ZAB(s) = ZA(s)ZB(s), σ > 1 + λ,

and ZB(s) ∈ Ae+1, so ZAB(s) has the required form. We also have

lim
s→σ+

0

ZAB(s)(s − σ0)
rk(A)/h(log((s − σ0)

−1))− deg(A)

= lim
s→σ+

0

ZA(s)(s − σ0)
rk(A)/h(log((s − σ0)

−1))− deg(A) · lim
s→σ+

0

ZB(s)

and lims→σ+
0
ZB(s) > 0 follows from the definition and absolute conver-

gence of the series.
Case 3. A and B are regular across classes and γ (B) = e.

The non-empty among the sets X ∩ A, Y ∩ B, where X ,Y ∈ Cl(S), are
regular with metrics equal to metrics(A), respectively metrics(B). By Fact 8,
Proposition 10, and the first case, each of

Z ∩ AB =
⋃

XY=Z

(X ∩ A) · (Y ∩ B), Z ∈ Cl(S), (15)

is either empty or regular withmetrics equal tometrics(AB). If, in addition, A
is completely regular across classes and B is non-empty, we have Y ∩ B �= ∅
for at least one Y = Y0, so the right-hand side of (15) always has a non-empty
summand for X = ZY−1

0 . Therefore AB is completely regular across classes.
Case 4. A is regular across classes and γ (B) > e.

This is analogous to Case 3. ��

5 Sets of rank 0

Fact 21 Let A be a non-trivial, type-dependent set with e = γ (A). We have rk(A) = 0
if and only if the quantity

d = sup
a∈A

∑

X∈Cl(S)

δe,X (a)

is finite. In that case deg(A) = d and d ∈ N.

Proof If A ⊆ ⋃m
i=1 �e(∅, αi ), then δe,X (a) < αi (X) for every a ∈ �e(∅, αi ), X ∈

Cl(S), implying d < +∞. Conversely, if d < +∞ holds, we let D denote the set of
all α : Cl(S) → N0, satisfying

∑

X α(X) ≤ d. We have

A ⊆
⋃

α∈D
�e(∅, α),
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so rk(A) = 0 and deg(A) ≤ d by Fact 6. Let us pick an element amax ∈ A satisfying
∑

X∈Cl(S) δe,X (a) = d and let αmax : Cl(S) → N0, αmax(X) = δe,X (amax). The set

�e(∅, αmax) ∩ A

is a subset of A and contains [amax]≈, so it is of height e and rank 0 by Fact 4. Hence
deg(A) = d. Positivity of d follows from the fact that γ (A) = e, so there is at least
one element a ∈ A satisfying γ (a) = e, and therefore

∑

X∈Cl(S) δe,X (a) > 0. ��
Lemma 22 Let d ∈ N0, e ∈ N, b = ∏d

i=1 p
e
i for some distinct pi ∈ P , C ⊆ F(P) a

non-empty, type-dependent set satisfying γ (C) > e,

A = {

b′c : b′ ≈ b, c ∈ C, gcd(b′, c) = 1
}

, (16)

and let f : C → C be such that ∀ε>0 f (c) � ‖c‖ε for c ∈ C. Then f has a unique
extension to A ∪ C satisfying

f (b′c) = f (c), for all b′ ≈ b, c ∈ C, gcd(b′, c) = 1, (17)

and ZA(s, f ) is a polynomial in (PX (es))X∈Cl(S) with coefficients inAe+1, of degree
≤ d, and no other terms of degree d than

ZC (s, f )
∏

X∈Cl(S)

PX (es)δe,X (b).

Proof Suppose d = 0. We have b = 1 and A = C . The only representation of
a = b′c satisfying the conditions in (16) is with b′ = 1, so (17) holds trivially. We
have ZA(s, f ) = ZC (s, f ) ∈ Ae+1 by Lemma 12.

Suppose d > 0 is the smallest possible such that the assertion fails. We have
γ (a) = e for every a ∈ A, so A ∩ C = ∅. The only representation of a = b′c
satisfying the conditions in (16) is with b′ = ∏

p∈P
vp(a)=e

pe, so the extension of f is

unique. When b′ ≈ b and c ∈ C we have γ (c) > e, so gcd(b′, c) is always of the
same type as

∏

p∈U
pe (18)

for someU ⊆ {p1, . . . , pd}. Fromamong the divisors of b of the form (18)withU �= ∅
we choose a set D containing one representative of each type. By the uniqueness of
representation of elements a ∈ A in the form a = b′c in (16) we have

ZA(s, f ) = Z[b]≈(s)ZC (s, f ) −
∑

u∈D

∑

b′≈b,c∈C
(b′,c)≈u

f (c)
∥

∥b′c
∥

∥

−s

= Z[b]≈(s)ZC (s, f ) −
∑

u∈D
ZAu (s, fu), (19)
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where

Au = {

b′c : b′ ≈ b, c ∈ C, (b′, c) ≈ u
}

,

fu(a) =
∑

b′≈b,c∈C
(b′,c)≈u
b′c=a

f (c), a ∈ Au, (20)

provided that each ZAu (s, fu) is well defined, i.e. ∀ε>0 fu(a) � ‖a‖ε on Au , which
we show below. For each u ∈ D let bu = b/u,

Cu = {

u′c : u′ ≈ u, c ∈ C, u′ | c} .

Then Cu is type-dependent. We have gcd(bu, u) = 1, so whenever b′ ≈ b, c ∈ C and
(b′, c) = u′ ≈ u we have gcd(b′/u′, u′c) = 1. Therefore Au is contained in

{

b′
ucu : b′

u ≈ bu, cu ∈ Cu, gcd(b
′
u, cu) = 1

}

. (21)

To see that (21) equals Au consider any b′
u ≈ bu and cu = u′c where u′ ≈ u, c ∈ C ,

u′ | c and gcd(b′
u, u

′c) = 1.We have b′
ucu = b′

uu
′ ·c, b′

uu
′ ≈ b and gcd(b′

uu
′, c) = u′,

so b′
ucu ∈ Au , and (21) is contained in Au . We have γ (Cu) > e, so the representation

of a ∈ Au as a = b′
ucu in (21) is unique. The representation a = b′c in (20) need not

be unique, but it implies that b′/u′ = b′
u and u′c = cu for some u′ ≈ u. and Hence

fu(b
′
ucu) =

∑

u′≈u
u′|cu

f
(cu
u′
)

,

in particular fu(b′
ucu) depends on cu alone. For every ε > 0 we have f (cu/u′) �

∥

∥cu/u′∥
∥

ε/2 � ‖cu‖ε/2, u′ ≈ u, and

∑

u′≈u
u′|cu

1 � ω(cu)
d ≤ log2 (‖cu‖)d � ‖cu‖ε/2 .

We obtain fu(a) = fu(cu) � ‖cu‖ε � ‖a‖ε. By the inductive hypothesis each
function

∑

u∈D ZAu (s, fu), u ∈ D, satisfies the assertion with d −ω(u) in place of d.
Finally, note that for each X ∈ Cl(S), δ = δe,X (b), we have

PX (es)δ =
δ
∑

r=1

∑

1≤m1≤...≤mr≤δ
m1+...+mr=δ

κ(m1, . . . ,mr )ZA(m1,...,mr )(s), (22)

where κ(m1, . . . ,mr ) ∈ N and A(m1, . . . ,mr ) denotes the set of all elements of type
qm1e
1 . . . qmr e

r with q1, . . . , qr ∈ X ∩ P distinct. When m1 = . . . = mk = 1 <

mk+1 ≤ . . . ≤ mr for k < r , the set A′ = A(m1, . . . ,mr ) satisfies the assumptions of
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the lemmawith b′ = qe1 . . . qek ,C
′ = A(mk+1, . . . ,mr ), so by the inductive hypothesis

ZA(m1,...,mr )(s) is a polynomial of degree k ≤ δ − 1 < d. Otherwise we have r = δ

and m1 = . . . = mδ = 1. Comparing the products of both sides of (22) over all
X ∈ Cl(S) we conclude that

Z[b]≈(s) −
∏

X∈Cl(S)

PX (es)δe,X (b)

is a polynomial of degree ≤ d − 1. This, in view of (19), implies our assertion. ��
Theorem 23 Every type-dependent set of rank 0 is regular.

Proof Trivial sets are regular, so suppose A is a non-trivial type-dependent set of rank
0. Let e = γ (A). It follows from Fact 21 that deg(A) = d, where

d = sup
a∈A

∑

X∈Cl(S)

δe,X (a)

and d ∈ N. Consider a fair covering

A ⊆
m
⋃

i=1

�e(∅, αi ),

such that Ai := �e(∅, αi ) ∩ A �= ∅ for every i . Fix α = αi . Let δ = δi = ∑

X α(X),
and let b = ∏δ

j=1 p
e
j be such that b ∈ �e(∅, α). Obviously for every a ∈ Ai there

exists a unique b′ ≈ b such that b′ | a, namely

b′ =
∏

p∈P
vp(a)=e

pe.

Of course gcd(b′, a/b′) = 1. Let

Ci = {

c ∈ F(P) : b′c ∈ Ai for some b′ ≈ b
}

. (23)

We have γ (Ci ) > e. If c ∈ Ci , b′ ≈ b, and gcd(b′, c) = 1, then by (23) there exists a
b′′ ≈ b such that b′′c ∈ Ai . We have gcd(b′′, c) = 1, so b′′c ≈ b′c, implying b′c ∈ Ai .
We conclude that

Ai = {

b′c : b′ ≈ b, c ∈ Ci , gcd(b
′, c) = 1

}

.

By Lemma 22 with f = 1, and Lemma 3, the function ZAi (s) is a polynomial of

degree ≤ d in log L(es,S, χ), χ ∈ ̂Cl(S). Hence

ZA(s) =
m
∑

i=1

ZAi (s) =
n
∑

j=1

Hj (s)
∏

χ∈ ̂Cl(S)

(log L(es,S, χ))k j,χ , (24)
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where Hi ∈ Ae+1 and k j,χ ∈ N0, as in (13), moreover
∑

χ k j,χ ≤ d for all j . It also
follows from Lemmas 22 and 3 that the sum of terms of (24) with k j,χ0 = d equals

h−d ZC (s) (log L(es,S, χ0))
d ,

where C = ⋃

δi=d Ci . Each function log L(es,S, χ), χ �= χ0, is regular at σ0 =
ed(A). Therefore the limit (14) equals h−d ZC (σ0) > 0. ��

6 Sets generated by cubes

Lemma 24 Let e, l ∈ N, X ∈ Cl(S),

A = Ae,l,X = {

a ∈ F(P) : vp(a) ∈ e + lN0 and p ∈ X for every p | a, p ∈ P}

(25)

and

B = Be,X = {

b ∈ A : vp(b) = e for every p | b, p ∈ P} . (26)

We have γ (A) = γ (B) = e, rk(A) = rk(B) = 1 and deg(A) = deg(B) = 0.
For Y ∈ Cl(S) we have Y ∩ A �= ∅ if and only if Y ∈ 〈

Xgcd(e,l)
〉

. In that case
metrics(Y ∩ A) = metrics(A). We have Y ∩ B �= ∅ if and only if Y ∈ 〈Xe〉. In that
case metrics(Y ∩ B) = metrics(B).

Proof We have B ⊆ A ⊆ �e({X}, 0), so γ (B) ≥ γ (A) ≥ e. If γ (B) = γ (A) = e,
then rk(B) ≤ rk(A) ≤ 1 and, if rk(B) = rk(A) = 1 as well, then deg(A) =
deg(B) = 0 by Fact 6. For each a ∈ A we have [a] ∈ Xme+nl for somem, n ∈ N0 and
[a] ∈ Xme when a ∈ B. Conversely, let Y = Xme+nl and let k ≡ m (mod ord(X)) be
arbitrarily large. We have metrics(Y ∩ A) ≤ metrics(A) by Fact 4. For distinct primes
p1, . . . , pk ∈ X we have pe+nl

1 pe2 . . . pek ∈ Y ∩ A, so γ (Y ∩ A) = γ (A) = e and
supa∈Y∩A δe,X (a) = +∞. Hence rk(Y ∩ A) = rk(a) = 1 by Fact 21. Consequently
deg(Y ∩ A) = deg(A) = 0. Likewise, when n = 0, we have pe1 p

e
2 . . . pek ∈ Y ∩ B and

the same argument shows that metrics(Y ∩ B) = metrics(B) = metrics(A). ��

Lemma 25 Let e ∈ N and X ∈ Cl(S). The set B defined by (26) is regular across
classes.

Proof We have γ (B) = e, rk(B) = 1 and deg(B) = 0 by Lemma 24. Moreover, for
every χ ∈ ̂Cl(S) we have

ZB(s, χ) =
∏

p∈X∩P

(

1 + χ(pe) ‖p‖−es) , σ > 1 + λ,
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so

log ZB(s, χ) =
∑

p∈X∩P

(

χ(pe) ‖p‖−es + O
(

‖p‖−(e+1)σ
))

= χ(X)e
1

h

∑

ψ∈ ̂Cl(S)

ψ(X)
∑

p∈P

(

ψ(p) ‖p‖−es + O
(

‖p‖−(e+1)σ
))

= χ(X)e
1

h

∑

ψ∈ ̂Cl(S)

ψ(X) log L(es,S, ψ) + Rχ (s)

=
∑

ψ∈ ̂Cl(S)

〈

χeψ | {X}〉 log L(es,S, ψ) + Rχ (s),

where Rχ (s) ∈ Ae+1. The coefficient at log L(es,S, χ0), having a singularity at
s = (1 + λ)/e, is 〈χe | {X}〉. We have 〈χe | {X}〉 = 1/h if and only if

χe(X) = 1. (27)

Otherwise � 〈χe | {X}〉 < 1/h. Let Y ∈ 〈Xe〉. We have

ZY∩B(s) = 1

h

∑

χ∈ ̂Cl(S)

χ(Y )ZB(s, χ)

= 1

h

∑

χ∈ ̂Cl(S)

χ(Y )
∏

ψ∈ ̂Cl(S)

L(es,S, ψ)
〈

χeψ |{X}〉 exp
(

Rχ (s)
)

.

Let G denote the set of those χ that satisfy (27) and σ0 = (1 + λ)/e. We have
ZB(s, χ) = ZB(s) and χ(Y ) = 1 for χ ∈ G, so

lim
s→σ+

0

(s − σ0)
1/h ZY∩B(s) = lim

s→σ+
0

(s − σ0)
1/h 1

h

∑

χ∈G
χ(Y )ZB(s, χ)

= |G|
h

lim
s→σ+

0

(s − σ0)
1/h ZB(s).

Moreover

ZB(s) = exp
(

Rχ0(s)
)

∏

ψ∈ ̂Cl(S)

L(es,S, ψ)
〈

ψ |{X}〉.

The factor exp
(

Rχ0(s)
)

is regular and non-zero at σ0 and so is

∏

ψ∈ ̂Cl(S),ψ �=χ0

L(es,S, ψ)
〈

ψ |{X}〉
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by definition of a shifted formation. It remains to note that

lim
s→σ+

0

(s − σ0)
1/h L(es,S, χ0)

1/h

is finite and non-zero, again, by definition of a shifted formation. ��
Lemma 26 Let e, l ∈ N and X ∈ Cl(S). The set A defined by (25) is regular across
classes.

Proof We recall that γ (A) = e, rk(A) = 1 and deg(A) = 0 by Lemma 24. Let B be as
defined by (26). If m = gcd(e, l) it is sufficient to prove the regularity of Ae/m,l/m,X

across classes and apply Fact 19. Therefore we assume that gcd(e, l) = 1. We have,
for every χ ∈ ̂Cl(S) and σ > 1 + λ,

ZA(s, χ) =
∏

p∈X∩P

(

1 +
∞
∑

n=0

χ(pe+nl) ‖p‖−(e+nl)s

)

= ZB(s, χ)
∏

p∈X∩P

(

1 +
(

∞
∑

n=1

χ(pnl) ‖p‖−nls
)

×
(

∞
∑

m=1

(−1)m+1χ(pme) ‖p‖−mes
)

)

,

where the last equality follows from the power series identity

1 +
∞
∑

n=0

ze+nl = (

1 + ze
)

(

1 +
( ∞
∑

n=1

znl
)( ∞

∑

m=1

(−1)m+1zme

))

, |z| < 1.

Hence

ZA(s, χ) = ZB(s, χ)
∏

p∈X∩P

(

1 +
∞
∑

m=1

∞
∑

n=1

(−1)m+1χ(pme+nl) ‖p‖−(me+nl)s
)

= ZB(s, χ)ZC (s, χ f ),

where

C = {

a ∈ F(P) : p ∈ X and vp(a) ≥ e + l for every p | a, p ∈ P}

and f : C → R is a multiplicative function defined by

f (p j ) = #
{

(m, n) ∈ N2 : j = me + nl, 2 � m
}

− #
{

(m, n) ∈ N2 : j = me + nl, 2 | m
}
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for p ∈ X ∩ P . We have γ (C) = e + l and
∣

∣ f (p j )
∣

∣ < j ≤ log2
(∥

∥p j
∥

∥

)

, hence
ZC (s, χ f ) ∈ Ae+1 by Lemma 12. Let Y ∈ Cl(S) be such that Y ∩ A �= ∅. We have
Y ∈ 〈X〉. Similarly to the proof of Lemma 25 we have

ZY∩A(s) = 1

h

∑

χ∈ ̂Cl(S)

χ(Y )ZB(s, χ)ZC (s, χ f )

and

ZB(s, χ) =
∏

ψ∈ ̂Cl(S)

L(es,S, ψ)
〈

χeψ |{X}〉 exp
(

Rχ (s)
)

, χ ∈ ̂Cl(S),

where Rχ (s) ∈ Ae+1 and � 〈χe | {X}〉 < 1/h unless χ satisfies (27). It follows that
ZY∩A(s) is of the required form. Again, let G denote the set of χ satisfying (27). We
have

lim
s→σ+

0

(s − σ0)
1/h ZY∩A(s) = lim

s→σ+
0

(s − σ0)
1/h 1

h

∑

χ∈G
χ(Y )ZB(s, χ)ZC (s, χ f )

= lim
s→σ+

0

(s − σ0)
1/h ZB(s)

1

h

∑

χ∈G
χ(Y )ZC (s, χ f )

= |G|
h

lim
s→σ+

0

(s − σ0)
1/h ZB(s)ZY ′∩C (s, f ),

where

Y ′ = {

a ∈ F(P) : [a] = Y Xme for some m ∈ N0
}

.

It follows from ZC (s, f ) ∈ Ae+1 that lims→σ+
0
ZY ′∩C (s, f ) = ZY ′∩C (σ0, f ), which

is finite and real. By Lemma 25 the limit lims→σ+
0

(s − σ0)
1/h ZB(s) is positive. It

remains to show that ZY ′∩C (σ0, f ) > 0. For every σ ≥ σ0 we have

ZY ′∩C (s, f ) =
∞
∑

r=0

∑

a∈Y ′∩C
ω(a)=r

f (a) ‖a‖−σ .

The summand with r = 0 is either 1 or 0, depending on whether Y ∈ 〈Xe〉 or not.
For r ≥ 1, a ∈ C and ω(a) = r we have a = pk11 . . . pkrr for some k1, . . . , kr ∈ N
and distinct p1, . . . , pr ∈ X ∩ P . Moreover, a ∈ Y ′ is equivalent to k1 + . . . + kr ≡
k (mod e), where k is such that Y = Xk . Therefore

∑

a∈Y ′∩C
ω(a)=r

f (a) ‖a‖−σ =
∑

k1,...,kr∈{0,...,e−1}
k1+...+kr≡k (mod e)

∑

p1,...,pr

r
∏

j=1

∑

m≥e+l
m≡k j (mod e)

f (pmj )
∥

∥p j
∥

∥

−mσ
,
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where
∑

p1,...,pr indicates summation over all sets of r distinct primes in X . Given j ,
k j and p j we have

∑

m≥e+l
m≡k j (mod e)

f (pmj )
∥

∥p j
∥

∥

−mσ

=
∑

m,n∈N
me+nl≡k j (mod e)

2�m

∥

∥p j
∥

∥

−(me+nl)σ −
∑

m,n∈N
me+nl≡k j (mod e)

2|m

∥

∥p j
∥

∥

−(me+nl)σ

=
∑

m,n∈N
me+nl≡k j (mod e)

2�m

(

∥

∥p j
∥

∥

−(me+nl)σ − ∥

∥p j
∥

∥

−((m+1)e+nl)σ
)

.

Every term in the final sum is positive and the sum itself is non-empty by gcd(e, l) =
1. Solutions to k1 + . . . + kr ≡ k (mod e) do exist whenever r ≥ 1. Therefore
ZY ′∩C (σ, f ) > 0 for all σ ≥ σ0. ��
Lemma 27 Let e ∈ N, V ⊆ Cl(S), α : Cl(S) → N0, α �= 0, Supp(α) ⊆ V , and

B = {a ∈ �e(∅, α) : [p] ∈ V for every p | a, p ∈ P} . (28)

The set B is regular across classes with γ (B) = e, rk(B) = 0 and deg(B) =
∑

X α(X). For Y ∈ Cl(S) we have Y ∩ B �= ∅ if and only if Y ∈ 〈V 〉.
Proof Wehave [a] ∈ 〈V 〉 for everya ∈ B, so supposeY ∈ 〈V 〉. Let b be any element of
B and suppose, aswemay, thatY [b]−1 = [p1]k1 . . . [pr ]kr for some primes p1, . . . , pr
with classes in V , pi � b for all i . The element

a = bpk1+eh
1 pk2+eh

2 . . . pkr+eh
r

satisfies a ∈ Y ∩ B, so γ (Y ∩ B) = e. We have rk(Y ∩ B) = 0 and deg(Y ∩ B) ≤
d := ∑

X α(X) by Y ∩ B ⊆ �e(∅, α) and Fact 6. To see that deg(Y ∩ B) = d we note
that Y ∩ B ⊆ �e(∅, α), so rk (�e(∅, α) ∩ Y ∩ B) = rk(Y ∩ B). Regularity follows
from Theorem 23. ��
Lemma 28 Every cube �e(U , α) is completely regular across classes. If U �= ∅ or
α �= 0, then γ (�e(U , α)) = e, rk(�e(U , α)) = |U | and deg(�e(U , α)) = ∑

X α(X).

Proof Let V = Cl(S) \U . We have

�e(U , α) =
(

∏

X∈U
Ae,1,X

)

B,

where Ae,1,X is defined by (25), and B is as in (28). Let A = ∏

X∈U Ae,1,X . IfU �= ∅,
then it follows from Lemmas 24 and 26 and Propositions 10 and 20 that γ (A) = e,
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rk(A) = |U |, deg(A) = 0 and A is regular across classes. If α �= 0, then B is
regular across classes, with γ (B) = e, rk(B) = 0, and deg(B) = ∑

X α(X), by
Lemma 27 and Theorem 23. Therefore, when both U �= ∅ and α �= 0, we obtain the
metrics asserted from Proposition 10, moreover the set AB is regular across classes
by Proposition 20. When U = ∅ and α �= 0, we have A = {1}, so AB = B is, again,
regular across classes with the asserted metrics. When U �= ∅ and α = 0, we have
γ (B) > e, so AB is again regular across classes by Proposition 20 and the metrics
follow from Proposition 10. We reduce the case U = ∅ and α = 0 to U = Cl(S)

and α = 0 using (3). Finally Y ∩ AB �= ∅ for each Y ∈ Cl(S) thanks to Lemmas 24
and 27 and the fact that 〈U 〉 〈V 〉 = Cl(S). ��
Corollary 29 If a cube �e(U , α) is a proper subset of another cube �e′(U ′, α′), then

metrics(�e(U , α)) < metrics(�e′(U ′, α′)).

Theorem 30 Let A be the algebra of subsets of F(P) generated by all cubes with
the binary operations of set union, intersection and difference. Every non-empty set
A ∈ A is completely regular across classes.

Proof First we show by induction that every set of the form

�e(U , α) \
m
⋃

i=1

�ei (Ui , αi ). (29)

is completely regular across classes. Let D be given by (29). For m = 0 the assertion
follows from Lemma 28. Suppose m ≥ 1 and the assertion holds for m − 1. Suppose
D �= ∅. Note that

D = �e(U , α) \
m
⋃

i=1

(

�e(U , α) ∩ �ei (Ui , αi )
)

,

so, by Lemma 5 and D �= ∅ we may assume

�ei (Ui , αi ) � �e(U , α)

and, by Corollary 29,

metrics(�ei (Ui , αi )) < metrics(�e(U , α))

for each i . It follows from Fact 8 that metrics(D) = metrics(�e(U , α)). Let

A = �e(U , α) \
m−1
⋃

i=1

�ei (Ui , αi )
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and

B = �em (Um, αm) \
m−1
⋃

i=1

�ei (Ui , αi ).

We have D = A \ B. By the inductive hypothesis A is completely regular across
classes, and so is B, unless B = ∅. In the latter case we are done, so suppose B �= ∅.
We have

metrics(B) ≤ metrics(�em (Um, αm)) < metrics(D)

and metrics(D) ≤ metrics(A), so indeed D = A \ B is regular by Fact 18. Every
element ofA is a finite union of disjoint sets of the form (29). The theorem’s assertion
follows from Fact 16. ��
Corollary 31 Every non-trivial type-dependent set A is contained in a type-dependent
set B, completely regular across classes, with metrics(B) = metrics(A).

Proof Let (6) be a fair covering of A and let B be the right-hand side of (6). We have
metrics(B) = metrics(A) and the regularity of B follows from Theorem 30. ��
Corollary 32 If a type-dependent set A contains an almost regular set B with
metrics(B) = metrics(A), then A is semi-regular.

Corollary 33 The assumption “if γ (A) > e or A is regular” in Lemma 13 may be
dropped.

Proof It is enough to apply Lemma 13 to a regular superset A′ of A such that
metrics(A′) = metrics(A). The assertion for A follows from |ZA(σ )| ≤ |ZA′(σ )|.

��
Corollary 34 If A is an almost regular set satisfying (13), then A is regular.

Proof Let B ⊆ F(P) be such that metrics (B) < metrics(A) and A 
 B is regular.
The assertion follows from:

metrics(A) = metrics(A 
 B),
∣

∣ZA(s) − ZA
B(s)
∣

∣ ≤ |ZB(σ )| , σ > ed(A),

and Corollary 33. ��

7 Counting functions of regular sets

Theorem 35 Let A be a non-trivial type-dependent set. If A is almost regular, then

A(x) ∼ Cx (1+λ)/γ (A)(log x)−1+rk(A)/h(log log x)d , x → ∞, (30)
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for some C > 0, where d = deg(A) if rk(A) > 0 and d = deg(A) − 1 if rk(A) = 0.
If A is semi-regular, then

A(x) � x (1+λ)/γ (A)(log x)−1+rk(A)/h(log log x)d , x → ∞. (31)

Otherwise

A(x) � x (1+λ)/γ (A)(log x)−1+rk(A)/h(log log x)d , x → ∞ (32)

and

A(x) � x (1+λ)/γ (A)(log x)−1(log log x)M , x → ∞ (33)

for every M > 0.

Proof When A is regular with σ0 = ed(A), it follows from (13) that we have

ZA(s) =
m
∑

i=1

˜Hi (s)(s − σ0)
−wi

(

log((s − σ0)
−1)

)ki
, σ > σ0 (34)

for some wi ∈ C, ki ∈ N0, and˜Hi (s) holomorphic in σ ≥ σ0, satisfying˜Hi (σ0) �= 0.
Wemay assume thatm is the smallest possible, hence the pairs (wi , ki ) are all distinct.
Let w = maxi �wi and k = max�wi=w ki . Suppose �wi = w and ki = k for i ≤ m′,
moreover �wi < w or ki < k for each i > m′. We have

ZA(σ )(σ − σ0)
w(log((s − σ0)

−1))−k =
m′
∑

i=1

˜Hi (σ0)(σ − σ0)
−i�wi + o(1), σ → σ+

0 ,

and the trigonometric polynomial
∑m′

i=1
˜Hi (σ0)(σ − σ0)

−i�wi is not identically zero,
the exponents −i�wi being all distinct. By (14) we have w = rk(A)/h, k = deg(A),
m′ = 1 and w1 = w. The first assertion now follows from the Tauberian theorem
of Delange and Ikehara, e.g., in the form given in [2, Theorem 8.2.5] that we can
apply to ZA(σ0s), because σ0 > 0. Suppose A is almost regular and A 
 B is regular
for some B ⊆ F(P) such that metrics (B) < metrics(A), then let B ′ be a regular
superset of B satisfying metrics(B ′) = metrics(B), that exists by Corollary 31. We
have metrics(A 
 B) = metrics(A) by Fact 8, so

(A 
 B)(x) ∼ Cx (1+λ)/γ (A)(log x)−1+rk(A)/h(log log x)d , x → ∞,

for some C > 0 and

B ′(x) = o
(

x (1+λ)/γ (A)(log x)−1+rk(A)/h(log log x)d
)

, x → ∞.

Since A(x) = (A
B)(x)+(A∩B)(x)−(B\A)(x) and |(A ∩ B)(x) − (B \ A)(x)| ≤
B ′(x) for every x , we obtain (30). When A is semi-regular, (31) follows from the def-
inition and (30). Suppose A is not regular and let A′ be its regular superset, as implied
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by Corollary 31. Then (30) for A′ in place of A implies (32) for A. Similarly (33)
follows from the fact that for arbitrarily large d ∈ N the set A contains a regular subset
of height e = γ (A), rank 0 and degree d. Indeed, let

Ad =
⎧

⎨

⎩

a ∈ A :
∑

X∈Cl(S)

δe,X (a) = d

⎫

⎬

⎭

.

We have rk(A) > 0 by Theorem 23. Therefore by Fact 21 there are arbitrarily large
d such that Ad �= ∅. For such a d we conclude from Fact 21 that rk(Ad) = 0 and
deg(Ad) = d, and from Theorem 23 that Ad is regular. ��
The next theorem shows that (33) is sharp.

Theorem 36 Let e ∈ N and let f (x) be a real function such that f (x) �
x (1+λ)/e(log x)−1(log log x)M when x → +∞, for every M > 0. There exists a
type-dependent set A of height e and rank h such that

lim inf
x→+∞

A(x)

f (x)
= 0.

Proof Weconstruct an ascending sequence of type-dependent sets (An) of height e and
rank 0 and an ascending sequence of positive numbers (xn). Let A1 = {pe : p ∈ P}.
When An is constructedwe conclude fromTheorems 23 and 35 that An(x) = o( f (x)),
x → +∞, so we can find xn > n such that An(x) ≤ f (x)/n for all x ≥ xn . Let
m = mn = ⌈

log2(xn)
⌉

and

An+1 = An ∪ {

pe1 . . . pem : p1, . . . , pm ∈ P}

We have ‖a‖ ≥ 2m for all a ∈ An+1 \ An , so An+1(x) = An(x) for all x ≤ xn . The
fact that An+1 is also of rank 0 follows from Facts 8 and 21. Then A = ⋃∞

n=1 An

satisfies

lim
n→∞

A(xn)

f (xn)
= lim

n→∞
An(xn)

f (xn)
= 0

and limn→∞ xn + ∞. It remains to show that rk(A) = h. Suppose the contrary and
let (6) be a fair covering with maxi |Ui | < h. Let M = maxi

∑

X αi (X) and let n be
such that xn > 2h(M+1). Then mn > h(M + 1) and we can find a ∈ An+1 such that
δe,X (a) > M + 1 for every X ∈ Cl(S). Let i be such that a ∈ �e(Ui , αi ) and let X
be such that X /∈ Ui . Then δe,X (a) = αi (X) ≤ M , a contradiction. ��
Proposition 37 Suppose U ⊆ Cl(S), V = Cl(S) \ U, and α, β : Cl(S) → N0,
Supp(β) ⊆ Supp(α) = U. Let

B = {

b ∈ F(P) : [p] ∈ U and vp(b) ∈ α([p]) + β([p])N0 for all p | b, p ∈ P} .
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Suppose C is a (non-empty) type-dependent set such that [p] ∈ V for every p | c,
c ∈ C , p ∈ P , moreover rk(C) = 0 or γ (C) > infX∈U α(X). Then the set A = BC
is regular with

γ (A) = min( inf
X∈U α(X), γ (C)),

rk(A) = # {X ∈ U : α(X) = γ (A)}

and

deg(A) = sup
c∈C

∑

X∈V
δγ (A),X (c),

where we understand infX∈U α(X) as +∞ when U = ∅. If γ (C) > inf X∈U α(X) or
metrics(X ∩ C) = metrics(C) for every X ∈ Cl(S) such that X ∩ C �= ∅, then A is
regular across classes.

Proof WhenU = ∅wehave B = {1}, so B is regular across classeswith γ (B) = +∞.
When U �= ∅, then B = ∏

X∈U BX where

BX = {

b ∈ F(P) : p ∈ X and vp(b) ∈ α(X) + β(X)N0 for all p | b, p ∈ P}

for all X ∈ U . If β(X) = 0 then BX coincides with the set Bα(X),X defined in (26).
Otherwise BX = Aα(X),β(X),X , as defined by (25). It follows from Lemmas 24, 25
and 26, that BX is regular across classes with γ (BX ) = α(X), rk(BX ) = 1 and
deg(BX ) = 0. It follows from Propositions 10 and 20 that B is regular across classes
with

γ (B) = inf
X∈U α(X),

rk(B) = # {X ∈ U : α(X) = γ (B)}

and

deg(B) = 0.

If γ (C) > γ (B), the assertions follow from Propositions 20 and 10. Otherwise
rk(C) = 0, so C is regular by Theorem 23 and so is Y ∩ C for every Y ∈ Cl(S)

such that γ (Y ∩ C) = γ (C). If metrics(X ∩ C) = metrics(C) whenever X ∩ C �= ∅,
then C is regular across classes. By Proposition 20 the set A is regular, and if C is reg-
ular across classes, then A is regular across classes. The assertions about metrics(A)

follow from Lemma 21 and Proposition 10. ��
Proof of Theorem 1 We have

S = {

b ∈ F(P) : ord([p]) | vp(b) for all p | b, p ∈ P} ,

S1 = {

b ∈ F(P) : vp(b) = ord([p]) for all p | b, p ∈ P} ,
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and

Ek = {

b ∈ F(P) : vp(b) ≥ k for all p | b, p ∈ P} .

Proposition 37 applies to these sets with U = Cl(S) and C = {1}, so A = B. The
functions α and β should be defined as α(X) = β(X) = ord(X) in the case of S,
α(X) = ord(X) and β(X) = 0 in the case of S1, and α(X) = k and β(X) = 1 in the
case of Ek . The assertions follow from Theorem 35. ��
Proof of Theorem 2 We have Fk = BC , where

B = {b ∈ F(P) : [p] = E for all p | b, p ∈ P}

and

C = {a ∈ Fk : p /∈ E for every p | a, p ∈ P} .

Suppose h > 1. Then for every X ∈ Cl(S) \ {E} and p1, . . . , pord(X) ∈ X ∩ P
we have p1 . . . pord(X) ∈ C , so γ (C) = 1. We note, following Narkiewicz, that if
p1, . . . , p(k+1) ord(X) ∈ X∩P are distinct primes dividing a ∈ S and X ∈ Cl(S)\{E},
then p1, . . . , p(k+1) ord(X) can be divided to k + 1 groups of ord(X) elements in

((k + 1) ord(X))!
(ord(X)!)k+1 > k

ways, giving rise to more than k distinct factorizations of a. Hence for every a ∈ C
we have

∑

X δ1,X (a) ≤ ω(a) < h(h − 1)(k + 1), so rk(C) = 0 and Nk := deg(C) <

h(h−1)(k+1). Otherwise, if h = 1, we haveC = {1} and Fk = B, and we put Nk :=
deg(C) = 0. In either case the assumptions of Proposition 37 are therefore satisfied
with U = {E} and α(E) = β(E) = 1. The assertion follows from Theorem 35. ��
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