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Abstract

We describe structural and quantitative properties of type-dependent sets in monoids
with suitable analytic structure, including simple analytic monoids, introduced by
Kaczorowski (Semigroup Forum 94:532-555, 2017. https://doi.org/10.1007/s00233-
016-9778-9), and formations, as defined by Geroldinger and Halter-Koch (Non-
unique factorizations, Chapman and Hall, Boca Raton, 2006. https://doi.org/10.1201/
9781420003208). We propose the notions of rank and degree to measure the size of a
type-dependent set in structural terms. We also consider various notions of regularity
of type-dependent sets, related to the analytic properties of their zeta functions, and
obtain results on the counting functions of these sets.

Keywords Semigroups with divisor theory - Analytic monoids - Formations -
Type-dependent sets - Subsets defined by factorization properties

1 Introduction

The goal of quantitative factorization theory is to describe, as precisely as possible,
the distribution of elements of a monoid subset A defined by factorization-related
conditions. The monoid must be equipped with a norm function ||-|| making it possible
to define the counting function

A(x) ={a € X : |lall = x}|. ey

In the present paper we study the growth of A(x) for a class of reduced monoids with
divisor theory S € F(P), called shifted formations, defined in Sect. 2. The inclusion
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of anelement @ in A € F(P) depends on the type of factorization of a in F(P). The
kind of result that we expect is that A(x) follows an asymptotic law of the type

A(x) ~ Cx(log x)°(loglogx)¢,  x — oo, )

where the numbers b, ¢ and d depend on the structural properties of A. The goal
of this paper is to introduce appropriate functions describing the structure of A, to
determine their properties, and to show that versions of (2) hold for certain classes
of subsets of the divisor monoid, that we call regular, almost-regular, semi-regular,
etc., cf. Theorem 35. We attempt to provide an easily extendible general framework
to show regularity for a variety of sets.

As examples of applications we show: a technical, but still flexible result (Propo-
sition 37) about the regularity of sets of a specific form, and the asymptotics for the
counting functions of four specific sets, given below. The result on Fj is classical,
although it was never considered in this particular setting.

Theorem 1 Let S be a shifted formation with a principal shift > > 0, S the set
generated by absolutely irreducible elements of S (i.e. irreducibles which are powers
of prime divisors [3]), S1 the set of products of distinct absolutely irreducible elements
of S, and Ej the set of k-powerful divisors, where k € N. We have

S(x) ~ CxU P (logx) 1/ x & o0,
S1(x) ~ C'xI P ogx) 1+ x - o0,

and
Ep(x) ~ C//x(l+k)/k’ X — 00

for some C,C', C" > 0.

Theorem 2 (cf. Narkiewicz [6]) Let S be a shifted formation with a principal shift A >
0 and Fy, the set of elements of S with at most k distinct factorizations to irreducibles
inS, where k € N. We have

Fi(x) ~ Cx1* M 1ogx) "1+ loglogx)M,  x — oo,

for some C > 0, and a non-negative integer N.

The setting of shifted formations, arguably somewhat artificial, was chosen, because
the proofs work essentially without change for simple analytic monoids, as defined by
Kaczorowski [5], and for formations, considered, among others, by Geroldinger and
Halter-Koch [2, Section 8.3]. Shifted formations include both, allowing us to avoid
repetition. Of course, more precise information on the counting functions (such as
bounds for and oscillations of the error term) would require stronger assumptions,
similar to those in the definition of an analytic monoid, or an L-semigroup [8]. On
the other hand, weaker assumptions, such as to include non-simple analytic monoids,
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would make the quantitative theory more complex. The author hopes to address this
problem in a future paper.

Quantitative factorization theory was initiated by Fogels [1] and further developed
by Narkiewicz and other authors, cf. Geroldinger and Halter-Koch [2, Chapter 9]
and the references cited there. Narkiewicz [6] was the first to treat type-dependent
sets, including Fy, that do not necessarily belong to the smaller class of Q2-sets (see
the end of Sect. 3 for a definition of 2-sets). He introduced the notion of depth and
proposed an inductive reasoning to find the asymptotics of the counting function of a
type-dependent set of height 1 whose elements have bounded depth. In the language
of the present paper the sets treated in [6], subsets of rings of integers in algebraic
number fields, are algebraic products of: the set of elements with all prime divisors in
the principal class, and an arbitrary set of height 1 and rank O whose elements have
no principal divisors. The idea to use induction over depth is also used in the present
paper (in Lemma 22). Unfortunately, Lemma 2 in [6] only applies to a set of elements
of a single type. In the proof of Corollary 4 in [6], where sets with an infinite number of
types may arise, the author only mentions that they can be dealt with in the same way.
Kaczorowski [4, Theorem 3] obtained the asymptotics for the counting function of
S (another “properly” type-dependent set), in the context of algebraic number fields,
with C explicitly determined, and an upper bound for the error term.

Geroldinger and Halter-Koch [2, Theorem 9.1.2] gave a more general result on
type-dependent sets. They introduced the height, i.e. the most important of the metrics
of type-dependent sets, although not explicitly as set metrics, cf. Definition 9.1.1 and
the formula for ep in Theorem 9.1.2. They developed a number of ideas from [6],
adapting them to the setting of (quasi-)formations and sets of height greater than
1. Sets treated in [2, Theorem 9.1.2] are algebraic products of three type-dependent
components (with elements in distinct components relatively prime) that we describe
as follows: a set C of height eg, a set By of all elements with all prime divisors in
a subset U; € CI(S) and exponents divisible by e;, and a set B, of all elements
with all prime divisors in a subset Uy € CI(S) and exponents greater or equal to
e3. Moreover ep > min(ep, 1) and rk(C) = 0 unless ¢y > e;. Bearing in mind the
different setting, Theorem 9.1.2 can be applied directly to the set Fy of Theorem 2, but
not to S, S1 or Ey of Theorem 1. Asymptotic lower and upper bounds for S(x) of the
correct order are given instead, cf. [2, p. 633]. The set Ey is of the same general shape
as required in Theorem 9.1.2, with B, = E; and C = B; = {1}, however, it does not
meet the technical assumption e > min(eg, e1). In their proof of [2, Theorem 9.1.2]
the authors attempted to close the gap left in [6]. Unfortunately, their argument also
contains gaps, namely, on page 619, line 3, they do not take into account the repetitions
that may occur when multiplying two Dirichlet series, and a similar problem occurs in
the fourth display from bottom on the same page. For comparison, our Proposition 37
implies Theorems 1 and 2. It does not quite re-prove [2, Theorem 9.1.2], because we
do not determine the constant factors in the asymptotic relationship ~.

The paper is organized as follows. Section 2 contains known definitions and
notation. Section 3 provides the language to describe the structural “size” of a type-
dependent set. Notions of rank and degree, previously defined for Q2-sets, are extended
to type-dependent sets. We show the basic properties of rank, degree and height, and
how they behave under set operations like disjoint union and algebraic product. In
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Sect. 4 we define regular type-dependent sets, whose zeta functions have appropriate
analytic properties, agreeing with the set’s height, rank and degree. We also consider
other, weaker and stronger regularity properties, and show how they behave under
basic set operations. In Sect. 5 we show that type-dependent sets of rank 0 are regular
(Theorem 23). In Sect. 6 we construct a large family of regular sets (Theorem 30).

In Sect. 7 we apply the results of previous sections to obtain asymptotics for vari-
ous counting functions. Theorem 35 gives asymptotics for the counting functions of
almost regular sets and bounds for semi-regular sets. In the same theorem we also
give upper and lower bounds for A(x) for general type-dependent sets, using Theo-
rems 30 and 23 respectively. It follows from Theorem 36 that these bounds cannot
be improved in general, at least not using the language of the present paper. We also
prove Proposition 37 and Theorems 1 and 2.

2 Preliminaries

We denote by N, Ny, Z, R and C respectively the sets of positive integers, non-negative
integers, integers, real numbers and complex numbers, and by s = ¢ + it a complex
variable with real part o and imaginary part . We make use of Landau’s O and o, and
Vinogradov’s < notation. We write f =< g for f « gand g < f. We write f ~ g for
f(x) =gx)( + o(1)), x = +oo. Function support is denoted as Supp, symmetric
difference of sets as A, the cardinality of A as |A| or #A. The infimum of the empty set
is assumed to equal 4-0o. When G is a finite abelian group we let E denote the neutral
element, ord(X) the order of X € G, and G the group of characters of G, with xg for
the trivial character. For U € G the subgroup generated by U is denoted as (U), while
(x|U)=|G|I! Y xey X (X) for x € G. We compare functions « : G — Ny using
the product order, so 8 < o means 8 : G — Np and B(X) < «(X) for all X € G.
For comparing pairs and triples we use lexicographic order with the first term always
being the most significant.

Suppose A > 0 and S is a Krull monoid contained in a free semigroup F(P)
generated by a set of primes P such that:

(i) forevery a, b € S divisibility a | b in S is equivalent to a | b in F(P),
(ii) every p € P ged(ay, ..., ay) forsomeay,...,a, € S.

Hence the inclusion map S € F(P) is a divisor theory for S. Let G be the quotient of
the groups generated by F(P) and S. The intersection of an element of G with F(P)
is called a divisor class. We let CI(S) denote the divisor class group, i.e. the set of
divisor classes with multiplication induced by that in G. We let /& denote the number
of divisor classes and E the principal class. For x € C/l(§) and a € F(P) we write
x (a) instead of x ([a]). We assume:

(iii) the order h of the class group CI(S) is finite.

Moreover, there is a norm function ||-|| : F(P) — N such that:
(@v) ||l is a multiplicative homomorphism, i.e. ||1|| = 1 and |lab| = ||a|| ||p|| for all
a,b e F(P),

) |la|l > 1foralla € F(P) \ {1},
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(vi) for every x > 0 and every ¢ > 0 the set {a € F(P) : |la|l < x} has <, x!T*+¢
elements.

In particular, for every x € aES\) the Dirichlet series
x(a)
L(s,S, 0= ),

lall®
acF(P)

is absolutely convergent for o > 1 + A. Moreover, we assume that

(vii) the functions L(s, S, x), for x # xo, and the function (s — 1 — A)L(s, S, xo),
have holomorphic, non-vanishing extensions to o > 1 + A.

If conditions (i) — (vii) are satisfied, we call S a shifted formation with a principal shift
A. It follows from the properties of simple analytic monoids [5] that a simple analytic
monoid with a principal shift A is also a shifted formation with a principal shift A.
Every formation [2] is a shifted formation with a principal shift 0. We remark that
condition (vii) may be relaxed, to include quasi-formations. In that case one needs to
assume the same functions mentioned in (vi7) to be holomorphic and non-vanishing in
{1+ A}U{s :0 > 1+ A} only, replace ~ with < in "Flleorems 1, 2 and 35, moreover,
in the proof of Theorem 35, one needs to claim that H;(s) in (34) are holomorphic in
{oo} U {s : 0 > oo} only.
When A € F(P) we consider the counting function (1) and the zeta function

Za) = llal™. o>1+4r

acA

For f : A — C such that for every ¢ > 0 we have f(a) < |la||® on A, we also put

ZaGs. )= f@lall™, o>1+x

acA
We make use of auxiliary functions

Px(s)= Y llpI™, o >142xXeCKS).
peXNP

For e € N we let A, denote the set of Dirichlet series absolutely convergent for
o > (1 + A)/e. We also use the classical function w(a) = Y pep 1. The following

pla
lemma shows, in particular, that Py ¢ A, so the set P N X is infinite for every
X € CI(S). Its countability follows from condition (vi).

Lemma3 Let X € CI(S). We have

1 I
Px(s) =5 > x(X)logL(s, S, x) + Rx(s), o >1+2,
xeCIS)
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for some Ry € Aj.
Proof We have
1 — —s
Px(s) =+ ZA XX Y xlpl™, o> 14k
xeCI(S) peP

and

log (s S0 = Ytog (L=x Pl ™)) - o> 1+4

The assertion follows from log <(1 —x(p) ||p||_x)_1> — eI~ x(p) < lpl=%,
o> (1+xr/2. O

Factorization-related properties of an element a € S, such as uniqueness of factoriza-
tion to irreducibles, factorization lengths, etc., depend, in general, on its factorization
in F(P). Each element a € F(P) has a unique factorization

a4 = l_[ pvp(a)’

peP
where almost all the v, (a) vanish. We say that elements a, b € F(P) have the same

factorization type, and write a ~ b, if for each X € CI(S) there is a permutation 7w of
P N X such that

vp(a) = vr(p)(b)
for all p € P N X. We can think of “factorization type” as an equivalence class of
the relation ~2. This definition is equivalent to that of a normalized type given by
Geroldinger and Halter-Koch [2, Definition 3.5.7], cf. also Narkiewicz [6, (1) and
3.(a)]. We call a subset A € F(P) type-dependent if it is closed upon ~. We say that
Aistrivialif A=0or A = {1}.
3 Metrics of a type-dependent set
For a € F(P) we call

y(a) = p11617f3 vp(a)

vpa)=1

the (minimal) height of a. This is similar to [2, Definition 9.1.1], except y (1) = +o0.
For A € F(P) we define the (minimal) height as

y(A) = 322)/(61)-
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The height of A is therefore finite if and only if A is non-trivial. Height should be
thought of in terms of sparsity, not size of a set. Indeed, the height of a subset is
always less or equal to the height of a superset. We define a related measure

I+

d(A) = ——
=70

and call it the exponential density of A. Following [2, Definition 9.1.1] we put, for
aecF(P),eeN, X eClS),

Sex(@ =|{pePNX:vpa=e}|.

Narkiewicz [6] considered > X£E 81,x(a) and called it the depth of a. For e € N,
U C CI(S), and « : CI(S) — Ny such that «(X) = 0 forall X € U, let

Q.(U,a) ={a e F(P):y(a) = eand §, x(a) = a(X) forall X € CI(S) \ U}.
We call such sets cubes. In particular
Q.(CI(S),0) ={a € F(P):y(a) = e}

and

R.,0,0) ={a € F(P):y(a) = e+ 1} = R,41(CI(S), 0). 3)
It follows from the infinitude of primes in each class that y (,.(U, «)) = e whenever
U#Pora #0.Ifa #0, we have y(a) = eforalla € ,(U, ). If « = 0, then
Q. (U, o) contains all elements of height > ¢ + 1.

Let A € F(P) be a non-trivial, type-dependent set of height e. We define the rank
of A, denoted rk(A), as the smallest r such that A is contained in a finite union

Wi, ). 4)
i=1

where |U;| <rfori =1, ..., m. We also define the degree of A, denoted deg(A), as
the supremum of all d € Ny such that the intersection £.(U, o) N A is of the same
height and rank as A for some U and « such that )y «(X) = d. For trivial sets we
put:

tk ({1) =0,  deg({1}) =0,
rk (¥) = —o0, deg (W) = +o0.

In [7] the present author defined rank and degree for a subclass of type-dependent sets
called 2-sets. We show at the end of the section that the notions defined here extend
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the previous ones. Let
metrics(A) = (ed(A), rk(A), deg(A)).

We use the standard lexicographic ordering on [0, +00) x ({—oo} UNp) x
(No U {400}), with the first coordinate most significant, to compare such triples.

Fact4 IfA C B C F(P) and A and B are type-dependent, then
metrics(A) < metrics(B).

Proof Follows from the definition of height, rank and degree. O

Lemma5 The intersection of two cubes
A=Q.U,a)NQ U, a')

is either empty or is itself a cube. If e > ¢ and o' # 0, then A = @. If ¢ > ¢’ and
a' =0,then A = Q,(U, a).Ife = ¢, then A is non-empty ifand only ifa(X) = o' (X)
forevery X € CI(S)\(U U U’). Inthat case A = Q,(UNV, B), where B(X) = a(X)
for X € CI(S) \ U and B(X) = a'(X) for X € CI(S) \ U".

Proof Follows from the definition of a cube. |

Fact6 If A € F(P) is a non-trivial type-dependent set of height e and rank r, then
deg(A) equals the smallest d’ such that A is contained in a finite union (4) with |U;| < r
foralli and ZXiU a;(X) < d' for all i with |U;| = r. In particular deg(A) < +o0.

Proof Letd = deg(A), d’ be as in the assertion, and suppose A is contained in (4) with
|U;| < rforalli and d’ = max;. |y, = ZX¢U,- a; (X). We may assume that the choice
of pairs (U;, «;) is minimal, i.e. the number of i with |U;| = r is the smallest possible,
and each intersection A N R, (U;, «;) is non-empty. Moreover we can suppose that
|Ui| = r and ZX¢U1 a1(X) = d'. First we show that

k (AN R (Uy, 1)) =,

implying that d > d’. Indeed, if rk (A N R (U, a1)) < r, then A N R (U, 1) C
U R(V;, Bi) for some V;, B; such that |V;| < r — 1 for all i. Then

Ac (U .V, /5») U (U sze(U,-,an) :
i=1 i=2

contrary to the minimality of the choice of pairs (U;, a;). To see thatd < d' let U, «
be such that rk (.(U, @) N A) = r. We have

U, 0)NAC|J@U, ) NRUi, ).

i=1

@ Springer



Density of type-dependent sets in Krull monoids... 423

Each non-empty intersection £,.(U, o) N R, (U;, «;) is of the form L,.(U N U;, ozlf),
and we have |U N U;| < r unless

|Ul=r, U;CU, and o(X)=0o;(X)forallXeCI(S)\U. (5)
Since rk (. (U,®) N A) = r we must have (5) for at least one i, impying that
Y xgu @(X) = Yoxgy, @i (X) =d. o

We call

AcJR Wi a) 6)

i=1

a fair covering if max; |U;| = 1k(A), max; |y, |=rk(A) ngwf ai(X) < deg(A). It
follows from Fact 6 that every non-trivial type-dependent set has a fair covering and
that in fact max;.|y;|=rk(4) ZX¢UI_ a; (X) = deg(A).

Fact7 Let A C F(P) be non-trivial. We have tk(A) € {0, ..., h} and deg(A) € Np.
The rank and degree cannot both be equal to zero.

Proof Lete = y(A). The assertion follows from the existence of a fair covering (6). If
U; =¥and o; = 0foralli, then y(a) > e forall a € A, contrary to the assumption.
O

Fact8 Let A, B C F(P) be type-dependent. Then
metrics(A U B) = max (metrics(A), metrics(B)) .

Proof The fact that y(A U B) = min(y (A), y(B)) follows from the definition of
height. Suppose, as we may, that A # B and A, B # {J, moreover

metrics(A) < metrics(B) = max (metrics(A), metrics(B)) .

This implies that B is non-trivial. Let e = y(B), r = rk(B) and d = deg(B). By
Fact 4 we have metrics(A U B) > metrics(B), so it is enough to show the converse.
Suppose

n
B <R, )
i=1

is a fair covering. If y(A) > e, then AU B C R.(4,0) U J/_; R(Vi, Bi), so
metrics(A U B) < metrics(B). Otherwise y(A) = e and tk(A) < r. Moreover there
exists a fair covering (6). The covering

AUBC (U Sle(Ui,ai)> U <U 2. (Vi, ﬂi))

i=1 i=1
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shows that tk(A U B) < r, sortk(A U B) = r. If rk(A) = r, then metrics(A) <
metrics(B) implies that deg(A) < deg(B), so

max | max ai(X),i.r{l/_a)ir Z Bi(X) | =d,

i:|Ui|=r
X¢U; XV

hence deg(A U B) < d. Otherwise tk(A) < r, so |Uj| < r for all i and
max;:|v;|=r ZX¢VI_ Bi(X) = d implies deg(A U B) <d. O

Fact9 Let A C F(P) be a type-dependent set, m € N, and
B={a":a€A}.
Then y(B) = my (A), tk(B) = tk(A) and deg(B) = deg(A).

Proof Lete = y(A). We may suppose that A is non-trivial. The equality y (B) = me
follows from the definition. The other equalities follow from the fact thata € ,.(U, «)
is equivalent to a”* € ,,.(U, @), so (6) is a fair covering of A if and only if

m
B | R Ui, )

i=1
is a fair covering of B. O

Proposition10 Let A, B € F(P) be non-empty, type-dependent sets such that
y(A) > y(B). Then y(AB) = y(B). If gcd(a,b) = 1 foralla € A, b € B,
then tk(AB) = r + tk(B), and deg(AB) = d + deg(B), where r = tk(A) and
d =deg(A) if y(A) =y(B),andr =0andd =0 if y(A) > y(B).

Proof The assertion is easy to check if A is a trivial set, so we assume that A is non-
trivial, hence so is B. The equality y (AB) = y (B) follows by taking any b € B with
y(b) = y(B), and any a € A relatively prime to b (again, it exists by the infinitude of
primes in each class and the fact that A is type-dependent). Then y (ab) = y (b) and
ab € AB.

Suppose ged(a, b) = 1 foralla € A, b € B.If p, g € P are such that [p] = [¢],
p | a for some a € A, and g | b for some b € B, then there exists a’ € F(P),
a’ ~ a,such that g | a. Since A is type-dependent, we have a’ € A and q | ged(a', b),
contrary to the assumptions. Therefore the sets U and V, of classes of prime divisors
of elements of A and B, respectively, are disjoint. Let e = y(B). Consider a fair
covering

B <. 8).

J=1
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If y(A) = e, let (6) be a fair covering, otherwise let m = 1, Uy = J, and &1 = 0. In
any case we have

r = max |U;|, and d= max o (X).
1

Our goalistoshow thaty (AB) = e,1k(AB) = r+rk(B), anddeg(AB) = d+deg(B).
We may assumethatU - U and V C V i=1,....,m,j =1,...,n. Since
Supp(e;) C U \ U; and Supp(B;) < V \ V;, we have

QUi )RV, ) S | ReWiUV;, 0

n<a;+pB;
for all i, j. Hence
m n
- UU U Q(U; UV, +p). (7
i=l j=lo'<u;
B'<Bi

This implies (rtk(AB), deg(AB)) < (r 4+ rk(B), d + deg(B)) in the lexicographic
order, where the first coordinate is more significant. It also follows from (7) that if
AB is covered with sets of the form 2.(W, n), we can replace each ,(W, n) with
the union of

LW, NN U; UV, d'+8), i=1,...m j=1,....nd <o, B <Bi,
3)

skipping the empty summands. If non-empty, the intersection (8) equals £,((W N
U)uWwnv)),a" + B"), where

n(X), XeU\W,
" (X)={X), XeU\U,
0, Xe(WNU)U(CUS)\T),
n(X), XeV\W,
B'(X)=1{p(X). XeV\Vj
0, Xe(WNV)uU(CUS)\ V).

Moreover >y o”(X) < >y o (X) unless W NU; C U, likewise Yy B7(X) <
Y x Bj(X)unless WNV; C V;,andfinally )y o”(X) 4+ B"(X) < D"y n(X) unless

=

(WNnU;))UWnNV;) S W.Therefore there exists a fair covering of AB of the form

!
AB < | J R UV o + B, ©
k=1
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where, for all k, we have U, C U, V) C Vv, Supp(ay) S U \ Uk, Supp(B;) < \7\Vk,
and

<|U,g ,Z%(X)) < (r,d) and (|v,g|,2ﬂ/(X)) < (tk(B), deg(B)) (10)
X X

in the lexicographic order. Let / and J be the sets of those k, for which the first,
respectively the second, inequality in (10) is sharp. By Fact 6 (and by I = @ in the
case Y (A) > e) there exist

aeA\|JRWy. o))
kel

and

be B\ V. B

keJ
Fix k such that ab € .U U V/,o; + ;). We have a € L.(U;,a;) and
b e R(V/,p)sok ¢ 1UJ,and thusjU,é U Vk/| =r 4 1k(B) and )y o (X) +
B (X) = d + deg(B). The covering (9) is fair, so this implies the converse inequality
(tk(AB), deg(AB)) > (r +1k(B), d + deg(B)). O

Next we show that when A is a special kind of type-dependent set called 2-set, as
defined in [7], the values of rank and degree introduced there agree with the ones
defined here. We do that without re-introducing the language of [7], only a bare
minimum. For ¢ € F(P) and X € CI(S) let

Qx@) = Y v,).

pePNX

We call A C F(P) an Q-set if forall a € A and all b € F(P) such that
Qx(a) = Qx () forall X € CI(S) (11)

we have b € A. Of course, every Q2-set is type-dependent. For U < CI(S), and
a : CI(S) — Ny such that «(X) = O forall X € U, let

QU,x)=1{a e F(P):Qx(a) =a(X) forall X € CI(S5) \ U} .
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Proposition 11 Let A be a non-trivial Q2-set. Then y (A) = 1. The rank of A equals
the smallest r’ such that A is contained in a finite union of the form

U xi n@i. ). (12)

i=1

where X; € CI(S) and \U;| < r' fori = 1,...,n. The degree of A equals the
supremum d’ of all d € Ny such that

tk (Y N QU, @) N A) = rk(A)

for some Y € CI(S), U C CI(S) and a : CI(S) — N such that a(X) =0for X € U
and ZxéU a(X) =d.

Proof Letr = 1k(A) and d = deg(A). Letr’ and d’ be as in the assertion and consider
the smallest d” such that A is contained in a finite union (12) with |U;| < r for all i
and ZX¢U a;(X) < d” foralli with |U;| = r.Ifa € A\ {1}, then, by the infinitude of
primes in each class, there exists b € F(P) which is a product of distinct primes and
satisfies (11), hence b € A. Therefore y (A) = 1. Forevery a € F(P), X € CI(S) we
have 0 < §1,x(a) < Qx(a), therefore if A is contained in (12), it is also contained in

U U «w.p.

i=1 B:CI(S)—No
B=a;

Hence r < r’ and, by Fact 6, also (r,d) < (r’,d”) in the lexicographic order. On
the other hand, if A is contained in (4) with e = 1, and a € A, we can find (again)
b € A which is a product of distinct primes and satisfies (11). Let i be such that
b € (Ui, o). Then a € Q(U;, «;). The choice of a is arbitrary, so A is contained
in
m
U X NQU;, o).
i=1 XeCl(S)

This implies (+', d”) < (r, d) in the lexicographic order. The equality d” = d’ follows

from [7, Lemma 4.4] and the basic properties of the “old” rank and degree proved there.
O

4 Regular type-dependent sets

We call a non-trivial, type-dependent subset A of the divisor monoid F (P) (of a shifted
formation S) regular if Z 4 (s) has an extension of the form
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Za(s)=)Y Hi(s) [] Lles,S, x)"x (logLes, S, x))»,  (13)
i=l xCIS)

where e = y(A), H; € Aet1, wi,x € C, and k; , € Ny for all i, x, moreover the
limit
lim_Za(s)(s — 00) /" (log((s — 09) 1) 4D, (14)

§—0

where oy = ed(A), is finite and non-zero. In addition the trivial sets are also considered
regular. We call A regular across classes if for every X € CI(S) suchthat X N A # ¢
the intersection X N A is regular with metrics(X N A) = metrics(A), and completely
regular across classes if, in addition, X N A # @ for all X. Further, A is almost regular
if there exists a type-dependent set B such that metrics (B) < metrics(A) and A A B
is regular. Finally, A is semi-regular if there are almost regular, type-dependent sets
B and B’ such that B € A C B’ and metrics(B) = metrics(B’) = metrics(A).

Lemma 12 Lete € N and
A C R(CI(S),0)={aec F(P):y(a) >e}.

Then Z (s, f) € A forevery f : A — C such that Ve~ f (a) < ||al||® fora € A.

Proof Leto > (1+X1)/e,e = (0 — (1 +A)/e) /2,06’ =0 —e=(1+L)/e+¢c. We
have

Y if@llal™ < Y lal™

acA acF(P)
y(a)=e

<TT (11217 +1pI = + )
peP

=1 (1 +lp= (1 - ||p||—“’)_l>

peP

< +00.

Lemma 13 Suppose A is a type-dependent set and
metrics(A) < (o9, r,d)

for some o9 = (1 + A)/e, e € N, and r,d € Ny not both zero. If y(A) > e or A is
regular, then

lim_Za(s)(s — 00)" /" (log((s —a0)~") ™ =0.

S—)O'O
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Proof The assertion is obvious when A = (J, so we assume that A # @. If y(A) >
e, then lim_, _+ Z4(s) is finite by Lemma 12. This implies the assertion. Suppose
y(A) = e. Then the limit (14) is finite and either » > rk(A) or r = rk(A) and
d > deg(A). Therefore

lim (s — 00) "~/ (log((s — ap) ™) EN T =0,

S—>0'0

so the assertion holds again. O

Fact 14 Suppose A is a type-dependent set. If A is regular (respectively completely
regular across classes), then so is A A B for every type-dependent set B satisfying

y (B) > y(A).

Proof Suppose A is regular and B # (). We have metrics(A A B) = metrics(A) by
Fact 8. Both B \ A and A N B are of greater height than A by Fact 4. Lemma 12 and

ZAnB(S) = ZA(s) + Zp\A(S) — Zanp(s), o >1+A4,

imply that Z 4 g (s) is of the form (13). Fact 7 and Lemma 13 show that the limit (14)
for Zsap(s) is the same as for Z4(s). By replacing A and B with X N A and X N B
and using Fact 4 we obtain the assertion for sets completely regular across classes. O

Fact 15 Suppose A is a type-dependent set. If A is almost regular (respectively semi-
regular), then so is A A B for every type-dependent set B satisfying metrics(B) <
metrics(A).

Proof We have metrics(A A B) = metrics(A) by Fact 8. If A is almost regular and
A A B’ is regular for some B’ satisfying metrics(B’) < metrics(A), then

(AABYA(BAB)=AAB.

Facts 4 and 8 imply that metrics (B A B’) < metrics(A), hence A A B is almost
regular. If A is semi-regular and B’ € A C B” where B’, B” are almost regular with
the same metrics as A, then

B'\BC ACB'"UB.

Again, Fact 8 implies that metrics(B’ \ B) = metrics(B” U B) = metrics(A), and
the first assertion shows that B’ \ B and B” U B are almost regular. This implies the
assertion. O

Fact 16 Suppose A, B C F(P) are disjoint, type-dependent sets. If A and B are
regular, then so is AU B. If A and B are regular across classes and metrics(A) =
metrics(B), then A U B is regular across classes. If A is completely regular across
classes, B is regular across classes and metrics(B) < metrics(A), then A U B is
completely regular across classes.
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Proof Suppose A and B are regular. It follows from
ZAuB(S) = ZA($) + Zp(s), o >1+2,

that Z4up(s) is of the form (13). Facts 7 and 8, and Lemma 13, imply that A U B
is regular when metrics(A) # metrics(B), otherwise it follows from the additivity
of limits. The other assertions follow from the first one and the fact that for every
X € CI(S) the sets X N A and X N B are empty or regular, so their disjoint sum is
regular. Moreover, for every X € CI(S) such that X N (A U B) # @ the value

metrics (X N (A U B)) = max (metrics (X N A), metrics (X N B))
equals metrics(A U B), because either
metrics (X N A) = metrics(A) > metrics(B)
or
metrics (X N B) = metrics(B) = metrics(A).

]

Fact 17 Suppose A is a type-dependent set. If A is completely regular across classes,
it is regular across classes. If it is regular across classes, it is regular. If it is regular,
it is almost regular. If it is almost regular, it is semi-regular.

Proof By Fact 16if X N A is regular for every X € CI(S), then so is the disjoint union

A= U XNA.
XeCI(S)

This implies the second assertion. The others are obvious. O

Fact 18 Suppose A, B C F(P) are type-dependent sets such that B C A and

metrics(B) < metrics(A). If A and B are regular (respectively regular across classes,
completely regular across classes), then so is A \ B.

Proof Suppose A and B are regular. We have metrics(A \ B) = metrics(A) by Fact 8.
The identity

Za\B(S) =Za(s) — Zp(s), o >1+A,

Fact 7 and Lemma 13 imply the first assertion. The assertions across classes follow
from the first one upon observing that X N B # @ implies X N A # (. O

Fact19 Let A C F(P) be a type-dependent set, m € N, and B = {a™ :a € A}. If A
is regular, then so is B. If A is regular across classes, then so is B.
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Proof Let e = y(A), o4 = ed(A), r = tk(A), d = deg(A) and op = ed(B). We
have y(B) = me, op = o4/m, k(B) = r and deg(B) = d by Fact 9. Suppose A is
regular. It follows from

Zp(s) = Za(ms), o >1+2,
that Zp (s) has the required form. Moreover

lim Zg(s)(s — op)"" (log((s — o)~ )™

§S—0p

= lim_Za(s)(s/m —op)""(log((s/m — o5)”")™

S—>0,

=m~"/" lim_Z(s)(s — oa) M log(m) + log((s — o)1) ™4 > 0.

S—)O’A

Hence B isregular. Let Y € CI(S) and let X1, ..., X, be all the solutions of X =Y.
If A is regular across classes, then U’}: 1 (X in A) is regular by Fact 16 and

YﬂB:{am:aGO(XjﬂA)},

j=l1
so the second part of the assertion follows from the first one. O

Proposition20 Let A, B C F(P) be type-dependent sets such that gcd(a, b) = 1
foralla € A, b € B. If A and B are regular (respectively regular across classes,
completely regular across classes), then so is AB. If y(B) > y(A) and A is regular
(respectively regular across classes, completely regular across classes), then so is AB.

Proof Suppose metrics(B) < metrics(A) and let e = Y (A) and o¢ = ed(A).

Case 1. A and B are regular and y (B) = e.
We have y(AB) = e, tk(AB) = rk(A) + rk(B) and deg(AB) = deg(A) +
deg(B) by Proposition 10. We also have

ZAB(S) = Za(s)Zp(s), o >1+A,

s0 Z A (s) has the required form, because both Z4(s) and Zp(s) do. More-
over

. . (rk(A)+rk(B))/h _ —1y\—(deg(A)+deg(B))
lim Z4p(s)(s — 00) (log((s —00)™ "))

S*)(TO
= lim Za()(s — 00)™ /" (log((s — op) ")~ =W
S—>UO
- lim Zg(s)(s — 00)™ P/ " (log((s — o)1)~ 4eE ).
s—o

@ Springer



432 M. Radziejewski

Case 2. Aisregular and y(B) > e.
We have y(AB) = e, tk(AB) = rk(A) and deg(A B) = deg(A) by Proposi-
tion 10. Moreover

Zag(S) = Za(s)Zp(s), o >1+2,
and Zp(s) € Ag+1, 80 Z4p(s) has the required form. We also have

lim_Zp(s)(s — 00)™ /" (log((s — 0p) 1)~ 4=

§—>0

= lim_Zx(s)(s — 00)™ /" (log((s —00) ™)~ 4EW - lim_Zp(s)

S—)O'O S—)O'O

and lim_, o Zp(s) > 0 follows from the definition and absolute conver-
gence of the series.

Case 3. A and B are regular across classes and y (B) = e.
The non-empty among the sets X N A, Y N B, where X, Y € CI(S), are
regular with metrics equal to metrics(A), respectively metrics(B). By Fact 8,

Proposition 10, and the first case, each of

ZNAB = U (XNA)-(YNB), ZeClS), (15)
XY=27

is either empty or regular with metrics equal to metrics(A B). If, in addition, A

is completely regular across classes and B is non-empty, we have Y N B # ¢

for atleast one Y = Y, so the right-hand side of (15) always has a non-empty

summand for X = ZY,; ! Therefore AB is completely regular across classes.
Case 4. A is regular across classes and y (B) > e.

This is analogous to Case 3. O

5 Sets of rank 0

Fact 21 Let A be a non-trivial, type-dependent set withe = y (A). We have tk(A) = 0
if and only if the quantity

d = sup Z Se.x(a)

acA ycci(s)

is finite. In that case deg(A) = d and d € N.

Proof If A € |J| R.(9, ;), then 8, x(a) < &;(X) for every a € (4, &), X €
CI(S), implying d < +oo. Conversely, if d < +o0o holds, we let D denote the set of
all @ : CI(S) — N, satisfying )y a(X) < d. We have

Ac Q@ ),

aeD
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sotk(A) = 0 and deg(A) < d by Fact 6. Let us pick an element amax € A satisfying
ZXeC]<$) 8e.x(a) = d and let apax : CI(S) = No, omax (X) = 8¢, x (@max)- The set

.9, amax) N A

is a subset of A and contains [amax ]~ S0 it is of height e and rank O by Fact 4. Hence
deg(A) = d. Positivity of d follows from the fact that y (A) = e, so there is at least
one element a € A satisfying y (@) = e, and therefore ZXGCI(S) 8e.x(a) > 0. O

Lemma22 Letd € Ng,e e N, b = ]_[:-1:l pi for some distinct p; € P, C € F(P) a
non-empty, type-dependent set satisfying y (C) > e,

A={bc:b ~b,ceC, gedl c)=1}, (16)

and let f : C — C be such that Ve~ f (c) < ||c|| for ¢ € C. Then f has a unique
extension to A U C satisfying

f'c)= f(c), forallb ~b,ceC,ged®, c)=1, (17)

and Z4(s, f) is a polynomial in (Py (es)) xeci(s) With coefficients in A, 1, of degree
< d, and no other terms of degree d than

ZeG ) [ Pres)’®.

XeCl(S)

Proof Suppose d = 0. We have b = 1 and A = C. The only representation of
a = b'c satisfying the conditions in (16) is with ' = 1, so (17) holds trivially. We
have Z4(s, ) = Zc(s, f) € Aeq1 by Lemma 12.

Suppose d > 0 is the smallest possible such that the assertion fails. We have
y(a) = e forevery a € A, so AN C = (. The only representation of a = b'c
satisfying the conditions in (16) is with b = [] ,ep p°, so the extension of f is

vp(a)=e
unique. When b’ &~ b and ¢ € C we have y(c) ]> e, so ged(b', ¢) is always of the
same type as

[1r (18)

peU

forsome U C {pjy, ..., pq}. From among the divisors of b of the form (18) with U # ¢
we choose a set D containing one representative of each type. By the uniqueness of
representation of elements a € A in the form a = b'c in (16) we have

ZaGs, ) =Zm & Zcls, =Y, Y. f@|pe]|”

ueD p'~b,ceC
¥, c)~u

= Zip () Zc (s, ) = ) Za, (s, fu), (19)

ueD
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where

Au={b'c:b'%b,cec,(b/,c)%u},
fu@= Y fl), acA, (20)

b'~b,ceC
' ,c)~u
bc=a
provided that each Z 4, (s, f,) is well defined, i.e. Ve~ f,(a) < |la||® on A,, which
we show below. For eachu € D letb, = b/u,

Co={uc:u~uceCu'|c}.

Then C, is type-dependent. We have gcd(b,,, u) = 1, so whenever b’ ~ b, ¢ € C and
(b', c) = u’ ~ u we have ged(b'/u’, u’c) = 1. Therefore A, is contained in

{blcu = b, ~ by, cu € Cy, ged(B),, ¢y) = 1}. (1)
To see that (21) equals A, consider any b), ~ b, and ¢, = u’c where u’ ~ u, c € C,
u' | cand ged(b),, u'c) = 1. Wehave b),c,, = bj,u’-c,b,u’ ~ band ged(bj,u’, c) = u’,
so b),c, € Ay, and (21) is contained in A,. We have y (Cy) > e, so the representation
ofa € A, asa = b),c, in (21) is unique. The representation a = b’c in (20) need not
be unique, but it implies that ' /u’ = b/, and u’c = ¢, for some u’ ~ u. and Hence

/ Cu
fulbie) =3 1 (7).
u~u
w'ley
in particular f,(b],c,) depends on ¢, alone. For every ¢ > 0 we have f(c,/u’) <€
lewsu' | < lewll?/?u ~ u, and

Y 1< o) <log (e < llewl/?.

u'~u
’
u'|cy

We obtain f,(a) = fu(cy) < lleull® < |lal|®. By the inductive hypothesis each
function ), ., Za, (s, fu), u € D, satisfies the assertion with d — w (u) in place of d.
Finally, note that for each X € CI(S), § = 8., x(b), we have

s
Px(es)) =Y Y k(mi....m)Zagmy...m)(5), (22)
r=1 1<mi<..<m,<§
mi~+...4+m,=3§
where k (m1, ..., m,) € Nand A(m, ..., m,) denotes the set of all elements of type
g .. ¢/ with q1,...,q- € X NP distinct. When m; = ... = m = 1 <
mry1 <...<m,fork <r,theset A" = A(my, ..., m,) satisfies the assumptions of
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thelemma with b’ = ¢ ... q{,C’ = A(my1, ..., m,),soby theinductive hypothesis
Z A(m,,....m,)(s) is a polynomial of degree k < § — 1 < d. Otherwise we have r = §
and m; = ... = mg = 1. Comparing the products of both sides of (22) over all

X e CI(S) we conclude that

Zip () = ] Px(es)’x®
XeCI(S)

is a polynomial of degree < d — 1. This, in view of (19), implies our assertion. O
Theorem 23 Every type-dependent set of rank O is regular.

Proof Trivial sets are regular, so suppose A is a non-trivial type-dependent set of rank
0.Lete = y(A). It follows from Fact 21 that deg(A) = d, where

d = sup Z Se.x(a)

€A XeCU(S)
and d € N. Consider a fair covering
m
A g U Sle(gv (X[),
i=1

such that A; := Q.(0, ;) N A £ Pforeveryi. Fixa = a;. Let§ =8 =)y a(X),
and let b = Hiﬁl p; be such that b € ,(f, «). Obviously for every a € A; there
exists a unique b’ ~ b such that b’ | a, namely

b = 1_[ pe.

peP
vp(a)=e
Of course ged (b, a/b’) = 1. Let
Ci={ce F(P):b'c e A forsomeb ~b}. (23)

We have y (C;) > e.If c € C;, b’ =~ b, and ged(b/, ¢) = 1, then by (23) there exists a
b" ~ bsuchthatd’c € A;. We have ged(b”, ¢) = 1,s0Db"c = b'c,implying b'c € A;.
We conclude that
A = {b/c b~ b,ceCigedl,c) = 1}.
By Lemma 22 with f = 1, and Lemma 3, the function Z4,(s) is a polynomial of
degree < d inlog L(es, S, x), x € CI(S). Hence
m n
Za(s) =) Za(s)=Y Hjs) [] GogLes.S, x)"ix, (24)
P —

j=1 xeCl(S)
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where H; € A1 and k; € No, as in (13), moreover }_, k; y <d forall j.Italso
follows from Lemmas 22 and 3 that the sum of terms of (24) with k; ,, = d equals

h=4Zc(s) (log L(es, S, x0))"

where C = U(S,-:d C;. Each function log L(es, S, x), x # xo, is regular at op =
ed(A). Therefore the limit (14) equals h=Zc(00) > 0. O

6 Sets generated by cubes

Lemma24 Lere,l € N, X € CI(S),

A=A, x = {a € F(P):vp(a) ee+INgand p € X foreveryp|a,p € 77}
(25)

and
B:Be,Xz{beA:vp(b)zeforeveryp|b,peP}. (26)

We have y(A) = y(B) = e, tk(A) = tk(B) = 1 and deg(A) = deg(B) = 0.
For' Y € CI(S) we have Y N A # @ if and only if Y € (Xng("'l)). In that case
metrics(Y N A) = metrics(A). We have Y N B # 0 if and only if Y € (X€). In that
case metrics(Y N B) = metrics(B).

Proof We have B C A C 2,({X},0),s0 y(B) > y(A) > e.If y(B) = y(A) = e,
then rk(B) < rk(A) < 1 and, if rk(B) = rk(A) = 1 as well, then deg(A) =
deg(B) = 0 by Fact 6. Foreacha € A we have [a] € xmetnl for some m, n € Ny and
[a] € X™¢ whena € B. Conversely, let Y = X”¢*"! and let k = m (mod ord(X)) be
arbitrarily large. We have metrics(¥ N A) < metrics(A) by Fact 4. For distinct primes
Pl, ..., Pk € X we have p‘f"‘”lp;...p,i eYNA,soy(YNA) =y(A) = eand
SUP4cyna Oe,x (@) = +00. Hence rk(Y N A) = rk(a) = 1 by Fact 21. Consequently
deg(Y N A) = deg(A) = 0. Likewise, when n = 0, we have p{p5 ... p; € Y N B and
the same argument shows that metrics(Y N B) = metrics(B) = metrics(A). O

Lemma25 Let e € N and X € CI(S). The set B defined by (26) is regular across
classes.

Proof We have y (B) = e, rk(B) = 1 and deg(B) = 0 by Lemma 24. Moreover, for
every x € CI(S) we have

Zgs, 0= [] (1+x@)IpI™*), o >1+42,
peXNP
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SO

og Z(s, 0= > (x) 1pI~ + 0 (IpI=<*2))
peXNP

=X(X>e% > v Y (v el + o (IpImer7))
v eClS) peP

1 _
= X(X)ez ; W (X)log L(es, S, V) + Ry (s)
P eCl(S)

= Y (XU {(X})logL(es, S, ) + Ry (s),
IlfeCT(\S)

where R, (s) € Aqq1. The coefficient at log L(es, S, xo), having a singularity at
s=({1+x1)/e,is (x| {X}). We have (x° | {X}) = 1/h if and only if

x(X)=1 (27)
Otherwise N (x¢ | {X}) < 1/h.LetY € (X°). We have

1

Zyap() =3 > x(WNZss, x)
x€C1(S)
=% > k@ [T Lees. S VX exp (R (s)) -
XEC/I(E) Ipe(f(?)

Let G denote the set of those y that satisfy (27) and o9 = (1 + X)/e. We have
Zp(s,x) =Zp(s)and x(Y) = 1for x € G, so

1 JE—
lim (s —o0)'/"Z = lim (s — og)!/"— Y)Zp(s,
Jim (s =00 Zyns(s) = lim (s - o) =2 XN Zs(s, 10

G
_ldl lim (s — 00) /" Zg(s).

S—)O'O

x€G

Moreover

Zp(s) = exp (Ryy(s)) 1_[ Les, S, w)W'{X})_
¥eCiS)

The factor exp (R Yo (s)) is regular and non-zero at o and so is

[T Les.s P
¥ eCIS). ¥ #x0
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by definition of a shifted formation. It remains to note that

lim (s — o0)'/"L(es, S, x0)'/"

S*)O’O
is finite and non-zero, again, by definition of a shifted formation. O

Lemma26 Lete,l € N and X € CI(S). The set A defined by (25) is regular across
classes.

Proof We recall that y(A) = e,rk(A) = 1 and deg(A) = 0 by Lemma 24. Let B be as
defined by (26). If m = gcd(e, /) it is sufficient to prove the regularity of Ac/mm i/m,x
across classes and apply Fact 19. Therefore we assume that gcd(e, /) = 1. We have,
forevery x € C/l(y)andG > 142,

Zae o= [] <1+Zx<p”’”> ||p||—<e+"’>s)

peXnP n=0

=Zs6.0 [] <1+(Zx<p"’> Ty

peXNPpP n=1

x (i(—l)’"“x(p’"") ||p||'”“‘)>,

m=1

where the last equality follows from the power series identity

1 + Zze-i-nl — (1 +Ze) (1 + (Zznl) (Z(_l)m+lzme)> , |Z| < 1.
n=0 n=1 m=1

Hence

ZA(S, X) — ZB(S, X) 1—[ (1 4 Z Z(_l)ln+lx(pln€+lll) ||p||—(me+nl)s)

peXNP m=1n=1
= ZB(S, X)ZC(S» Xf)’

where
C={aeF(P):peXandvy(a) > e+l forevery p |a,pec P}
and f : C — R is a multiplicative function defined by
() =#{(m,n) eN?:j :me+nl,2fm}

—#{(m,n)eNZ:jzme—i—nl,Zlm}
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for p € X NP. We have y(C) = e + 1 and | f(p/)| < j < log, (|| p/]). hence
Zc(s, x f) € Aey1 by Lemma 12. Let Y € CI(S) be such that Y N A # . We have
Y € (X). Similarly to the proof of Lemma 25 we have

Zvoa(s) = - Y XM Zpls, 0 Zcls, x f)
YmAS—h /\X B\S, X)4cC\S, X.
x€CI(S)
and

ZpGs. 0= [] Lees. S, v "X exp (Re(9)).  x € CIS),
1//eC/1(\$)

where R, (s) € Aq41 and R (x¢ | {X}) < 1/h unless y satisfies (27). It follows that
Zyna(s) is of the required form. Again, let G denote the set of x satisfying (27). We
have

1 N
lim (s = 00)"/" Zyna(s) = lim (s —00)'/" = 3 ¥ (N Zp(s, 0Zc (s, 1)

S*)(TO S*)UO )(GG
. 1l o ——
= lim (s —00)"/" Zp(s)—~ Y X (") Zc(s, x f)
S—)O’+ h
0 x€G
Gl . 1h
= 11m+(s —00) " Zp(s)Zync(s, f),
S—)UO

where
Y ={a € F(P):[a]l = YX™ for some m € No}.

It follows from Z¢ (s, f) € Ae4 that lims—mO* Zyinc(s, f) = Zync (oo, f), which
is finite and real. By Lemma 25 the limit lim_, .+ (s — 00)!/" Z5(s) is positive. It
remains to show that Zy/n¢ (09, f) > 0. For every o > o(p we have

o0
Zync(s, =" > fl@lal™.
r=0aecyY’'nC
w(a)=r

The summand with » = 0 is either 1 or 0, depending on whether ¥ € (X°) or not.
Forr > 1,a € C and w(a) = r we have a = p]f‘ ...pf’ for some ki, ...,k € N
and distinct py, ..., p, € X NP. Moreover, a € Y’ is equivalentto k| + ... + k, =
k (mod e), where k is such that Y = X k. Therefore

Y f@lal™ = 3 STIT > rem el ™.

acY'NC ki,...kr€{0,....,e—1} Pl,ocsPr j=1  m>e+l
w(a)=r ki+... 4k, =k (mod ¢) m=k; (mod e)
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1.....p, indicates summation over all sets of r distinct primes in X. Given J,
kj and p; we have

e e ™

m>e+l
m=k; (mod e)

_ Z “pj ” —(me+nl)o . Z ||pj ||f(me+nl)a

m,neN m,neN
me+nl=k; (mod e) me+nl=k; (mod e)
24m 2|lm
. ) —(me+nl)o ) —((m+1)e+nl)o
- Y (I ~ Il ).
m,neN
me+nl=k; (mod e)
2tm

Every term in the final sum is positive and the sum itself is non-empty by gcd(e, [) =
1. Solutions to k| + ... + k, = k (mod ¢) do exist whenever r > 1. Therefore
Zync(o, f) > 0forall o > oy. O

Lemma27 Lete € N, V C CI(S), @ : CI(S) = No, @ # 0, Supp(e) C V, and
B={ae R, a):[pleV forevery p|a,peP}. (28)

The set B is regular across classes with y(B) = e, tk(B) = 0 and deg(B) =
>y o(X). ForY € CI(S) we have Y N B # @ if and only if Y € (V).

Proof Wehave[a] € (V) foreverya € B,sosupposeY € (V).Letb be any element of
B and suppose, as we may, that Y[b! = [pl]kl ... [pr]kf for some primes p1, ..., pr
with classes in V, p; 1 b for all i. The element

_ g kiteh ky+eh ky+eh
a = bp; )2 R 4

satisfiesa € Y N B, so y(Y N B) = e. We have k(Y N B) = 0 and deg(Y N B) <
d:=3) ya(X)byYNB C (¥, @) and Fact 6. To see that deg(¥Y N B) = d we note
that Y N B € R.(¥, @), sotk (. (4, o) N Y N B) = rk(Y N B). Regularity follows
from Theorem 23. O

Lemma 28 Every cube R,(U, @) is completely regular across classes. If U # 0 or
o #0,theny (R (U, ) = e, tk(.(U, a)) = |U|and deg(R. (U, o)) = Yy a(X).

Proof Let V = CI(S) \ U. We have
QU,a) = (l_[ Ae,l,X) B,
XeU

where A, 1 x is defined by (25), and B is asin (28). Let A = l—[XEU Acax . U # 0,
then it follows from Lemmas 24 and 26 and Propositions 10 and 20 that y (A) = e,
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rk(A) = |U|, deg(A) = 0 and A is regular across classes. If « # 0, then B is
regular across classes, with ¥ (B) = e, tk(B) = 0, and deg(B) = Y_y «(X), by
Lemma 27 and Theorem 23. Therefore, when both U # () and o # 0, we obtain the
metrics asserted from Proposition 10, moreover the set AB is regular across classes
by Proposition 20. When U = ) and o # 0, we have A = {1}, so AB = B is, again,
regular across classes with the asserted metrics. When U # ) and ¢ = 0, we have
y(B) > e, so AB is again regular across classes by Proposition 20 and the metrics
follow from Proposition 10. We reduce the case U = @ and « = 0 to U = CI(S)
and o = 0 using (3). Finally Y N AB # ¢ for each Y € CI(S) thanks to Lemmas 24
and 27 and the fact that (U) (V) = CI(S). O

Corollary 29 Ifa cube R.(U, &) is a proper subset of another cube R, (U’, o), then
metrics(R, (U, @)) < metrics(R,(U’, ')).

Theorem 30 Let 2l be the algebra of subsets of F(P) generated by all cubes with
the binary operations of set union, intersection and difference. Every non-empty set
A € A is completely regular across classes.
Proof First we show by induction that every set of the form

m

U, )\ R, U, a). (29)

i=1

is completely regular across classes. Let D be given by (29). For m = 0 the assertion

follows from Lemma 28. Suppose m > 1 and the assertion holds for m — 1. Suppose
D # (. Note that

D=Q,U,a)\ LmJ (Re(U, @) N e, (Ui, ) ,
i=1
so, by Lemma 5 and D # ) we may assume
Q, (Ui, ;i) C (U, @)
and, by Corollary 29,

metrics(82,, (U;, a;)) < metrics(82.(U, o))

for each i. It follows from Fact 8 that metrics(D) = metrics(,(U, «)). Let
m—1
A=Q.U, )\ | R, Ui, a)

i=1

@ Springer



442 M. Radziejewski

and

m—1

B == Qem(Um, am)\ U Sze[(Uiaai)‘

i=1

We have D = A\ B. By the inductive hypothesis A is completely regular across
classes, and so is B, unless B = ¢. In the latter case we are done, so suppose B # (.
We have

metrics(B) < metrics(£2,,, (U, o)) < metrics(D)

and metrics(D) < metrics(A), so indeed D = A \ B is regular by Fact 18. Every
element of 2 is a finite union of disjoint sets of the form (29). The theorem’s assertion
follows from Fact 16. O

Corollary 31 Every non-trivial type-dependent set A is contained in a type-dependent
set B, completely regular across classes, with metrics(B) = metrics(A).

Proof Let (6) be a fair covering of A and let B be the right-hand side of (6). We have
metrics(B) = metrics(A) and the regularity of B follows from Theorem 30. O

Corollary 32 If a type-dependent set A contains an almost regular set B with
metrics(B) = metrics(A), then A is semi-regular.

Corollary 33 The assumption “if y(A) > e or A is regular” in Lemma 13 may be
dropped.

Proof 1t is enough to apply Lemma 13 to a regular superset A’ of A such that
metrics(A”) = metrics(A). The assertion for A follows from |Z4(c)| < |Za/(0)].
O

Corollary 34 If A is an almost regular set satisfying (13), then A is regular.

Proof Let B C F(P) be such that metrics (B) < metrics(A) and A A B is regular.
The assertion follows from:

metrics(A) = metrics(A A B),
|Za(s) = Zang(s)| < |Zp(0)|, o > ed(A),

and Corollary 33. O

7 Counting functions of regular sets
Theorem 35 Let A be a non-trivial type-dependent set. If A is almost regular, then

A(x) ~ Cx I A) (1og x)~IHKN /A (100 10g X)), x — o0, (30)
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for some C > 0, where d = deg(A) if tk(A) > 0 and d = deg(A) — 1 iftk(A) = 0.
If A is semi-regular, then

A(x) < xUFR D) (1og x)T1HEAD/ (o0 10g ), x —> 0. (31)
Otherwise
A(x) <« xIFPY A (1og ) ~HEKAD/ (150 10g x)?,  x — 00 (32)
and
Ax) > xITVrDgogx)"Lloglog)™,  x — oo (33)

forevery M > 0.
Proof When A is regular with op = ed(A), it follows from (13) that we have

m — ki
Za) =Y @ o)™ (log(6 =00 ™). o= (4

i=1

for some w; € C, k; € Ny, and I’-\I;(s) holomorphic in o > 0y, satisfying I’-\I;(ao) # 0.
We may assume that m is the smallest possible, hence the pairs (w;, k;) are all distinct.
Let w = max; Rw; and k = maxgyy, =y ki. Suppose Rw; = w and k; = k fori < m’,
moreover Rw; < w or k; < k for each i > m’. We have

’

Za(0)(o = 00)" (log((s — 00) "N = Hi(00) (o — 00) ™™ +0(1), o — o,
i=1

and the trigonometric polynomial sz=/1 H; (00) (0 — ) """¥i is not identically zero,
the exponents —i Jw; being all distinct. By (14) we have w = tk(A)/h, k = deg(A),
m' = 1 and w; = w. The first assertion now follows from the Tauberian theorem
of Delange and Ikehara, e.g., in the form given in [2, Theorem 8.2.5] that we can
apply to Z 4 (ops), because og > 0. Suppose A is almost regular and A A B is regular
for some B C F(P) such that metrics (B) < metrics(A), then let B’ be a regular
superset of B satisfying metrics(B’) = metrics(B), that exists by Corollary 31. We
have metrics(A A B) = metrics(A) by Fact 8, so

(A A B)(x) ~ CxTTNY B (1og x) 14k (190 10g 1), x — o0,
for some C > 0 and
B'(x)=o0 (x““)/”(A)(logx)_1+rk(A)/h(loglogx)d> , x — oo.
Since A(x) = (AAB)(x)+(ANB)(x)—(B\A)(x) and | (A N B)(x) — (B \ A)(x)| <

B’(x) for every x, we obtain (30). When A is semi-regular, (31) follows from the def-
inition and (30). Suppose A is not regular and let A’ be its regular superset, as implied
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by Corollary 31. Then (30) for A’ in place of A implies (32) for A. Similarly (33)
follows from the fact that for arbitrarily large d € N the set A contains a regular subset
of height e = y (A), rank 0 and degree d. Indeed, let

Ag={acA: Y S.x(@)=d
XeCl(S)

We have rk(A) > 0 by Theorem 23. Therefore by Fact 21 there are arbitrarily large
d such that Ay # . For such a d we conclude from Fact 21 that rk(A;) = 0 and
deg(Ay) = d, and from Theorem 23 that A, is regular. O

The next theorem shows that (33) is sharp.

Theorem36 Let ¢ € N and let f(x) be a real function such that f(x) >
xHM/elog x) " (loglog x)™ when x — +oo, for every M > 0. There exists a
type-dependent set A of height e and rank h such that

A
liminf A% —

=0.
x—+00 f(x)

Proof We construct an ascending sequence of type-dependent sets (A,,) of height e and
rank 0 and an ascending sequence of positive numbers (x,). Let A; = {p° : p € P}.
When A, is constructed we conclude from Theorems 23 and 35 that A, (x) = o(f(x)),
x — 400, so we can find x, > n such that A,(x) < f(x)/n for all x > x,. Let
m = m, = [log(x,)] and

An+1:AnU{pf...pfn3P1,~-~aPmEP}

We have |ja|| > 2" foralla € A,41 \ Ap, 850 Apy1(x) = A, (x) for all x < x,,. The
fact that A, is also of rank O follows from Facts 8 and 21. Then A = UZOZI Ay
satisfies

A(xy) . Ay (xn)
im = lim =0
n—o0 f(x,) n—>00 f(x,)

and lim,_, » X, + 00. It remains to show that rk(A) = h. Suppose the contrary and
let (6) be a fair covering with max; |U;| < h. Let M = max; )y «; (X) and let n be
such that x, > 2"+ _Then m, > h(M + 1) and we can find a € A, such that
8e.x(a) > M + 1 for every X € CI(S). Let i be such that a € £,(Uj;, «;) and let X
be such that X ¢ U;. Then 6, x(a) = «; (X) < M, a contradiction. O

Proposition 37 Suppose U C CI(S), V = CI(S) \ U, and o, B : CI(S) — Ny,
Supp(B) < Supp(e) = U. Let

B = {b € F(P):[pl € Uandv,(d) € a([p]) + B([pDNg forall p | b, p € P}.
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Suppose C is a (non-empty) type-dependent set such that [p] € V for every p | c,
c € C, peP,moreover tk(C) = 0or y(C) > infxcy a(X). Then the set A = BC
is regular with
y(A) = min(inf a(X), y(C)),
XeU
tk(A) =#{X e U : a(X) = y(A)}

and

deg(A) = sup ) 8,4 x (),
ceC Xev

where we understand inf xcy a(X) as +oo when U = 0. If y (C) > infxcy a(X) or
metrics(X N C) = metrics(C) for every X € CI(S) such that X N C # @, then A is
regular across classes.

Proof When U = {f wehave B = {1}, so0 B isregularacross classes with y (B) = +00.
When U # ¢, then B = [y, Bx where

Bx=[be F(P): peXandv,(b) € a(X)+ B(X)No forall p | b, p € P}

forall X € U.If B(X) = 0 then By coincides with the set By(x),x defined in (26).
Otherwise Bx = Aq(x),(X),x» as defined by (25). It follows from Lemmas 24, 25
and 26, that By is regular across classes with y(Bx) = «a(X), rk(Bx) = 1 and
deg(Bx) = 0. It follows from Propositions 10 and 20 that B is regular across classes
with

y(B) = }HEW(X),
tk(B) =#{X e U : «(X) = y(B)}

and
deg(B) = 0.

If y(C) > y(B), the assertions follow from Propositions 20 and 10. Otherwise
rk(C) = 0, so C is regular by Theorem 23 and so is Y N C for every Y € CI(S)
such that y (Y N C) = y(C). If metrics(X N C) = metrics(C) whenever X N C # @,
then C is regular across classes. By Proposition 20 the set A is regular, and if C is reg-
ular across classes, then A is regular across classes. The assertions about metrics(A)
follow from Lemma 21 and Proposition 10. O

Proof of Theorem 1 'We have

S = {b € F(P) :ord([p]) | vp(b) forall p | b, p € P},
S = {b € F(P) :vp(b) =ord([p]) forall p | b, p € 77} ,
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and
E; = {be]-'(P):vp(b) >kforall p|b,p 673}.

Proposition 37 applies to these sets with U = CI(S) and C = {1}, so0 A = B. The
functions « and 8 should be defined as «(X) = B(X) = ord(X) in the case of S,
a(X) = ord(X) and B(X) = 0 in the case of S7, and «(X) = k and B(X) = 1 in the
case of Ej. The assertions follow from Theorem 35. O

Proof of Theorem 2 We have F;, = BC, where
B={beFP):[pl=Eforalp|b,peP}
and
C={aeF,:p¢Eforeveryp|a,peP}.

Suppose & > 1. Then for every X € CI(S) \ {E} and p1,..., porax) € X NP
we have pi ... porax) € C, so y(C) = 1. We note, following Narkiewicz, that if
Pls -+ Dik+1)ord(x) € XNP are distinct primes dividinga € Sand X € CI(S)\{E},
then pi, ..., p(k+1)ord(x) can be divided to k + 1 groups of ord(X) elements in

((k + 1) ord(X))!
(ord(X)k+1

ways, giving rise to more than k distinct factorizations of a. Hence for every a € C
we have )y 81 x(a) < w(a) < h(h—1)(k+1),s01k(C) = 0 and Ny := deg(C) <
h(h—1)(k+1). Otherwise, if h = 1, we have C = {1} and F; = B, and we put Ny :=
deg(C) = 0. In either case the assumptions of Proposition 37 are therefore satisfied
with U = {E} and a(E) = B(E) = 1. The assertion follows from Theorem 35. O
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