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Boris Andreianov determined that the examples of max-additive and max-plus linear
semigroups in the last section of the article [6] are given inaccurately, i.e., [6, Propo-
sition 4.1] is not true as stated and [6, Proposition 4.2] does not hold without some
additional assumptions. Jointly we are able to correct the issues as follows.
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In the case of conservation law (CL) studied in [6, Subsec. 4.1], a smaller set
of weak solution should be considered. A function v: [0, 00) — L!(R) is called
an isentropic solution to (CL), if it satisfies the initial condition v(0) = /& and the
Kruzkov condition (14) from [6] with the equality sign.

We now give the proper formulation of [6, Proposition 4.1] and its proof. Let

C:=lhe L! (R) | (CL) admits an isentropic solution v with v(0) = h}
U {—o00}.

Proposition ([6, Proposition 4.1]) The semigroup T .= (T ()¢50, whereu(t, x) =
T (t)h(x) is the unique isentropic solution to (C L) and where T (t)(—00) := —00, is
a max-additive strongly continuous semigroup on C.

Proof By [5, Theorem 1], T'(t)h1 @ T (t)h> is an isentropic solution to (CL) for any
hi, hy € C. Moreover, T (t)h1 ® T (t)hs|;—0 = h1 ® ho, hence T (1)h @& T (t)hy is the
isentropic solution to (CL) with initial condition & = h| @ h; € C. By uniqueness of
the isentropic solutions, we obtain T (¢)h1 & T (t)ho = T (t)(h1 ® h»). O

Remark 1 The isentropic solutions to (CL) often exist only on some limited time
interval. However, our results also hold in this case considering the local time flows
(T (t))¢ef0,77 defined on

Cr := {h € L'(R) | (CL) admits an isentropic solution v on [0, T']
with v(0) = h} U {—o0}.

In the case of Hamilton—Jacobi equation (H J) considered in [6, Subsec. 4.2], we
should specify the choice of the generalized solutions and regularity assumptions. We
assume the following for the function f appearing in the problem (H J).

1. Forevery x € R", |lx]| = 1, there exists the limit lim, o 7f (x/7).
2. Forany (x,r), (x', ") € R" x Ry with | x||> + 72 < 1and ||x||> + 7?2 < 1,

rfe/ry = £ ] < K (1 =P 0= r92)

where K > 0 is some constant.
3. The function f is convex.

In the literature, there are many notions for generalized weak solutions to (HJ):
Crandall-Lions’ viscosity solutions, minimax solutions by Subbotin, Maslov idempo-
tent weak solutions, KruZkov generalized solutions. However, under our assumptions
they all agree, see [7, Sec. 5], and [6, Proposition 4.2] holds as stated in the paper.
For the proof, we refer directly to [7, Theorem 3.2] (note that there the min-plus
terminology is used; therefore, the concavity instead of convexity of f is assumed).

Remark 2 Stability of solutions of (HJ) (understood in the viscosity sense of
Crandall-Lions) under the @-operation is closely related to the properties of liminf
of a sequence of viscosity solutions of first order Hamilton—Jacobi equations with
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convex Hamiltonians, see [2] and [1, Th. 2.1 and 2.3]. The fact that the maximum of
two viscosity solutions is a viscosity sub-solution is classical, see [3]. Heuristically,
the fact that the maximum of two viscosity solutions is also a viscosity super-solution
stems from the semi-concavity property of viscosity solutions, see [1, p.1125].

Remark 3 We add a reference for yet another proof of the max-linearity of Hamilton—
Jacobi—Bellman semigroup presented in Subsection 4.3. In [4], this fact is proved
using a probabilistic approach.
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