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Abstract In this paper we consider the Schwarz radical of linear algebraic semi-
groups as defined in semigroup theory. We give some new characterizations of the
complete regularity, regularity and solvability of irreducible linear algebraic monoids
in terms of Schwarz radical data. Moreover, we give a generalization about the results
of the kernel to the results of completely regular J -classes.
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1 Introduction

Throughout this paper, Z
+ will denote the set of all positive integers. Let S be a

semigroup and I ⊆ S a (two-sided) ideal of S. Let
√
I denote the set of all elements

of S which satisfy that some power of them belongs to I , i.e.,

√
I = {a ∈ S | ai ∈ I for some i ∈ Z

+}.

There are five concepts of radical of Swith respect to I , called theCli f f ord radical,
Luh radical, McCoy radical, Schwarz radical, and Ševrin radical (see Definition
3.1), which are natural extensions of the concepts of radical of a ring. Denote the
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2 J. Li

Cli f f ord radical, Luh radical, McCoy radical, Schwarz radical, and Ševrin radical
of S with respect to I byR∗(I ), C(I ),M(I ),R(I ), L(I ) respectively. If a semigroup
S has a kernel ker(S) (theminimal ideal of S), then theCli f f ord radical, Luh radical,
McCoy radical, Schwarz radical, and Ševrin radical of S with respect to ker(S) are
simply called the Cli f f ord radical, Luh radical, McCoy radical, Schwarz radical,
and Ševrin radical of S. Bosǎk [3] gives an example in abstract semigroups that all
of the radicals mentioned above are distinct from one anther, and shows that for any
semigroup S and any ideal I of S,

I ⊆ R(I ) ⊆ M(I ) ⊆ L(I ) ⊆ R∗(I ) ⊆ √
I ⊆ C(I ) ⊆ S.

Kmeť [14] prove thatR∗(I ) = √
I = C(I ) if and only if

√
I is an ideal of S. And S is

a semilattice of archimedean semigroups (i.e., b ∈ S1aS1 ⇒ bi ∈ S1a2S1 for some
i ∈ Z

+, for all a, b ∈ S), if and only if for any ideal I of S,
√
I is an ideal of S (see

[5] and [15]).
Semigroups which satisfy that the set

√
I is a semigroup for any ideal I , are char-

acterized in [1] by Bogdanović and Ćirić.
In this paper, we consider the above radicals in linear algebraic semigroups. A

linear (or affine) algebraic semigroup S over an algebraically closed field K is both
an affine variety over K and a semigroup for which the product map S × S → S
is a morphism of varieties. Then S has a kernel ker(S) (see [22, Theorem 3.28]).
Moreover, by [7, II 2.3.3] S is isomorphic to a (Zariski) closed subsemigroup of total
n by n matrix monoid Mn(K ) for some n ∈ Z

+, and is strongly π -regular (i.e., some
power of each element of S lies in a subgroup of S) by a theorem of Clark (see [22,
Theorem 3.18]). Then we have that the Cli f f ord radical, McCoy radical, Schwarz
radical, and Ševrin radical of S are coincide, i.e.,

R(ker(S)) = M(ker(S)) = L(ker(S)) = R∗(ker(S)).

Hence we only need to consider the Schwarz radical of a linear algebraic semigroup.
In particular, the radical-like property, introduced by J. Luh (see [17]), holds for
the Schwarz (or Cli f f ord) radical of a linear algebraic semigroup S, that is, the
Rees factor semigroup S/R(ker(S)) of S modulo R(ker(S)) has zero Schwarz (or
Cli f f ord) radical.

The following theorems play very important role to study the theory of linear
algebraic monoids. Note that if a linear algebraic semigroup S has a zero element, the
Schwarz radicalR(ker(S)) of S is the maximum nilpotent ideal of S and

√
ker(S) is

the set of all nilpotent elements of S.

Theorem 1.1 [21, Theorem 2.1] Let S be an irreducible linear algebraic semigroup
with zero 0. Then the following conditions are equivalent:

(i) S is completely regular;
(ii) S has no non-zero nilpotent elements (i.e.,

√
ker(S) = {0});

(iii) S is a monoid and the unit group of S is a torus.

Theorem 1.2 [22, Theorem 7.3] Let M be an irreducible linear algebraic monoid
with zero 0 and unit group G. Then the following conditions are equivalent:

123



On the radicals of linear algebraic monoids 3

(i) G is reductive;
(ii) M is regular;
(iii) M has no non-zero nilpotent ideals (i.e., R(ker(M)) = {0}).
Theorem 1.3 [19, Theorem 23] Let M be an irreducible linear algebraic monoid with
zero 0 and unit group G. Then the following conditions are equivalent:

(i) G is solvable;
(ii) the nilpotents of M form an ideal of M (i.e., R(ker(M)) = √

ker(M));
(iii) J 2 ⊆ J for all J ∈ U(M).

These facts imply that the structure of irreducible linear algebraic monoids with
zero can be characterized in terms of Schwarz radical (or nilpotency) data. In general,
for an irreducible linear algebraicmonoidM , it need not have a zero element, that is, its
kernel ker(M) is nontrivial. Brion shows in [4, Corollary 3.1.5] that for any irreducible
non-affine algebraic monoid (that is, it is non-affine as a variety), its kernel must be
nontrivial. The kernel of the linear algebraic monoid M carries a lot of structural
information about M as well as of the unit group G which are well studied by Huang
(cf. [9,10,12]).

The purpose of this paper is to study the structure of linear algebraic monoids in
terms of Schwarz radical data.We give generalizations of the above results (Theorems
1.1, 1.2, 1.3) for an irreducible linear algebraic monoid (without zero). Namely, we
prove the following theorem.

Theorem 1.4 Let M be an irreducible linear algebraic monoid with unit group G.
Then

(i) (Theorem 4.1) M is completely regular if and only if
√
ker(M) = ker(M);

(ii) (Theorem 4.2) M is regular if and only if the Schwarz radical of M is a com-
pletely simple semigroup (i.e., R(ker(M)) = ker(M));

(iii) (Corollary 4.4) G is solvable if and only if
√
ker(M) forms an ideal of M (i.e.,

R(ker(M)) = √
ker(M)) and a maximal subgroup of ker(M) is solvable.

Moreover, for any completely regularJ -class J ∈ U(M), we construct a submonoid
MJ of M with kernel J , defined by

MJ = {a ∈ M | aJ ⊆ J }.

Then MJ is a linear algebraic monoid with kernel J . Moreover, the unit group of MJ

is just the unit group ofM . Hence we can generalize the known results about the kernel
of a linear algebraic monoid (see [9,10,12]). For instance,

Theorem 1.5 (Corollary 5.5) Let M be an irreducible linear algebraic monoid with
unit group G. Let J ∈ U(M) be completely regular, and e ∈ E(J ). Then

(i) dim R(G) = dim E(J ) + dim R(Ge) + dim R(eGe);
(ii) dim Ru(G) = dim E(J ) + dim Ru(Ge) + dim Ru(eGe);
(iii) G is reductive if and only if Ge and J are both reductive groups.
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4 J. Li

The article is organized as follows. Section 2 is for notions and notations. In Sect.
3, we work with various properties of the Schwarz radical of algebraic semigroups.
In Sect. 4, we give characterizations of the completely regularity, regularity and solv-
ability of irreducible linear algebraic monoids in terms of Schwarz radical data. In
Sect. 5, we generalize the results of Sect. 4 to the case in terms of completely regular
J -classes of irreducible linear algebraic monoids.

2 Preliminaries

We now assemble some notions and notations. Z
+ will denote the set of all positive

integers. If X is a set, then |X | denotes the cardinality of X . Let S be a semigroup.
Let S1 := S ∪ {1} be the natural monoid extension of S. The semigroup S is strongly
π -regular (sπ r) if for each a ∈ S, there exists i ∈ Z

+ such that ai lies in a subgroup of
S. If a, b ∈ S, then a|b (a divides b) if xay = b for some x, y ∈ S1. S is archimedean
if for all a, b ∈ S, a|bi for some i ∈ Z

+. Let Sα (α ∈ �) denote a partition of S into
subsemigroups. Then S is a semilattice (union) of Sα (α ∈ �) if for all α, β ∈ �,
there exists γ ∈ � such that SαSβ ∪ Sβ Sα ⊆ Sγ . According to [22, Theorem 1.15], S
is a semilattice of archimedean semigroups if and only if for all a, b ∈ S, a | b implies
a2 | bi for some i ∈ Z

+. Let E(S) denote the set of all idempotents of S. Let e ∈ E(S).
We denote by Je, Le, Re and He the J -, L-,R- andH-classes of e in S under Green’s
relations, respectively (see [22, Chap. 1]). Suppose S is an sπ r-semigroup and J is a
J -class of S. Then J is regular if E(J ) 	= ∅. Moreover, J is completely regular if
J is regular and J 2 ⊆ J . Let U(S) be the set of all regular J -classes of S. For any
J1, J2 ∈ U(S), we denote J1 ≤ J2 if a2 | a1 for some (all) ai ∈ Ji , i = 1, 2. We
write U(S) for the partially ordered set (U(S),≤). Let ∅ 	= I ⊆ S. Then I is a right
ideal of S if I S ⊆ I ; I is a left ideal of S if SI ⊆ I ; I is an ideal of S if S1 I S1 ⊆ I .
The minimum ideal of S, if it exists, is called the kernel of S, denoted by ker(S). A
completely simple semigroup S is an sπ r-semigroup with no ideals other than S.

Let K denote a fixed algebraically closed field. Mn(K ) will denote the algebra of
all n × n matrices over K , and GLn(K ) its unit group. Let S be a Zariski closed
subsemigroup of Mn(K ). If e ∈ E(S) and a ∈ S, then we let dete(a) = det (eae +
1 − e). Thus dete(a) 	= 0 if and only if eae ∈ He by [22, Remark 3.23].

Let M be an irreducible linear algebraic monoid over K with unit group G. M
is regular (resp. completely regular) if it is so as a semigroup. We call M reductive
(resp. semisimple, solvable, nilpotent, a d-monoid) if its unit group is reductive (resp.
reductivewith center 1-dimensional, solvable, nilpotent, a torus).Wewrite R(G) (resp.
Ru(G)) for the radical (resp. unipotent radical) of G. The rank ofG, denoted rank(G),
is referred to as the dimension of a maximal torus of G. Let W (G) denote the weyl
group of G. Then by [13, Proposition 24.1A, Corollary 25.2C],W (G) is finite, and G
is solvable if and only if |W (G)| = 1. For a subset V of M , denote by V the Zariski
closure of V in M . If N is a closed algebraic subsemigroup ofM , let Nc be the identity
component of N . If e ∈ E(M), then we denote Me = {a ∈ M | ea = ae = e}c,
Gr (e) = {x ∈ G | xe = e}, Gl(e) = {x ∈ G | ex = e}, and Ge = (Gr (e)∩Gl(e))c.
For any subset X of M , Cr

X (e) = {a ∈ X | ae = eae}, Cl
X (e) = {a ∈ X | ea = eae},

CX (e) = {a ∈ X | ae = ea}. Let T be a maximal torus of G. Then � ⊆ E(T ) is
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On the radicals of linear algebraic monoids 5

a cross-section lattice of M , if |� ∩ J | = 1 for all J ∈ U(M) and Je ≥ J f implies
e ≥ f for all e, f ∈ �. If J ∈ U(M), then the width of J , ω(J ) = |J ∩ E(T )|. If
e ∈ E(J ), ω(e) = ω(J ). For completely regular J -classes, we have the following
characterizations.

Theorem 2.1 [22, Remark 1.7(iii)] Let S be a linear algebraic semigroup, J ∈ U(S).
Then the following conditions are equivalent:

(i) J is completely regular;
(ii) J is completely simple;
(iii) J 2 ⊆ J ;
(iv) E(J )2 ⊆ J .

Theorem 2.2 [22, Theorem 6.30, Corollary 6.34] Let M be an irreducible linear
algebraic monoid with unit group G, J ∈ U(M) and e ∈ E(J ). Then the following
conditions are equivalent:

(i) J is completely regular;
(ii) E(J ) ⊆ B for some Borel subgroup B of G;
(iii) ω(e) = 1;
(iv) e ∈ E(R(G));
(v) G = Cl

G(e)Cr
G(e);

(vi) eGe is theH-class of e.

[22,23] are our primary references for algebraic monoid theory, and [2,13,26] for
algebraic group theory.

3 The radicals of linear algebraic semigroups

Let S be a linear algebraic semigroup and I a (two-sided) ideal of S. Let ker(S) be the
kernel of S (the minimum ideal of S). The following concepts are used for abstract
semigroups which are defined analogously to these concepts for rings.

An element a of S is termed a nilpotent element of S with respect to I if ai ∈ I for
some i ∈ Z

+. Let
√
I denote the set of all nilpotent elements of S with respect to I ,

i.e.,

√
I = {a ∈ S | ai ∈ I f or some i ∈ Z

+}.

By [22, Corollary 3.30], the set
√
I is closed in S. An ideal (left or right), or a

subsemigroup A of S is nilpotent with respect to I if Ai ⊆ I for some i ∈ Z
+, and

is nil with respect to I if every element of A is a nilpotent element of S with respect
to I . For simplicity, an ideal A (left or right) is nilpotent (resp., nil) if A is nilpotent
(resp., nil) with respect to ker(S). An ideal A of S is locally nilpotent with respect to
I if every subsemigroup S1 ⊆ S, generated by a finite number of elements of A, is
nilpotent with respect to I . An ideal P of S is called a prime ideal of S if I1 I2 ⊆ P
implies that I1 ⊆ P or I2 ⊆ P where I1 and I2 are ideals of S. An ideal P of S is
called a completely prime ideal of S if for any two elements a, b ∈ S, ab ∈ I implies
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6 J. Li

that a ∈ I or b ∈ I . Evidently a completely prime ideal is a prime ideal. Now we
define some radicals of S with respect to I .

Definition 3.1 Let S be a linear algebraic semigroup, and I an ideal of S.

(i) The union L(I ) of all locally nilpotent ideals of S with respect to I is called the
Ševrin (or locally nilpotent) radical of S with respect to I .

(ii) The union R∗(I ) of all nil ideals of S with respect to I is called the Cli f f ord
(or nil) radical of S with respect to I [6].

(iii) The unionR(I ) of all nilpotent ideals of Swith respect to I is called the Schwarz
(or nilpotent) radical of S with respect to I [24].

(iv) The intersectionM(I ) of all prime ideals of S containing I is called the McCoy
(or prime) radical of S with respect to I [17].

(v) The intersection C(I ) of all completely prime ideals of S containing I is called
the Luh (or completely prime) radical of S with respect to I [17].

Obviously, every nilpotent (left or right) ideal of S with respect to I is nil with
respect to I . By [22, Corollary 3.16], there exists n ∈ Z

+ such that S is isomorphic
to a (Zariski) closed subsemigroup of Mn(K ) , and thus for all a ∈ S, an lies in a
subgroup of S following [22, Theorem 3.18]. Hence

√
I = {a ∈ S | an ∈ I }.

Then every nil (left or right) ideal of S with respect to I is nilpotent with respect to
I . Therefore, an ideal of S is nil with respect to I if and only if it is nilpotent with
respect to I . Thus R(I ) = R∗(I ). It is known that (see [3])

I ⊆ R(I ) ⊆ M(I ) ⊆ L(I ) ⊆ R∗(I ) ⊆ √
I ⊆ C(I ) ⊆ S.

So the Cli f f ord, McCoy, Sevrin , Schwarz radicals of S with respect to I coin-
cide, that is,

R(I ) = M(I ) = L(I ) = R∗(I ).

Hence we only consider the Schwarz radical of a linear algebraic semigroup S with
respect to an ideal I .

Throughout this paper, we use the notation R(I ) to denote the Schwarz radical
of a linear algebraic semigroup S with respect to an ideal I of S. We write RS(I ), if
we want to specify S. For simplicity, the Schwarz radical of S with respect to ker(S)

is called the Schwarz radical of S, denoted byR ker(S). Clearly,R(I ) is the largest
nilpotent (or nil) ideal of S with respect to I . Since every ideal of S contained in

√
I is

nil with respect to I , it is easy to see thatR(I ) is also the largest ideal of S contained
in

√
I . The following lemma shows that R(I ) is the largest nilpotent (or nil) left (or

right) ideal of S with respect to I .

Lemma 3.2 Let S be a linear algebraic semigroup and I an ideal of S. Then R(I )
contains every nilpotent left (or right) ideal of S with respect to I .
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On the radicals of linear algebraic monoids 7

Proof Let A be a nilpotent left ideal of S with respect to I . Then there exists some
i ∈ Z

+ such that Ai ⊆ I . So (AS1)i ⊆ Ai S1 ⊆ I S1 ⊆ I . Hence AS1 is a nilpotent
ideal of S with respect to I . Therefore A ⊆ AS1 ⊆ R(I ). Similarly, we have that
every nilpotent right ideal of S with respect to I is also contained inR(I ). �

By Lemma 3.2, we have the following lemma directly.

Lemma 3.3 Let S be a closed subsemigroup of Mn(K ), I an ideal of S. Then

R(I ) = {a ∈ S | (xay)n ∈ I for all x, y ∈ S1}
= {a ∈ S | (ay)n ∈ I for all y ∈ S1}
= {a ∈ S | (xa)n ∈ I for all x ∈ S1}

Proposition 3.4 Let M be a linear algebraic monoid with unit group G and let I be
an ideal of M. Then

R(I ) = {a ∈ M | GaG ⊆ √
I }

= {a ∈ M | aG ⊆ √
I }

= {a ∈ M | Ga ⊆ √
I }.

Proof Without loss of generality, we may assume that M is a closed submonoid of
Mn(K ) for some n ∈ Z

+. By Lemma 3.3, we have

R(I ) = {a ∈ M | MaM ⊆ √
I } = {a ∈ M | aM ⊆ √

I } = {a ∈ M | Ma ⊆ √
I }.

If a ∈ R(I ), then GaG ⊆ MaM ⊆ √
I . If b ∈ M with GbG ⊆ √

I , since
√
I is

closed in M , we have

MbM ⊆ GbG = MbM ⊆ √
I ,

which implies b ∈ R(I ). Therefore,

R(I ) = {a ∈ M | GaG ⊆ √
I }.

Similarly, we can get

R(I ) = {a ∈ M | aG ⊆ √
I } = {a ∈ M | Ga ⊆ √

I }.

�
Proposition 3.5 Let S be a linear algebraic semigroup, I an ideal of S and e ∈ E(S).
Then R(I ) is closed in S.
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8 J. Li

In particular,

R(SeS) =
⋂

f ∈E(S)\E(SeS)

I ( f ),

where I ( f ) = {a ∈ S | a � f }.
Proof Consider the product μ : S × S → S by μ(a, b) = ab for any a, b ∈ S. As
μ(S × R(I )) = SR(I ) ⊆ R(I ), we deduce that

μ(S × R(I )) = μ(S × R(I )) ⊆ μ(S × R(I )) ⊆ R(I ).

Similarly, we can get μ(R(I ) × S) ⊆ R(I ). So SR(I )S ⊆ R(I ), which implies that
R(I ) is an ideal of S. Since

√
I is closed in S, R(I ) ⊆ √

I . By the maximality of
R(I ), we get R(I ) = R(I ), thus R(I ) is closed in S.

Let a ∈ R(SeS) and f ∈ E(S)\E(SeS). If a | f , then f ∈ SaS ⊆ R(SeS), thus
f ∈ E(R(SeS)) = E(SeS), a contradiction. So a � f , and thus a ∈ I ( f ). Hence

R(SeS) ⊆
⋂

f ∈E(S)\E(SeS)

I ( f ).

On the other hand, suppose a ∈ S and a � f for every f ∈ E(S)\E(SeS). We claim
that a ∈ R(SeS). In fact, if not, there exists y ∈ S, such that (ay)n /∈ SeS for some
n ∈ Z

+ by Lemma 3.3. Thus there exits f ∈ E(S)\E(SeS) such that (ay)n ∈ H f .
Then a | f , a contradiction. So a ∈ R(SeS). Therefore,

R(SeS) =
⋂

f ∈E(S)\E(SeS)

I ( f ).

�
For a linear algebraic semigroup S with kernel ker(S), recall that an idempotent e ∈
E(S) is called primitive if E(eSe) \ E(ker(S)) = {e}, that is, for any f ∈ E(S),
e � f implies f ∈ E(ker(S)). The following corollary gives a characterization of
the Schwarz radical of an irreducible linear algebraic monoid in terms of primitive
idempotents as follows.

Corollary 3.6 Let M be an irreducible linear algebraic monoid with unit group G.
Let T be a maximal torus of G, � ⊆ E(T ) a cross-section lattice of M. Then

R ker(M) =
⋂

e∈�0

I (e),

where I (e) = {a ∈ M | a � e} and �0 = {e ∈ � | e is primitive}.
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On the radicals of linear algebraic monoids 9

Proof First, we claim that if e, f ∈ E(M) with e ≤ f , then I (e) ⊆ I ( f ). In fact, for
any a ∈ I (e), if a /∈ I ( f ), then a | f . Since f | e, we have a | e, a contradiction.
Let � = {e ∈ E(M) | e is primitive}. By [22, Corollary 6.9, Theorem 6.20], for any
e ∈ E(M)\E(ker(M)), there exists e

′ ∈ � such that e ≥ e
′
. Hence, by Proposition

3.5,

R ker(M) =
⋂

e∈E(M)\E(ker(M))

I (e) =
⋂

e∈�

I (e).

Next, we claim that if e, f ∈ E(M) with Je = J f , then I (e) = I ( f ). Since Je = J f ,
by [22, Corollary 6.8], there exists x ∈ G such that x−1ex = f . Let a ∈ I (e). If a | f ,
then f ∈ MaM . Thus e = x f x−1 ∈ MaM , which implies a | e, a contradiction. So
I (e) ⊆ I ( f ). Similarly, we get I ( f ) ⊆ I (e).Therefore, I (e) = I ( f ). According to
[22, Corollary 6.10], E(M) = ⋃

x∈G x−1E(T )x . So

R ker(M) =
⋂

e∈�

I (e) =
⋂

e∈�0

I (e),

where �0 = {e ∈ � | e is primitive}. �

Remark 3.7 (i) For an irreducible linear algebraic monoid M with unit group G, if
e ∈ E(M) such that theJ -class Je of M is completely regular, then by the proof
of Proposition 5.8,

I (e) = {a ∈ M | a � e} = {a ∈ M | dete(a) = 0},

and I (e) is the union of some irreducible components of the non-units of M . In
particular, if M is solvable with zero, then for any e ∈ E(M), theJ -class Je of
M is completely regular by [22, Corollary 6.32]. Hence following Corollary 3.6,
we obtain that

R ker(M) = {a ∈ M | detei (a) = 0, 1 ≤ i ≤ n},

Where {ei | 1 ≤ i ≤ n} are the set of all primitive idempotents of E(T ) for a
maximal torus T of G.

For example, let M be the set of all upper triangular matrices in M3(K ), i.e.,

M=
⎛

⎝
K K K
0 K K
0 0 K

⎞

⎠ :=
⎧
⎨

⎩

⎛

⎝
a1 b1 c
0 a2 b2
0 0 a3

⎞

⎠ | ai , b j , c∈K , 1≤ i ≤3, 1≤ j ≤2

⎫
⎬

⎭ .
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10 J. Li

Then ker(M) = {0}, and the Schwarz radical of M ,R ker(M)=
⎛

⎝
0 K K
0 0 K
0 0 0

⎞

⎠ .

Choose

e1 =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , e2 =
⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ , e3 =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ .

Thus

I (e1) =
⎛

⎝
0 K K
0 K K
0 0 K

⎞

⎠ , I (e2) =
⎛

⎝
K K K
0 0 K
0 0 K

⎞

⎠ , I (e3) =
⎛

⎝
K K K
0 K K
0 0 0

⎞

⎠ .

So

R ker(M) =
⋂

1≤i≤3

I (ei ).

Note that the ei s are primitive idempotents of M , and the I (ei )s are exactly the
irreducible components of the set of all non-units of M .

(ii) Even thought the Schwarz radical of any linear algebraic semigroup is closed
which is showed in Proposition 3.5, it may not be irreducible. Let

M =
{
a ⊗ b | a, b ∈

(
K K
0 K

)}
, E12 =

(
0 1
0 0

)
.

Then the Schwarz radical of M ,R ker(M) = S1 ∪ S2, where

S1 =
{
a ⊗ E12 | a ∈

(
K K
0 K

)}
,

S2 =
{
E12 ⊗ b | b ∈

(
K K
0 K

)}
.

SoR ker(M) is reducible.

Now we discuss the properties of the minimal non-nilpotent ideals of linear
algebraic semigroups determined by primitive idempotents. We have the following
proposition which is similar to the result of [16, Theorem 1] in compact semigroups
with zero.

Proposition 3.8 Let S be a linear algebraic semigroup, e ∈ E(S). Then the following
are equivalent:

(i) e is a primitive idempotent of S;
(ii) the set eSe \ √

ker(S) is a group;
(iii) Se is a minimal non-nilpotent left ideal of S;
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On the radicals of linear algebraic monoids 11

(iv) eS is a minimal non-nilpotent right ideal of S;
(v) SeS is a minimal non-nilpotent ideal of S;
(vi) each idempotent in SeS \ ker(S) is a primitive idempotent of S.

Proof (i) �⇒ (ii): Assume that e is a primitive idempotent of S. Then we have
He ⊆ eSe\√

ker(S). Let a ∈ eSe\√
ker(S). Then am ∈ H f for some f ∈ E(eSe)

and some m ∈ Z
+. Since a /∈ √

ker(S), we have f /∈ E(ker(S)), which implies
f = e. Hence am ∈ He, and then a ∈ He. Therefore, the set eSe \ √

ker(S) = He

is the maximal subgroup of S containing e.
(ii) �⇒ (iii): Assume (ii) and that Il is a left non-nilpotent ideal of S contained

in Se. We claim that there exists an idempotent f ∈ E(Il) \ E(ker(S)). Since
S is a linear algebraic semigroup, Il is a non-nil ideal of S. Thus there exists
x ∈ Il \ √

ker(S). But by [22, Theorem 3.18], there exist f ∈ E(S) and m ∈ Z
+

such that xm ∈ H f ∩ Il . So there exists y ∈ S such that yxm = f ∈ Il ,
since Il is a left ideal of S. Since x /∈ √

ker(S) and xm ∈ H f , we have f /∈
E(ker(S)). Now f ∈ Se, implying f = f e. Then e f = e f e f ∈ E(eSe). Since
f e f = f /∈ E(ker(S)), e f /∈ E(ker(S)). Since eSe \ √

ker(S) is a group and
e f ∈ E(eSe \ √

ker(S)), e = e f ∈ Il . Hence Il = Se.
(iii) �⇒ (v): Suppose I is a non-nilpotent ideal of S contained in SeS. Then I is

a non-nil ideal of S, as S is a linear algebraic semigroup. Thus there exist x ∈
I \√

ker(S) andm ∈ Z
+ such that xm ∈ H f ∩ I for some f ∈ E(S)\E(ker(S)).

So there exists some y ∈ S such that f = yxm ∈ I ⊆ SeS. Hence there exist
a, b ∈ S such that f = aeb. Let g = b f ae ∈ I . Then g2 = b f aeb f ae =
b f ae = g ∈ E(Se). Since f /∈ E(ker(S)) and f = aegb, g /∈ E(ker(S)).
By the minimality of Se, we have Se = Sg. Thus SeS = SgS ⊆ I , implying
I = SeS

(v) �⇒ (i): Assume (v). If e were not primitive, there would exist f ∈ E(eSe) \
E(ker(S)) such that e 	= f . Thus S f S in a non-nilpotent ideal of S contained
in SeS. By the minimality of SeS, S f S = SeS. Hence f ∈ eSe ∩ Je. By [22,
Theorem 1.4(iii)], eSe ∩ Je = He. Then f = e, a contradiction. Therefore, e is
a primitive idempotent of S;

The result (vi) ⇐⇒ (i) follows from (v) ⇐⇒ (i). And by symmetry, we finish
the proof. �

In a similar way in [6, Theorem 1.1] and by Proposition 3.8, we have the following
proposition.

Proposition 3.9 Let S be a linear algebraic semigroup and let I be a minimal non-
nilpotent ideal of S. Then any proper ideal of I is nilpotent. In particular, there exists
a primitive idempotent e ∈ E(S) such that I = SeS.

Proof Note that the kernel of I is equal to ker(S) by [25]. Let A be a proper ideal
of I . Suppose (by way of contradiction) A is not a nilpotent ideal of I with respect
to ker(S). Then I AI is a two-sided ideal of S contained in I , and I AI ⊆ A � I .
By the minimality of I , I AI is a nilpotent ideal of S, and thus I AI ⊆ R ker(S).
Then (I A)2 = I AI A ⊆ R ker(S)A ⊆ R ker(S). So I A is a nilpotent left ideal of S.
Similarly, AI is a nilpotent right ideal of S.
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12 J. Li

Now, SAS is a two-sided ideal of S contained in I . By the minimality of I , we
have that SAS is a nilpotent ideal of S or SAS = I . In either event, since I A is
nilpotent, we have that (SA)2 = SASA is nilpotent. Hence SA is a nilpotent left
ideal of S. Therefore, SA ⊆ R ker(S). Thus there exists some m ∈ Z

+ such that
(SA)m ⊆ ker(S). So A2m = (A · A)m ⊆ (S · A)m ⊆ ker(S). Hence A is a nilpotent
ideal of I , a contradiction. Therefore, we have that any proper ideal of I is nilpotent.

Since I is non-nilpotent, I is non-nil, and thus there exists a ∈ I such that a /∈√
ker(S). By [22, Theorem 3.18], there exist some n ∈ Z

+ and e ∈ E(S) such that
an ∈ He. Clearly, e /∈ E(ker(S)). Hence there exists b ∈ S such that e = anb, which
implies e ∈ E(I ) \ E(ker(S)). So SeS is a non-nilpotent ideal of S contained in I ,
which implies SeS = I . By Proposition 3.8, e is a primitive idempotent of S. �

4 The structure of linear algebraic monoids in terms of Schwarz radical
data

For an irreducible linear monoid M , it is easy to see that

ker(M) ⊆ R ker(M) ⊆ √
ker(M).

In the Sect. 4.1, we give a characterization of the condition that ker(M) = R ker(M).
And in the Sect. 4.2, we give a characterization of the condition that R ker(M) =√
ker(M).

4.1 Completely regularity and regularity conditions

Theorem 4.1 Let M be an irreducible linear algebraic monoid. Then the following
are equivalent:

(i) M is completely regular;
(ii)

√
ker(M) = ker(M);

(iii) {a ∈ M | ai = f for some i ∈ Z
+} ⊆ f G f for every f ∈ E(ker(M)).

Proof (i) �⇒ (ii). Suppose M is completely regular and a ∈ √
ker(M). Then there

exists f ∈ E(ker(M)) such that a ∈ H f . Hence a ∈ ker(M) as H f ⊆ ker(M). So√
ker(M) = ker(M).
(ii) �⇒ (iii). Assume that

√
ker(M) = ker(M). Let f ∈ E(ker(M). If ai = f

for some i ∈ Z
+, then a ∈ √

ker(M), and thus a ∈ ker(M). So there exists e ∈ E(M)

such that a ∈ He. Then ai = f ∈ He which implies e = f . Therefore, a ∈ H f . By
Theorem 2.2, we have that H f = f G f . Therefore, a ∈ f G f .

(iii) �⇒ (i). Suppose (iii) holds. For any f ∈ E(ker(M), if a is a nilpotent
element of M f , then ai = f for some i ∈ Z

+. Thus a ∈ f G f ∩ M f = { f },
then a = f . This shows that M f has no non-zero nilpotent elements, hence by [22,
Theorem 5.12], M f is completely regular. Following [22, Theorem 7.4], we obtain
that M is regular. Moreover, by[18, Theorem 3.7], E(M f ) = {e ∈ E(M) | e ≥ f } is
finite. Therefore, M is completely regular following [20, Theorem 3.10]. �
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Theorem 4.2 Let M be an irreducible linear algebraic monoid. Then M is regular
if and only if the Schwarz radical of M is completely simple (i.e., R ker(M) =
ker(M)).

Proof By [22, Theorem 3.15], M is isomorphic to a closed submonoid of Mn(K ) for
some n ∈ Z

+, thus
√
ker(M) = {a ∈ M | an ∈ ker(M)}. Suppose M is regular. For

any a ∈ R ker(M), there exists e ∈ E(M) such that MaM = MeM . So

e ∈ MeM = MaM ⊆ R ker(M),

which implies e ∈ R ker(M). Thus e = en ∈ ker(M). Therefore,

MaM = MeM = ker(M),

and then a ∈ ker(M). This prove that R ker(M) = ker(M).
Suppose R ker(M) = ker(M). Let G be the unit group of M . If M is not regu-

lar, then R(G) is not completely regular following [22, Theorem 7.4]. Hence, from
Theorem 4.1, there exist a ∈ R(G) and f ∈ E(ker(R(G)), such that an = f and
a /∈ f R(G) f .

Let x ∈ M . Then x ∈ B for some Borel subgroup B of G. Now a ∈ R(G) ⊆ B.
From [22, Corollaries 1.16, 1.17, 3.20], we have that for all b1, b2 ∈ B, b1 | b2
implies bn1 | bn2 . So a | ax implies an | (ax)n , i.e. f | (ax)n . But (ax)n | f
following f ∈ E(ker(R(G)) and E(ker(R(G)) ⊆ E(ker(M)). So fJ (ax)n . Thus
(ax)n ∈ ker(M), ax ∈ √

ker(M). This proves that aM ⊆ √
ker(M). Thus by Lemma

3.3, a ∈ R ker(M) = ker(M). Since an = f , we have f ∈ aM, f M ⊆ aM . But by
[9, Lemma 3(2)], aM is a minimal right ideal of M since a ∈ ker(M). So f M = aM ,
a ∈ f M . Similarly, a ∈ M f . Therefore, a ∈ f M f , and thus a ∈ f R(G) f , a
contradiction. So R(G) is completely regular, and hence M is regular.

Finally, by Proposition 3.5, R ker(M) is closed. Therefore, R ker(M) is a linear
algebraic semigroup which implies thatR ker(M) is an sπr -semigroup. Note that the
kernel of R ker(M) is just ker(M). Hence we have that R ker(M) = ker(M) if and
only ifR ker(M) is completely simple. �

4.2 The solvability condition

Theorem 4.3 Let M be an irreducible linear monoid with unit group G and e ∈
E(ker(M)). Then the following are equivalent:

(i) Ge is solvable;
(ii) |W (G)| = |W (He)|;
(iii) M is a semilattice of archimedean semigroups;
(iv)

√
ker(M) forms an ideal of M (i.e., R ker(M) = √

ker(M));
(v) U(M) is a relatively complement lattice.

Proof That (i) ⇐⇒ (iii) ⇐⇒ (v) follows from [20, Theorem 2.15]. Let T be
a maximal torus of G. By [22, Proposition 6.25] and [22, Theorem 6.16], we know
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14 J. Li

that |W (G)| = ω(e)|W (CG(e)| where ω(e) = |Je ∩ E(T )|, and |W (CG(e))| =
|W (Ge)| · |W (He)|. Since e ∈ E(ker(M)), we have ω(e) = 1, thus |W (G)| =
|W (CG(e)| = |W (Ge)| · |W (He)|. So (i) ⇐⇒ (ii).

By [22, Theorem 3.15],M is isomorphic to a closed submonoid ofMn(K ) for some
n ∈ Z

+, thus
√
ker(M) = {

a ∈ M | an ∈ ker(M)
}
.

If M is a semilattice of archimedean semigroups, by [22, Theorem 1.15], for every
a, b ∈ M , a | b implies a2 | bi for some i ∈ Z

+. Let a ∈ √
ker(M), b ∈ M .

since a | ab, we have an | (ab)n . Moreover, (ab)n | an following an ∈ ker(M). So
anJ (ab)n , ab ∈ √

ker(M). Similarly, ba ∈ √
ker(M). Hence MaM ∈ √

ker(M).
This proves that

√
ker(M) is an ideal of M , that is R ker(M) = √

ker(M). Thus
(iii) �⇒ (iv).

Nowwe clam that (iv) �⇒ (iii). SupposeR ker(M) = √
ker(M). Let J ∈ U(M)

such that J covers ker(M). By [19, Theorem 23, Remark 24], we just need to show
that ω(J ) = |J ∩ E(T )| = 1. Suppose ω(J ) > 1, then there exist e, f ∈ J ∩ E(T ),
such that e 	= f . By [22, corollary 6.8], there exists x ∈ G such that f = xex−1. Since
e, f ∈ E(T ), e f = f e ∈ E(M). So e f = f e ≤ e, f . But e f 	= e, e f 	= f . Thus
e f = f e ∈ E(ker(M)) as J covers ker(M). Then exex−1 = xex−1e ∈ E(ker(M)).
So exe, ex−1e ∈ ker(M). Hence

(ex)(ex) = (exe)x ∈ ker(M), (x−1e)(x−1e) = x−1(ex−1e) ∈ ker(M).

Therefore, ex, x−1e ∈ √
ker(M). Since

√
ker(M) is an ideal of M , e = (ex)(x−1e) ∈√

ker(M), which implies that e ∈ E(ker(M)), a contradiction. This shows thatω(J ) =
1. Therefore, M is a semilattice of archimedean semigroups. �
Corollary 4.4 Let M be an irreducible monoid with unit group G. Then G is solvable
if and only if

√
ker(M) forms an ideal of M and a maximal subgroup of ker(M) is

solvable.

Proof It is known that G is solvable if and only if |W (G)| = 1. Let e ∈ E(ker(M)).
From the proof of Theorem 4.3, we have that |W (G)| = |W (Ge)| · |W (He)|, and
|W (Ge)| = 1 if and only if

√
ker(M) forms an ideal of M . So G is solvable if and

only if
√
ker(M) forms an ideal of M and the subgroup He is solvable. �

5 On completely regular J -classes

It is known that the kernel of a linear algebraic semigroup S is a completely regular
J -class of S, and every completely regular J -class of S is completely simple (as a
semigroup). In this section, we generalize the results about the kernel to completely
regular J -classes of linear algebraic semigroups.

The following construction plays an important role in this section.
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On the radicals of linear algebraic monoids 15

Proposition 5.1 Let S be a linear algebraic semigroup. Let J ∈ U(S) be completely
regular and let SJ = {a ∈ S | aJ ⊆ J }. Then SJ is a linear algebraic semigroup with
kernel J . If S is irreducible, SJ is irreducible.

Proof By [22, Corollary 3.16], we can assume that S is a closed subsemigroup of
some Mn(K ). For any a, b ∈ SJ , abJ ⊆ aJ ⊆ J , so ab ∈ SJ , which implies SJ is
a semigroup. Since J is completely regular, J 2 ⊆ J , thus J ⊆ SJ . Let e ∈ E(J ).
Now we claim that SJ = {a ∈ S | dete(a) 	= 0}. Let a ∈ S such that eae ∈ J .
Then e | ea | eae | e, thus ea ∈ J . Then for any b ∈ J , we have eab ∈ J . So
ab | eab | b | ab, thus ab ∈ J which implies aJ ⊆ J . On the other hand, if b ∈ S
with bJ ⊆ J , then ebe ∈ J since J 2 ⊆ J . Hence we get eae ∈ J if and only if
aJ ⊆ J , i.e., SJ = {a ∈ S | dete(a) 	= 0}. Similarly, we have eae ∈ J if and only if
Ja ⊆ J . But by [22, Remark 3.23], we obtain that eae ∈ J if and only if dete(a) 	= 0.
So

SJ = {a ∈ S | Ja ⊆ J } = {a ∈ S | dete(a) 	= 0}.

Note that J is an ideal of SJ and J is completely simple, thus J is the kernel of S. Since
SJ = {a ∈ S | dete(a) 	= 0} which is open in S, SJ is a linear algebraic semigroup
with kernel J , and if S is irreducible, SJ is irreducible. �

Throughout this section, we use the notation SJ defined by

SJ = {a ∈ S | aJ ⊆ J },

for a linear algebraic semigroup S and a completely regular J -class J of S. Let
e ∈ E(SJ ). By [22, Remark 1.3(iii)], the H-class of e in S is equal to the H-class of
e in SJ . Moreover, if f ∈ E(S) with eL f in S, then e f = e, f e = f . Thus f ∈ SJ
and eL f in SJ . Therefore, we have that the two sets of idempotents of the L-class of
e in S and in SJ coincide. Similarly, the two sets of idempotents of the R-class of e
in S and in SJ coincide. Then applying the results of the structure of the kernel of S
described in [9] for SJ , it is easy to give the structure of completely regular J -classes
of S by the following two corollaries directly.

Corollary 5.2 Let S be a linear algebraic semigroup. Let J ∈ U(S) be completely
regular. Then

(i) J =
⋃

h∈E(J )

Hh;

(ii) for any e, f ∈ E(J ), He is isomorphic to H f as an algebraic group under the
morphism given by x �→ gx f for some g ∈ E(J ).

Corollary 5.3 Let S be a linear algebraic semigroup. Let J ∈ U(S) be completely
regular, and e ∈ E(J ). Then

(i) J = E(Le)HeE(Re);
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16 J. Li

(ii) under the Rees construction J = E(Le) × He × E(Re),

E(J ) =
{
( f, (g f )−1, g) | f ∈ E(Le), g ∈ E(Re)

}
,

which is isomorphic to E(Le) × E(Re) as an algebraic variety.

Theorem 5.4 Let M be an irreducible linear algebraic monoid with unit group G,
J ∈ U(M) and e ∈ E(J ). Then

dim J = 2 dimG + dim He − dimCr
G(e) − dimCl

G(e).

In particular, if J is completely regular,

dim J = dimG − dimGe.

Proof The algebraic group G ×G acts on M via left and right multiplication: (g, h) ·
x = gxh−1. From [22, proposition 6.1], we know that the orbit of the element e ∈
E(M) under this action is just the J -class of e, Je. Consider (G × G)e, the isotropy
subgroup of e under the action of G × G. Then

(G × G)e = {(x, y) ∈ G × G | xey−1 = e}
= {(x, y) ∈ G × G | xe = exe = eye = ey}.

Hence (G ×G)e is a closed subgroup of G ×G, which contained in Cr
G(e) ×Cl

G(e).
By [22, Theorem 6.16] and its proof, we have

Cr
G(e)e = eCl

G(e) = eCG(e) = He,

dimCr
G(e) = dimGr (e) + dim He, dimCl

G(e) = dimGl(e) + dim He,

and dimCG(e) = dimGe + dim He.

Let φ : (G × G)e → He × He, defined by (x, y) �→ (xe, ey). Obviously, φ is a
homomorphism of algebraic groups. Then

φ((G × G)e) = {(xe, ey) ∈ He × He | xe = ey}

is isomorphic to He as algebraic groups. Hence dim φ((G × G)e) = dim He. Note
that ker(φ) = Gr (e) × Gl(e). So

dim(G × G)e = dim φ((G × G)e) + dim ker(φ) = dim He + dimGr (e) + dimGl(e).

Since J is theG×G-orbit of e inM and (G×G)e is the isotropy subgroup of e, we have
dim J = dim(G×G)−dim(G×G)e = 2 dimG−dim He−dimGr (e)−dimGl(e) =
2 dimG + dim He − dimCr

G(e) − dimCl
G(e).
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On the radicals of linear algebraic monoids 17

If J is completely regular and e ∈ E(J ), then by Theorem 2.2, G = Cl
G(e)Cr

G(e).
Hence dimG = dimCl

G(e) + dimCr
G(e) − dimCG(e). So

dim J = dimG − dimCG(e) + dim He = dimG − dimGe.

�
If M is a linear algebraic monoid with unit group G, then the unit group of MJ

is exactly the unit group G of M . Hence we can study the structure of the algebraic
group G in term of the data of completely regular J -classes of M . By Theorem 2.2,
e ∈ E(R(G)) if only if Je is a completely regularJ -class of M . Then using the results
about the kernel [8, Theorem 2.1], [10, Theorem 5.5], [11, Proposition 2.3, Theorem
2.4], we obtain the followings directly.

Corollary 5.5 Let M be an irreducible linear algebraic monoid with unit group G,
and let e ∈ E(R(G)). Then

(i) dim R(G) = dim E(Je) + dim R(Ge) + dim R(eGe);
(ii) dim Ru(G) = dim E(Je) + dim Ru(Ge) + dim Ru(eGe).
(iii) G is reductive if and only if Ge and Je are both reductive groups.

Corollary 5.6 Let M be an irreducible linear algebraic monoid with unit group G,
and let e ∈ E(R(G)). Let P be a parabolic subgroup of G. Then

(i) P = CP (e)R(G) = CP (e)Ru(G);
(ii) P = CP (e) � Ru(G) if and only if Ge and He are both reductive groups;
(iii) if Ge is a reductive group and Je = E(Je), then P = Pe � Ru(G).

Now we want to generalize the results (Theorems 4.1, 4.2, 4.3) of the Schwarz
radical to the case in terms of a completely regular J -class J in an irreducible linear
algebraic monoid M . First, we give some properties of MJ .

Lemma 5.7 Let M be an irreducible linear algebraic monoid. Let J ∈ U(M) be a
completely regular J -class and e ∈ E(J ). Then a | e if and only if eae | e for any
a ∈ M.

Proof Let G be the unit group of M , and a ∈ M . If eae | e, then a | eae | e. So
we only need to prove that if a | e, then eae | e. Suppose a | e. It follows from [22,
Corollary 6.13] that a ∈ GMeG, and thus there exist x, y ∈ G and b ∈ Me such that
a = xby. Thus eae = exbye. And exbe = exeHe following Theorem 2.2. So exb | e
which implies exb ∈ J . Clearly, ye ∈ J . Since J is completely regular, J 2 = J .
Hence eae = exbye ∈ J and thus eae | e. �
Proposition 5.8 Let M be an irreducible linear algebraic monoid with unit group G,
and let J ∈ U(M) be a completely regular J -class, e ∈ E(J ). Let S = M \ G =
∪i∈I Si , where Si are the irreducible components of S. Then

MJ = {a | a ∈ M, a | e} = GMeG = M \ (∪i∈
Si ),

where 
 = {i ∈ I | for all a ∈ Si , a � e}.
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18 J. Li

Proof Given an element a ∈ M , by Lemma 5.7, we have a | e if and only if eae | e.
By the proof of Proposition 5.1, MJ = {a | a ∈ M, eae | e}. Hence

MJ = {a | a ∈ M, a | e} = GMeG

following [22, Corollary 6.13]. In particular,

a � e ⇐⇒ eae � e ⇐⇒ eae /∈ He ⇐⇒ dete(a) = 0.

Let I (e) = {a | a ∈ M, a � e}. Then I (e) = {a | a ∈ M, dete(a) = 0} and thus
M \ MJ = I (e).

If M = G, then S = ∅ and MJ = G. And if J = ker(M), then MJ = M .
Suppose M 	= G and J 	= ker(M). Now we claim that I (e) = ∪i∈
Si , where

 = {i ∈ I | for all a ∈ Si , a � e}. By [22, Theorem 3.15], we can assume
that M is a closed submonoid of some Mn(K ). Consider φ : M → K given by
φ(a) = dete(a) = det (eae + 1 − e). Thus I (e) = φ−1(0). By [22, Theorem 2.21],
the dimension of every irreducible component of I (e) is p− 1. Since J is completely
regular,ω(e) = 1. From Theorem 2.2, we have eGe is theH-class of e. Thus if a ∈ G,
then eae ∈ He, which implies a /∈ I (e). So I (e) ⊆ M \ G = S. Moreover, by [22,
Proposition 6.2], the dimension of every irreducible component of S is p − 1. Hence
every irreducible component of I (e) is also the irreducible component of S. Let S0 be
an irreducible component of S which satisfy that for any element a ∈ S0, a � e. Then
S0 ⊆ I (e). Hence I (e) = ∪i∈
Si . Therefore, MJ = M \ I (e) = M \ (∪i∈
Si ). �
Corollary 5.9 Let M be an irreducible submonoid of Mn(K ) with unit group G, and
let J ∈ U(M) be a completely regular J -class. Then

{
a ∈ M | an ∈ J } = {a ∈ MJ | an ∈ J

}
.

Proof If a ∈ M with an ∈ J . Let e ∈ E(J ). Then a | an | e. So a /∈ I (e). By
Proposition 5.8, a ∈ MJ . Hence {a ∈ M | an ∈ J } = {a ∈ MJ | an ∈ J }. �

For an irreducible linear algebraic monoid M with unit group G. Let J ∈ U(M) be
a completely regular J -class, we denote

√
J = {a ∈ M | ai ∈ J for some i ∈ Z

+}

andR(J ) = {a ∈ M | GaG ⊆ √
J }. By Proposition 3.4 and Corollary 5.9, it is easy

to see that the Schwarz radicalR ker(MJ ) of MJ is equal toR(J ). Moreover, J ,
√
J

and R(J ) are both affine variety. This is because MJ is an affine variety and J ,
√
J ,

R(J ) are both closed in MJ .
For an irreducible linear algebraic monoid M with unit group G, there is a natural

algebraic group G × G acts on M via left and right multiplication:

(g, h) · x = gxh−1 for g, h ∈ G and a ∈ M.

123
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From [22, Proposition 6.1], we know that the orbit of an element a ∈ M under this
action is just the J -class of a, Ja . Now we can give a generalization of the results in
Sect. 4 in the language of linear algebraic group actions.

Corollary 5.10 Let M be an irreducible linear algebraic monoid with unit group G,
and let J ∈ U(M) be a completely regular J -class, e ∈ E(J ). Then

(i) Ge is reductive if and only if J is the unique G × G-stable affine subvariety of
M contained in

√
J (i.e., R(J ) = J );

(ii) Ge is solvable if and only if
√
J is a G × G-stable affine subvariety of M

(i.e., R(J ) = √
J )

Proof Let MJ = {a ∈ M | aJ ⊆ J }. By Proposition 5.1, MJ is an irreducible linear
algebraic monoid with kernel J . Obviously, the unit group of MJ is G. Moreover,
as we see above, the radical of the kernel of MJ is equal to

√
J , and R ker(MJ ) =

RMJ (J ) = R(J ). By [22, Theorem 7.4], MJ is regular if and only if Ge is reductive
since e ∈ E(J ). Apply Theorems 4.2 and 4.3 for MJ , we have Ge is reductive
if and only if R(J ) = J , and Ge is solvable if and only if R(J ) = √

J . Since
R(J ) = {a ∈ M | GaG ⊆ √

J } and J is the G ×G-orbit of e in M , we have that that
R(J ) = J is equivalent to that J is the unique G × G-stable affine subvariety of M
contained in

√
J , and R(J ) = √

J is equivalent to that
√
J is a G × G-stable affine

subvariety of M . �
As an immediate consequence of Corollary 5.5(iii), 5.10 and [22, Proposition 6.25]

we have,

Corollary 5.11 Let M be an irreducible linear algebraic monoid with unit group G,
let J ∈ U(M) be a completely regular J -class. Then

(i) G is reductive if and only if J is both a reductive group and the unique G × G-
stable affine subvariety of M contained in

√
J ;

(ii) G is solvable if and only if
√
J is a G × G-stable affine variety and a maximal

subgroup of J is solvable.

Remark 5.12 Let M be an irreducible solvable linear algebraic monoid. Since M is
an sπr -semigroup, it is easy to verify that

M =
⋃

J∈U(M)

√
J ,

which is a semilattice of
√
J (J ∈ U(M)), and every

√
J is an archimedean semigroup

and a nil extension of the completely simple semigroup J .
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