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1 Introduction

The study of ends in group theory has been extensive and has hadwidespread influence.
Stallings’ Theoremcharacterising groupswithmore than one end has been used in such
varied topics as distance-transitive graphs [13], groupswith context-freeword problem
[14], pursuit-evasion problems in infinite graphs [17] and to describe accessible groups
[5]. This paper follows the trend of relating geometric properties of semigroups to
algebraic properties, see for example [8,16] and [11]. We consider the notions of ends
for a semigroup and try to recover some basic theorems from the theory of ends of
groups. In the case of a finitely generated group, the ends of the group are defined
to be the ends of the Cayley graph of G with respect to the generating set A. This
definition is invariant under change of finite generating set A. For a full definition for
ends of graphs see [4]. In particular, the paper will focus on generalising the following
theorems for semigroups.

Theorem 1.1 [9, Satz IV] Let G be an infinite finitely generated group and let H be
a subgroup of finite index. Then the number of ends of H is the same as the number
of ends of G.

Theorem 1.2 [9, Satz II] An infinite finitely generated group has 1, 2 or 2ℵ0 ends.

In this paper we consider the definition of the ends of a digraph introduced by
Zuther in [21] and apply it to the left and right Cayley graphs of a semigroup.

In [10] Jackson and Kilibarda introduce a definition for the number of ends of a
semigroup.Their definition is based on the number of ends of the underlying undirected
Cayley graph associated with a finitely generating semigroup. Jackson and Kilibarda
prove that the number of ends of a semigroup is invariant under change of finite
generating set and provide examples of semigroupswith n ends in the left Cayley graph
andm ends in the right Cayley graph for any prescribed positive integers n andm. In a
follow up paper [12] some of the authors of this paper, together with Malcev, used the
definition of Jackson and Kilibarda to investigate the relationship between the number
of ends when considering subsemigroups of finite index. It was demonstrated that the
number of ends was invariant under taking subsemigroups of finite Rees index. Also,
the number of ends was shown to be invariant under taking subsemigroups of finite
Green index when restricted to the class of cancellative semigroups. These notions of
index are defined later in the paper.

We argue that although there are many ways to generalise the notion of ends to a
semigroup; by preserving the notion of direction there is a greater chance of interre-
lating the algebraic structure and the ends.

In the remainder of this section we introduce the relevant definitions and technical
results required to prove our main theorems. In Sect. 2, we prove that the structure of
the ends of a semigroup is invariant under change of finite generating set and at the
same time is inherited by subsemigroups and extensions of finite Rees index. In Sect.
3, we prove an analogue of Hopf’s Theorem, stating that an infinite group has 1, 2 or
infinitely many ends, for left cancellative semigroups and that the cardinality of the
set of ends is invariant in subsemigroups and extensions of finite Green index in left
cancellative semigroups.
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332 S. Craik et al.

In this paper we will use the notation N to denote the set of positive integers and
N0 to denote the set of non-negative integers.

Let � be any set and let � ⊆ � × �. We will refer to � as a digraph on �, the
elements of � as the vertices of �, and the elements of � as edges. A walk in � is
just a (finite or infinite) sequence (v0, v1, . . .) of (not necessarily distinct) vertices
such that (vi , vi+1) ∈ � for all i . An anti-walk is a sequence (v0, v1, . . .) of (not
necessarily distinct) vertices such that (vi+1, vi ) ∈ � for all i . For a walk or anti-walk
α = (α0, α1, . . .) in�wemaywrite {α} for the set {α0, α1, . . .} of verticeswhich occur
in α. A path in � is just a walk consisting of distinct vertices. If α = (α0, α1, . . . , αn)

is a walk in �, then the length of α is n and it is straightforward to verify that α

contains a path from α0 to αn . A ray in � is just an infinite path (v0, v1, . . .) such
that (vi , vi+1) ∈ � for all i and an anti-ray is an infinite path (v0, v1, . . .) such that
(vi+1, vi ) ∈ � for all i . If α = (α0, α1, . . . , αm) and β = (β0, β1, . . . , βn) are
arbitrary finite sequences of vertices from �, then we denote by α�β the sequence
(α0, α1, . . . , αm, β0, β1, . . . , βn).

The out-degree of a vertex α in a digraph � is just |{β ∈ � : (α, β) ∈ �}|. A
digraph � is out-locally finite if every vertex has finite out-degree.

If � ⊆ �, then � ∩ (� × �) is the induced subdigraph of � on �. If � and �′
are infinite subsets of �, then we write �′ � � if there exist infinitely many disjoint
paths (including paths of length 0) in � with initial vertex belonging to � and final
vertex belonging to �′. It is straightforward to verify that � is reflexive on infinite
subsets of � but not necessarily transitive, symmetric, or anti-symmetric. However, it
was shown in [21] that if � is restricted to the set of rays and anti-rays on �, then it is
transitive, and hence a preorder. Let r and r′ be rays or anti-rays. If r � r′ and r′ � r,
then we write r ≈ r′. It follows that ≈ is an equivalence relation and � induces a
partial order on ≈-classes of rays and anti-rays. As such we refer to rays and anti-rays
as being equivalent if they belong to the same ≈-class; and inequivalent otherwise.
We denote this poset by ��, and as in [21] we refer to ≈-classes of rays and anti-rays
as the ends of �. Note that an equivalence class can contain both rays and anti-rays.

In this paper the direction of � is the reverse of that in [21]. That is, for rays r1
and r2, if there are infinitely many disjoint paths with initial vertex r1 and final vertex
in r2 then the notation in [21] would be r1 � r2 whereas in this paper the notation
would be r2 � r1. The reason for this alteration is to reflect that the set of vertices that
can be reached by a path from r1 contains the set of vertices that can be reached by
a path from a cofinite set of vertices of r2. Readers should note that by reversing the
direction of � the properties of anti-symmetry and transitivity are preserved.

Zuther’s definition is a generalisation of the definition of ends introduced by Halin
in [7]. When restricted to graphs Zuther’s definition and Halin’s definition coincide.
The definition of ends used by Hopf in [9] is given in terms of connected compo-
nents of complements of ascending sequences of compact subsets of a topological
space. Initially this may appear to be quite different from the definition introduced by
Zuther. However, when restricted to the case of locally finite graphs there is a natural
bijection between the set of ends considered by Hopf and the equivalence classes of
rays under Halin’s definition. In particular, for locally finite graphs and therefore for
Cayley graphs of finitely generated groups the cardinality of the set of ends under the
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Ends of semigroups 333

topological and graph-theoretical definitions remain the same. For a detailed proof of
this correspondence see [4, Sect. 8.5].

We finish this section with some technical results which will be needed later.

Lemma 1.3 Let � be a digraph on � and let α = (α0, α1, . . .) be an infinite walk
(or anti-walk) in � such that every vertex of α occurs only finitely many times. Then
α contains a ray r (or anti-ray, respectively) such that r has infinitely many disjoint
paths to every infinite subset of {α0, α1, . . .}, and every infinite subset of {α0, α1, . . .}
has infinitely many disjoint paths to r.

Proof We prove that α contains a ray in the case that α is a walk; an analogous
argument proves that α contains an anti-ray in the case that it is an anti-walk.

Let a(0) = 1 and for every i ≥ 1 define a(i) = max{ j ∈ N : α j = αa(i−1)} + 1,
i.e. αa(i)−1 is the last appearance of αa(i−1) in α. We will show that

r = (αa(0), αa(1), . . .)

is the required ray. Since (αi , αi+1) ∈ � for all i , in particular, (αa(i−1), αa(i)) =
(αa(i)−1, αa(i)) ∈ �. Hence r is an infinite walk where αa(i) 	= αa( j) for all i, j ∈ N

such that i 	= j and so r is a ray.
Let � be any infinite subset of {α0, α1, . . .}. If infinitely many elements in � are

vertices of r, then r � � and � � r. If only finitely many elements of � belong to r,
then � \ {r} � � and � � � \ {r} and so we may assume without loss of generality
that � contains no elements in {αa(0), αa(1), . . .}.

We define infinitely many disjoint paths from � to r by induction. Let b(0) ∈ N

be any number such that αb(0) ∈ �. Then there exists k(0) ∈ N such that a(k(0)) ≤
b(0) < a(k(0) + 1) and β0 := (αa(k(0)), αa(k(0))+1, . . . , αb(0), . . . , αa(k(0)+1)) is a
walk from αa(k(0)) in r to αa(k(0)+1) in r via αb(0) ∈ �. Since every finite walk
contains a path, we conclude that there is a path contained in β0 from a vertex of r to
αb(0) ∈ � and a path back from αb(0) to a vertex of r.

Suppose that we have defined the values b(0), . . . , b(i−1), k(0), . . . , k(i−1) ∈ N

and finite walks β0,β1, . . . ,β i−1 for some i ≥ 1. Choose k(i), b(i) ∈ N so that
b(i) > a(k(i)), α j does not equal any vertex in any of β0,β1, . . . ,β i−1 for all
j > a(k(i)), and αb(i) ∈ �. Then we define

β i = (αa(k(i)), αa(k(i))+1, . . . , αb(i), . . . , αa(k(i)+1)).

By construction, if i 	= j , then β i and β j are disjoint and so we have infinitely
many disjoint paths (contained in the β i ) from r to � and back, as required. ��
Lemma 1.4 Let � be an out-locally finite digraph on a set X and let w0, w1, . . . be
finite walks of bounded length in � with distinct final vertices. Then every vertex in

the sequence w�
0 w�

1 . . . occurs only finitely many times.

Proof Let K ∈ N be a bound on the lengths of w0, w1, . . .. If a vertex v occurs in
infinitely many of w0, w1, . . ., then the set B of vertices that can be reached from
v by a path of length at most K contains the final vertex of wi for infinitely many
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i ∈ N. But the final vertices of the wi are distinct and so B is infinite, contradicting
the assumption that � is out-locally finite. ��
Lemma 1.5 Let � be an out-locally finite digraph on �, let � ⊆ � be infinite and
let α0 ∈ � such that there is a path from α0 to every β ∈ �. Then there exists a ray r
in � starting at α0 such that � � r.

Proof We construct r recursively. Start by setting �0 := � and let P0 be a set con-
taining precisely one path qβ from α0 to β for all β ∈ �0. Then, since α0 has finite
out-degree and there is a path in P0 from α0 to every β ∈ �0, there exists a vertex γ0
such that (α0, γ0) ∈ � and there is a path qβ ∈ P0 from α0 via γ0 to every β in the
infinite subset �1 ⊆ �0.

Let β1 ∈ �1 be fixed and also fix a path

p1 = (δ1 = α0, δ2 = γ0, δ3, . . . , δn−1, δn = β1).

Let P1 = {qβ ∈ P0 : β ∈ �1}. If β ∈ �1 is arbitrary and qβ ∈ P1, then there
exists i(β) ∈ N such that δi(β) is the last vertex belonging to both the paths p1 and
qβ . The number i(β) exists since, in particular, both paths go through γ0. For each
β ∈ �1 we have 2 ≤ i(β) ≤ n. If {β ∈ �1 : i(β) = m} is finite for all 2 ≤ m ≤ n
then �1 would be finite. Hence, there exists m ∈ N such that 2 ≤ m ≤ n and
�2 = {β ∈ �1 : i(β) = m} is infinite. Set α1 = δm . Since m ≥ 2, α1 	= α0 and,
by construction, there is a path from α1 to every element β of the infinite set �2
(consisting of the vertices between α1 and β in qβ ∈ P1) such that the only vertex in
p1 and this path is α1. Set P2 to the set of paths from α to β ∈ �2 from the previous
sentence.

We may repeat the above process ad infinitum to obtain for all i > 0: βi+1 ∈ �2i+1
and a path pi+1 ∈ P2i+1 from αi to βi+1, an αi+1 in pi+1, an infinite �2i+2 ⊆ �2i+1
and an infinite set P2i+2 of paths from αi+1 to every element of �2i+2 such that the
only vertex in pi+1 and any path in P2i+2 is αi+1.

Hence there is a walk r containing {αi : i ∈ N} consisting of the vertices on the
paths pi+1 between αi and αi+1. In fact, by construction, the only vertex on both pi
and pi+1 is αi+1, and so the walk r is a ray. Moreover, there are infinitely many paths
from r to � consisting of the remaining vertices on pi+1 between αi+1 and βi+1.
Again by construction the only vertex on both pi and pi+1 is αi+1 and so the paths
from αi+1 ∈ r to βi+1 ∈ � are disjoint. ��

2 The ends of a semigroup

Throughout this section, we let S be a finitely generated semigroup and let A be any
finite generating set for S. The right Cayley graph �r (S, A) of S with respect to A is
the directed graph with vertex set S and edges (s, sa) ∈ �r (S, A) for all s ∈ S and for
all a ∈ A. We refer to a as a label of the edge (s, sa). The left Cayley graph �l(S, A)

is defined dually.
If S is a semigroup, then the dual S∗ of S is just the set S with multiplication ∗

defined by x ∗ y = yx for all x, y ∈ S. It follows directly from the definition that
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�l(S, A) = �r (S∗, A). Therefore to understand the end structure of semigroups, it
suffices to study right Cayley graphs only.

We require the following lemma to prove the results in this section.

Lemma 2.1 Let S be a semigroup, let T be a subsemigroup of S generated by a finite
set A, and let s ∈ S. Suppose that |〈T, s〉 \ T | = n ∈ N. Then there exists N ∈ N such
that for all b1, b2, . . . , bn ∈ A ∪ {s} if s, sb1, . . . , sb1 . . . bn are distinct, then there
exists i ≤ n and a1, a2, . . . , a j ∈ A such that j ≤ N and sb1 . . . bi = a1 . . . a j .

Proof Let X := {sc1c2 . . . ci ∈ T : c j ∈ A ∪ {s}, 1 ≤ i ≤ n}. Then X is finite
and so there exists N ∈ N such that every element of X can be given as a product of
elements of A of length at most N . By the pigeonhole principle, there exists i such
that sb1 . . . bi ∈ T and hence sb1 . . . bi ∈ X . It follows that there exist a1, . . . , a j ∈ A
such that j ≤ N and sb1 . . . bi = a1 . . . a j , as required. ��
Proposition 2.2 Let S be a semigroup, let T be a subsemigroup of S generated by a
finite set A, and let s ∈ S. If 〈T, s〉 \ T is finite, then ��r (T, A) is isomorphic (as a
partially ordered set) to ��r (〈T, s〉, A ∪ {s}).
Proof For the sake of brevity, we denote �r (〈T, s〉, A∪{s}) by �. We use� to denote
the preorder defined above on the rays and anti-rays of �. We prove the proposition
in two steps. The first step is to show that every ray or anti-ray in � is equivalent to
a ray or anti-ray with vertices in T and edges labelled by elements of A. The second
step is to show that if r and r′ are rays or anti-rays with vertices in T , edges labelled
by elements of A, and r � r′, then there exist infinitely many disjoint paths from r′ to
r with edges labelled by elements of A. So, the first step ensures that every end ω of
�, contains a ray or anti-ray rω with vertices in T and edges labelled by elements of
A. The second step implies that the mapping 
 : �� −→ ��r (T, A) defined so that

(ω) equals the end of ��r (T, A) containing rω is an isomorphism. We only give
the proof of these steps for rays, an analogous argument can be used for anti-rays.

Let U = 〈T, s〉 \ T , let n = |U |, and let r = (x, xb1, xb1b2, . . .) be a ray in �

for some b1, b2, . . . ∈ A ∪ {s} and x ∈ 〈T, s〉. Since U is finite, only finitely many
elements of r can lie in U , and so we may assume without loss of generality that
x, xb1, xb1b2, . . . ∈ T . If bi 	= s for all i , then there is nothing to prove.

If bk is the first occurrence of s in {b1, b2, . . .}, then since the vertices of r are
distinct so are the elements bk, bkbk+1, . . . , bkbk+1 . . . bk+n . Hence by Lemma 2.1
there exist i, N ∈ N and a1, a2, . . . , a j ∈ A such that j ≤ N and bkbk+1 . . . bk+i =
sbk+1 . . . bk+i = a1 . . . a j . Hence

w0 = (xb1 . . . bk−1, xb1 . . . bk−1a1, . . . , xb1 . . . bk−1a1 . . . a j )

is a walk in � with vertices in T and edges labelled by elements of A. We repeatedly
apply Lemma 2.1 to successive occurrences of s in {b1, b2, . . .} to obtain finite walks
w1, w2, . . . with vertices in T and edges labelled by elements of A. The length of wi

is bounded by N for all i ∈ N and the final vertices are distinct, and hence by Lemma
1.4 every vertex in the sequence w�

0 w�
1 . . . occurs only finitely many times. Let w

be the walk obtained by replacing the subpaths of r by the wi . Every vertex of w not
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in some wi occurs only once, since r is a ray. Hence every vertex of w occurs only
finitely many times, and so by Lemma 1.3 there is a subray r′ of w such that r ≈ r′,
as required.

For the second step of the proof, let r and r′ be rays in � with vertices in T , edges
labelled by elements of A, and r � r′. Since r � r′, there exist infinitely many disjoint
paths in � from r′ to r. We may assume without loss of generality that there are at
least n vertices in each of these paths after the last occurrence of s as an edge label.
Hence, by repeatedly applying Lemma 2.1, there exists N ∈ N and infinitely many
paths from r′ to r labelled by elements of A. Moreover, there is a path of length at
most N from every element in one of the new paths to some element in the original
path it was obtained from by applying Lemma 2.1. If infinitely many of these new
paths are disjoint, then there is nothing to prove. Otherwise infinitely many of these
paths have non-empty intersection with a finite subset of T , and so infinitely many
paths contain some fixed element t ∈ T . Hence there are paths of length at most N
from t to infinitely many vertices in the original paths, which contradicts the out-local
finiteness of �. ��
Corollary 2.3 Let S be a finitely generated semigroup and let A and B be any finite
generating sets for S. Then ��r (S, A) is isomorphic (as a partially ordered set) to
��r (S, B).

Proof It suffices to show that��r (S, A) is isomorphic to��r (S, A∪{s}) for any s ∈
S, since then��r (S, A) is isomorphic to��r (S, A∪ B) is isomorphic to��r (S, B),
as required. Certainly S is a finitely generated subsemigroup of S such that 〈S, s〉\ S is
finite, and so it follows by Proposition 2.2 that��r (S, A) is isomorphic to��r (S, A∪
{s}), as required. ��

Following from Corollary 2.3 we define�S = ��r (S, A) for any finite generating
set A of S. We refer to �S as the ends of S.

It is easy to see that adjoining an identity to a semigroup will not change the
cardinality of the set of ends, ie |�S| = |�S1|. For a formal proof of this see Corollary
2.4. Hence, when considering the cardinality of the set of ends of a semigroup we may
always assume that the semigroup is a monoid. In addition when considering the ends
of an infinite finitely generated group G (under Zuther’s definition) we have from
Corollary 2.3 that for any finite semigroup generating set A for G the set of ends of
�r (S, A) is isomorphic to the set of ends of �r (S, A ∪ A−1). As the generating set
A∪ A−1 is closed under taking inverses the digraph �r (S, A∪ A−1) is in fact a graph.
Also, as the degree of each vertex in the graph is at most 2|A| the graph is locally
finite. Hence, when considering the cardinality of the set of ends of a group we are
justified in using Hopf’s theorems.

Note that if S is an infinite finitely generated group, then it follows by Hopf’s
Theorem [9, Satz II] that the ends of S form an anti-chain with 1, 2, or 2ℵ0 elements.

In Sect. 5 we give examples of finitely generated semigroups with any finite number
or ℵ0 ends (Examples 5.5, 5.3). Any group with 2ℵ0 group ends will also have 2ℵ0

ends as a semigroup. It is easy to see that the free monoid on two generators will have
2ℵ0 ends as all pairs of rays are incomparable. It is not known whether, in the absence
of the Continuum Hypothesis, there exists a finitely generated semigroup S such that
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�S has κ elements where ℵ0 < κ < 2ℵ0 . The question of which posets can occur as
the partial order of ends �S of some finitely generated semigroup S is unresolved.

If S is a semigroup and T is a subsemigroup of S, then the Rees index of T in S is
just |S \ T | + 1.

Corollary 2.4 Let S be a finitely generated semigroup and let T be a subsemigroup
of S of finite Rees index. Then the partial order �S of the ends of S is isomorphic to
the partial order �T of the ends of T .

Proof Since S is finitely generated, it follows by [18, Theorem 1.1], that T is finitely
generated. Let A be any finite generating set for T and let s ∈ S \ T be arbitrary.
Then 〈T, s〉 \ T ⊆ S \ T and so 〈T, s〉 \ T is finite. It follows from Proposition 2.2
that ��r (T, A) is isomorphic ��r (〈T, s〉, A ∪ {s}), and hence �T is isomorphic to
�〈T, s〉. Since T � 〈T, s〉 ≤ S, by repeating this process (at most |S \ T | times) we
have shown that �S is isomorphic to �T . ��

3 The number of ends of a left cancellative semigroup

In this section we prove that the right Cayley graph of a left cancellative semigroup
can only have a restricted number of ends, unlike the general case (see Proposition
5.5).

A semigroup S is left cancellative if x = y whenever ax = ay where a, x, y ∈ S.
Right cancellative is defined analogously. A semigroup is cancellative if it is both left
and right cancellative.

A left or right cancellative monoid contains only one idempotent (the identity).
A left cancellative semigroup contains at most one idempotent in every L-class, and
the analogous statement holds for right cancellative semigroups. The structure of a
cancellative semigroup S is straightforward to describe: either S isR- trivial or S is a
monoid with group of units G, every R-class is of the form xG, and every L-class is
of the form Gx for some x ∈ S (see for example [15]). We start this section by giving
an analogous description of the structure of a left cancellative semigroup. It is possible
to deduce these results from [19] although they are not couched in this notation, and
so we include a proof for the sake of completeness.

A right group is the direct product of a group G and right zero semigroup E .

Theorem 3.1 [3, Theorem 1.27] A semigroup is a right group if and only if it is left
cancellative and R-simple.

Proposition 3.2 Let S be a left cancellative semigroup and let U be the set of regular
elements in S. Then:

(i) S \U is an ideal (in the case when S is a group it is empty);
(ii) if U is non-empty, then U is a right group;
(iii) if x ∈ S has non-trivial R-class Rx , then Rx = xU;
(iv) if x ∈ S is arbitrary and U is non-empty, then xU is an R-class of S (not

necessarily containing x).
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Proof Let x, y ∈ S and assume that xy is a regular element. It follows that there exists
z ∈ S such that xyzxy = xy. By cancelling we see that yzxy = y and hence y must be
a regular element. From yzxy = y we must have yzxyzx = yzx , again by cancelling
we see xyzx = x and hence x is also a regular element. This means that S \ U is an
ideal of S.

For the second part we assume thatU is non-empty. If S contains a regular element
then it contains an idempotent. Let e and f be idempotents in S. Then e2 f = e f
and f 2e = f e and so, by cancelling, e f = f and f e = e. Thus eR f and, since
every regular element is R-related to an idempotent, the regular elements of S are
contained in a single R-class of S. If x and y are regular, then there exists x ′ ∈ S
such that xx ′x = x and, since yRx ′, there exists z ∈ S such that yz = x ′. Hence
xyzxy = xx ′xy = xy and so xy is regular. Hence, U is a subsemigroup of S and by
part one S \ U is an ideal and so U is R-simple. It follows from Theorem 3.1 that U
is a right group

We now prove parts three and four together. Let x ∈ S and assumeU is non-empty.
Let e ∈ U be an idempotent. Then as all elements inU areR related xU is contained
within an R-class, say R. Let y be an element of R distinct from xe. Then there
exists s, t ∈ S such that xes = y and yt = xe. It follows that xest = xe and hence
xestst = xest . By cancelling (st)2 = st is an idempotent and as S \ U is an ideal
s, t ∈ U . This means that R = xU . If x lies in a non-trivial R-class then there exists
yRx such that y 	= x and there exists s, t ∈ S such that xs = y and yt = x . Then as
before we see that st is an idempotent and x = xst so x ∈ xU . ��
Lemma 3.3 A left cancellative semigroup S has either oneR-class or infinitely many
R-classes.

Proof We show that either S is regular or (x, x2) /∈ R for some x ∈ S. Suppose
that (x, x2) ∈ R for all x ∈ S. Then there exists s ∈ S1 such that x2s = x . Hence
x2st = xt and so (xs)t = t for all t ∈ S. Hence xs is a left identity for S and so xs
is an idempotent and xRxs. Thus S is regular and so by [3, Exercise 1.11.4] has only
one R-class. If there exists x ∈ S such that (x, x2) /∈ R, then (xi , x j ) /∈ R for all
i, j ∈ N such that i 	= j . Hence S has infinitely many R-classes. ��
Corollary 3.4 If S has infinitely manyR-classes at least one of which is infinite, then
it has infinitely many infiniteR-classes.

Proof Since there is at least one infinite R-class in S, that R-class is of the form yU
for some y ∈ S, and |yU | = |U | by left cancellativity, it follows that U is infinite.
From the proof of Lemma 3.3, there exists x ∈ S such that (xi , x j ) /∈ R for all
i, j ∈ N such that i 	= j . By Proposition 3.2, xiU is anR-class of S for all i ∈ N and
|xiU | = |U | and, in particular, xiU is infinite for all i ∈ N. It suffices to show that the
sets xiU are disjoint. Suppose to the contrary that xiU ∩ x jU 	= ∅ for some i, j ∈ N

with i < j . Then, by left cancellativity, x j−iU ∩ U 	= ∅ and so x j−i ∈ U since
S \ U is an ideal. Therefore infinitely many powers of x , namely, x j−i , x2 j−2i , . . .,
areR-related, contradicting our assumption. ��

Right groups are a special case of Rees matrix semigroups where |I | = 1 and
the multiplication matrix P consists of identity elements. Hence as a corollary to
Proposition 5.5 below we have.
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Corollary 3.5 Let G be a finitely generated group and let E be a finite right zero
semigroup. Then |�(G × E)| = |�G|.
Lemma 3.6 Let S be a finitely generated left cancellative semigroup with no infinite
R-classes. If the Cayley graph of S with respect to a finite generating set contains a
ray r and there is an s ∈ S such that there are paths from infinitely many points in r
to s, then �S is infinite.

Proof Let A be a finite generating set for S, let r = (r0, r1, . . .) be a ray in �r (S, A)

and let s ∈ S such that there are infinitely many paths from r to s. We may write r0 as
a product a1 . . . an of generators in A.

Assume, seeking a contradiction, that S has finitely many ends. Since S is left
cancellative, ri = (si , si a1, . . . , si a1 . . . an = sir0, si r1, . . .) is a ray for all i ∈ N.
Thus, by assumption, there exist i, j ∈ N such that i < j and ri ≈ r j . Again using
the left cancellativity of S, it follows that r j−i ≈ r and so there is a path from s j−i rk
to rl for some k, l ∈ N. There is a path from s to s j−i rk and hence to rl . But in this
case, rlRrl+1R . . . and so S has an infinite R-class, which is a contradiction. ��

The main results of this section are given below.

Theorem 3.7 Let S be an infinite finitely generated left cancellative semigroup. Then
|�S| = 1, 2 or |�S| ≥ ℵ0.

Proof If S has only oneR-class, then by [3, Theorem 1.27] it follows that S ∼= G× E
where G is a group and E is a right zero semigroup. Since S is finitely generated, it
follows that G is finitely generated and E is finite. Hence, by Corollary 3.5, |�S| =
|�G| and by Hopf’s Theorem [9, Satz I], |�G| = 1, 2 or 2ℵ0 .

Suppose that S has more than one R-class. Then Lemma 3.3 implies that S has
infinitely manyR-classes. If S contains an infiniteR-class then then by Corollary 3.4
S contains infinitely many infinite R-classes. As S is finitely generated every vertex
has finite out-degree. Let r be an element of an infiniteR-class R. Then there exists a
path from r to infinitely many elements of R. By Lemma 1.5, there exists a ray starting
at r that has paths to infinitely many elements of R. As r ∈ R, it follows that all the
elements of the ray must also be in R and hence each infinite R-class contains a ray.
Furthermore, none of these rays can be equivalent as the R-classes are distinct. Thus
|�S| ≥ ℵ0.

Assume that S has no infinite R-class. Let � denote the Cayley graph of S with
respect to some finite generating set A for S. If � contains a ray r and there is an s ∈ S
such that there are paths from infinitely many points in r to s, then �S is infinite by
Lemma 3.6. If � contains an anti-ray r, then there exists a ∈ A such that infinitely
many of the elements in r are of the form at for some t ∈ S. In particular, there is a
path from a to every at in r and so by Lemma 1.5 there exists a ray r′ such that r � r′.
But then there are paths from infinitely many of the vertices in r′ to any fixed element
in r, and so �S is infinite by Lemma 3.6.

Suppose that the Cayley graph of S does not have the property of Lemma 3.6.
Seeking a contradiction assume that S has finitely many ends, and let r1, r2, . . . , rn be
rays belonging in distinct ends such that the end containing r1 is minimal with respect
to �. Since ri 	� r1, there exists a finite F ⊆ S such that all paths from r1 to every
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ri pass through F . By assumption there exists element s in r1 such that there are no
paths from s to any element of F and hence to any element in any ri . Since S is left
cancellative, sr1 and sr2 are rays. If sr1 ≈ ri or sr2 ≈ ri , then there is a path from s
to ri and so i = 1. In particular, sr1 ≈ sr2 and so, since S is left cancellative, r1 ≈ r2,
a contradiction. We have shown that S either has 1 or infinitely many ends. ��
Corollary 3.8 Let S be an infinite finitely generated cancellative semigroup that is
not a group. Then |�S| = 1 or |�S| ≥ ℵ0.

Proof Since S is cancellative, it is certainly left cancellative and so |�S| = 1, 2, or
|�S| ≥ ℵ0 by Theorem 3.7. If |�S| = 2, then from the proof of Theorem 3.7, S has
only one R-class and hence is a group. ��

As mentioned above, it is not known what cardinalities �S can have, even for
restricted types of semigroups such as those which are left cancellative. We prove that
�S has cardinality 2ℵ0 for a particular type of cancellative semigroup. Ore’s Theorem
(see for instance [3, Theorem 1.23]) states that if a cancellative semigroup S satisfies
the condition that sS ∩ t S 	= ∅ for all s, t ∈ S then S can be embedded in a group.

Theorem 3.9 A finitely generated cancellative semigroup which cannot be embedded
in a group has 2ℵ0 ends.

Proof Let S be a cancellative semigroup that cannot be embedded in a group. As S is
not group-embeddable there exists s, t ∈ S such that sS∩ t S = ∅. Firstly we show that
all elements of {s, t}∗ are distinct. Let u = u1u2 . . . un, v = v1, v2 . . . vm ∈ {s, t}∗
and assume u =S v, without loss of generality we assume the length of u is less than
or equal to the length of v. If u is a prefix of v then u = v = uv′. It follows that v′ is
a left identity for all elements of S. The first letter of v′ is (without loss of generality)
s and hence t x = v′t x ∈ sS for all x ∈ S. If u is not a prefix of v then there exists a
position i ≤ n such that u j = v j for all j < i but ui 	= v j . As u j = v j for all j < i
and u =S v it follows by left-cancellativity that ui . . . un = vi . . . vm and ui 	= v j ,
however, sS ∩ t S = ∅ a contradiction.

We now show that for u, v ∈ {s, t}∗ we have v ∈ uS if and only if u is a prefix of
v. Clearly if u is a prefix of v then v ∈ uS. With the aim of getting a contradiction
assume that u = u1u2 . . . un is not a prefix of v = v1v2 . . . vm but v ∈ uS. This
means there exists x ∈ S such that ux = v. As u is not a prefix of v there exists
1 ≤ i ≤ n such that u j = v j for all j < i but ui 	= v j . But then by left-cancellativity
ui . . . unx =S vi . . . vm . Then as {ui , vi } = {s, t} it follows that sS ∩ t S 	= ∅.

Combining these facts gives a copy of the free semigroup on two generators as a
subsemigroup of S and there can be no paths between elements, this means S has at
least 2ℵ0 ends. This is also the maximum possible number of ends so |�S| = 2ℵ0 . ��

4 Subsemigroups of finite Green index

In [20] Wallace introduced a generalisation of Green’s relations involving subsemi-
groups. Let S be a semigroup, let T be a subsemigroup of S and let x, y ∈ S. We say
x is RT -related to y, denoted xRT y if there exists s, t ∈ T 1 such that xs = y and
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yt = x . We may define LT , HT and DT analogously. As with Green’s R, L, H and
D relations RT , LT , HT and DT are all equivalence relations on S.

It follows from Proposition 3.2 that if T is a subsemigroup of a left cancellative
semigroup S, then RT = RV where V is the right group of regular elements of T .

Let S be a semigroup and let T be a subsemigroup of S. We say T is of finiteGreen
index in S if S \ T has finitely manyHT -classes. We say the Green index of T in S is
the number of HT -classes in S \ T plus one.

Let S be a semigroup and let T be a subsemigroup of finite Green index. It was
shown in [2] that S is finitely generated if and only if T is finitely generated. If T is
a submonoid of a left-cancellative monoid S and T has finite Green index in S, then,
since the complement of the group of units is an ideal, the group of units of T has
finite index in the group of units of S.

Lemma 4.1 If S = G × E is a right group, G is infinite and T is a subsemigroup of
finite Green index then T = K × E is a right group where K is of finite index in G.

Proof One can see S has only one RS-class, therefore the HS-classes of S are the
LS-classes of S. As (g, e) · (h, f ) = (gh, f ) we see that LS-classes are of the form
G × {e} for each e ∈ E .

If T contains no elements of the form (g, e) for some fixed e ∈ E then the RT -
class of each (h, e) must be trivial. This follows as (h, e)(g, f ) can only be of the
form (hg, f ) where f 	= e and then there exists no element (g′, f ′) ∈ T such that
(hg, f )(g′, f ′) = (k, e) as T contains no elements of the form (g, e).

For each e ∈ E we let Ke be those elements g ∈ G such that (g, e) ∈ T . We
now show each Ke contains 1G . Let e ∈ E . One can see Ke is a subsemigroup of
G as in particular (g, f )(h, e) = (gh, e) so K f Ke ⊆ Ke. It is easy to see that a
subsemigroup of finite Rees index in G is equal to G so we may assume G \ Ke

is infinite. As HT -classes are contained in HS-classes and as G \ Ke is infinite we
must have at least one non-trivialHT -class containing distinct elements (g, e), (g′, e)
with g, g′ /∈ Ke. As these elements are HT -related they are RT -related and hence
there exists (h, f ), (h′, f, ) ∈ T such that (g, e)(h, f ) = (g′, e) and (g′, e)(h′, f ′) =
(g, e). This means f = f ′ = e and furthermore that ghh′ = g. It follows hh′ = 1G
is an element of Ke. Hence, Ke ⊆ K f for all e, f ∈ E so Ke = K f for all e, f ∈ E .
We call this semigroup K .

As K × E has finite Green index in G × E it must follow that K has finite Green
index in G. It was shown in [6, Corollary 34] that if K is a subsemigroup of finite
Green index in a group G then K is a subgroup of G with finite group index. ��
Lemma 4.2 Let S be a semigroup generated by A and let T be a subsemigroup of
S generated by B withGreen index n ∈ N. If s ∈ S and a1, a2, . . . , am+k ∈ A such that
the numberofRT -classes containinganyof sa1a2 . . . am+1, sa1a2 . . . am+2, . . . , sa1a2
. . . am+k is at least n, then there exist i > m and b1, b2, . . . , b j ∈ B such that
sa1 . . . ai = b1 . . . b j .

Proof If sa1a2 . . . am+1, sa1a2 . . . am+2, . . . , sa1a2 . . . am+k contains elements from
n RT -classes then sa1a2 . . . am+i is an element of T for some i . Any element of
T can be expressed over B and hence there exists b1, b2 . . . b j ∈ B such that
sa1a2 . . . am+i = b1b2 . . . b j . ��
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Theorem 4.3 Let S be an infinite finitely generated left cancellative semigroup and
let T be a subsemigroup of S of finite Green index. Then |�S| = |�T |.

Proof If S is right simple, then S ∼= G × E for some finitely generated group G and
E is a finite right zero semigroup. Since T has finite Green index in S, it follows that
T ∼= H × E where H is a subgroup of finite index in G. In other words, T is a right
group and so by Corollary 3.5 |�T | = |�H | and |�S| = |�G|. FromHopf’s theorem
[9, Satz IV] we know |�G| = |�H |, hence, |�S| = |�T |.

Let U be the right group of regular elements in S. Since S is finitely generated, it
follows that T is finitely generated. Let A and B be finite generating sets for S and T ,
respectively, such that B ⊆ A. Since S \ U is an ideal, U is also finitely generated.
Hence, as T is also left cancellative, the right group of regular elements V of T is
finitely generated. It follows by Proposition 3.2 that RT = RV , and so V has finite
Green index in U .

Suppose that S has more than one R-class. Then, by Lemma 3.3, S has infinitely
many R-classes. If S has no infinite R-classes, then since RT -classes are contained
in RS-classes, it follows that T has finite Rees index in S and so by Corollary 2.4,
the theorem follows. We now consider the case that S has infinitely many infinite
R-classes. By Proposition 3.5, U either has 1, 2, or 2ℵ0 ends.

If U has 2ℵ0 ends, then, since S \U is an ideal, S has 2ℵ0 ends. Since V has finite
Green index in U and U is a right group, V has 2ℵ0 ends and so T has 2ℵ0 ends also.

Suppose thatU has 1 or 2 ends. Then S and T have at leastℵ0 ends, since every pair
of infiniteR-classes contain a pair of inequivalent rays. Let �(S) be the set of ends of
S containing a ray that has non-empty intersection with infinitely many RS-classes.
By [21, Lemma 2.8], if ω is an end of �r (S, A), then every ray in ω is contained in a
strongly connected component or intersects infinitely many strongly connected com-
ponents (but not both). Since strongly connected components of�r (S, A) are precisely
RS-classes, it follows that |�S| = max{ℵ0, |�(S)|} and |�T | = max{ℵ0, |�(T )|}.
We conclude the proof by showing that |�(S)| = |�(T )|.

Let r be a ray or anti-ray in �r (S, A) that has non-empty intersection with infinitely
many RS-classes. Since every RS-class is a union of RT -classes, r has non-empty
intersection with infinitely manyRT -classes. Since there are only finitely manyRT -
classes in S \ T , we may assume without loss of generality that the elements in r are
in T . Let n be the number ofRT -classes in S \ T and let (xc1, xc1c2, . . . , xc1 . . . cm)

be a subpath of r that has non-empty intersection with n + 1, RT -classes. By left
cancellativity, the path (c1, c1c2, . . . , c1 . . . cm) has non-empty intersection with at
least n+1RT -classes also. It follows that there exists i such that c1 . . . ci ∈ T . Hence
c1 . . . ci is a product b1b2 . . . b j of elements in the generating set B for T . Recur-
sively replacing every such path (xc1, xc1c2, . . . , xc1 . . . ci ) by the corresponding
walk (xb1, xb1b2, . . . , xb1 . . . b j ) we obtain a walk w = (w0, w1, . . .) in �r (T, B)

that has non-empty intersection with infinitely many RT -classes contained in T . If
i < j andwiRTw j , thenwiRTwi+1RT . . .RTw j . Butw has non-empty intersection
with infinitely many RT -classes and so every vertex of w occurs only finitely many
times. Hence, by Lemma 1.3, w is equivalent to a ray or anti-ray in �r (T, B).

Let r1 be a ray or anti-ray and let r2 be a ray or anti-ray in�r (T, B) such that r1 and
r2 have non-empty intersection with infinitely many RS-classes. If r1 is equivalent
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to r2 in �r (T, B), then clearly r1 is equivalent to r2 in �r (S, A). Suppose that r1 is
equivalent to r2 in �r (S, A). In this case, there are infinitely many disjoint paths from
r1 to r2 and vice versa. By repeatedly applying Lemma 4.2, there exist infinitely many
paths from r1 to r2 labelled by elements of B. If infinitely many of these paths are
disjoint, then the proof is complete. Otherwise infinitely many of these paths have
non-empty intersection with a finite subset of S, and so infinitely many paths contain
some fixed element s ∈ S. But then there exists a path from s to element in r2 and
a path from that vertex to an element in r1, and so infinitely many elements in r1
are RS-related, a contradiction. We have shown that for all rays or anti-rays r1 and
r2 in �r (T, B) such that r1 and r2 have non-empty intersection with infinitely many
RS-classes, r1 is equivalent to r2 in �r (T, B) if and only if they are equivalent in
�r (S, A). Therefore |�(S)| = |�(T )|, as required. ��

5 Examples

In this section we give several examples of finitely generated semigroups S and
describe �S for these examples.

The following example shows that unlike in the groups case it is possible for a left
cancellative semigroup to have ℵ0 ends.

Example 5.1 The semigroup N0 × N0 under componentwise addition has ℵ0
ends. For the sake of brevity we use � to denote the Cayley graph �r (N0 ×
N0, {(0, 0), (0, 1), (1, 0)}). We show that any ray in � is equivalent to one of

((i, 0), (i, 1), (i, 2), . . .), ((0, i), (1, i), (2, i), . . .) or

((0, 0), (1, 0), (1, 1), (2, 1), (2, 2) . . .)

for each i ∈ N0. We first note that there are no anti-rays in �. Any ray either
contains finitely many elements in the first component of its vertices, finitely many
elements in the second component of its vertices or infinitely many distinct elements
in both components. In the first case as elements are eventually of the form (i, j)
for some fixed i the ray is equivalent to ((i, 0), (i, 1), (i, 2), . . .). Equivalently if the
ray has finitely many elements in the second component of its vertices then it will
be equivalent to some ((0, i), (1, i), (2, i), . . .). In the case that the ray has infinitely
many distinct elements in both components then for any element (i, j) where i < j
there is a path from (i, i) to (i, j) to ( j, j) and we see that the ray is equivalent to
((0, 0), (1, 0), (1, 1), (2, 1), (2, 2), . . .).

The following example demonstrates the existence of anti-rays which are not equiv-
alent to any ray. It also shows that it is possible to have anti-rays in a semigroup with
trivialR-classes.

Example 5.2 Let M be the monoid Mon〈a, b|aba = b〉. It is easy to check that
aba −→ b and b2a −→ ab2 is a complete rewriting system. For more details on
rewriting systems see [1, Chapter 1]. In a similar way to Example 5.1 we can show
that this monoid has ℵ0 ends. For a diagram of a portion of the right Cayley graph see
Fig. 1.
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1 a a2 a3 a4 a5

b ab a2b a3b a4b a5bbaba2ba3ba4ba5

b2 ab2 a2b2 a3b2 a4b2 a5b2b2ab2a2b2a3b2a4b2a5

b3 ab3 a2b3 a3b3 a4b3 a5b3b3ab3a2b3a3b3a4b3a5

Fig. 1 A portion of the right Cayley graph of 〈a, b | aba = b〉 from Example 5.2, edges labelled by a are
represented with solid lines and those labelled by b with dashed lines

Fig. 2 A portion of the right Cayley graph of the semigroup 〈a〉 × {0, 1} from Example 5.3. Note that a
line without a direction is used here to represent a pair of inverse edges

The following example demonstrates that in general a subsemigroup of finite Green
index may have a different number of ends from the original semigroup.

Example 5.3 Let {0, 1} be the semigroup with the usual multiplication (of real num-
bers) andG = Grp〈a〉 be an infinite cyclic group. Consider the semigroup 〈a〉×{0, 1}
with generating set {(a, 0), (a, 1), (a−1, 0), (a−1, 1)}. Then T = 〈a〉 × {1} is a sub-
semigroup and 〈a〉× {0} is anHT -class in the complement. Hence 〈a〉× {1} has finite
Green index in 〈a〉 × {0, 1}. However, by inspection we see 〈a〉 × {0, 1} has 4 ends
corresponding to the two ends of 〈a〉 × {1} and 〈a〉 × {0}, however, 〈a〉 × {1} has only
2 ends. For a diagram of a portion of the right Cayley graph of 〈a〉 × {0, 1} see Fig. 2.

Following Theorem 4.3 one might question whether for a left cancellative semi-
group it is possible to show that the end poset of a subsemigroup of finite Green index
is isomorphic to the end poset of the semigroup. The following example answers this
in the negative.

Example 5.4 Consider the semigroup S = Z×Z×N0 under componentwise addition.
The subsemigroup T = Z×Z× (N0 \ {1}) is of finite Green index as the complement
consists of 1HT -class.One can see that S hasℵ0 ends corresponding to eachZ×Z×{i}
and to {0} × {0} × N0. In the poset of ends of S any two elements are comparable.
Either by inspection or by Theorem 4.3 we see that T also has ℵ0 ends. However,
there are no paths from Z × Z × {2} to Z × Z × {3} or vice versa and hence the ends
in these components cannot be comparable.

The following proposition describes the left and right end posets of Rees matrix
semigroups. As a corollary we see that for any n,m ∈ N there exists a semigroup with
n left ends and m right ends.
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Recall a Rees matrix semigroupM[G; I,�; P] has elements I ×G ×� where G
is a group and I and � are index sets. Multiplication is defined by (i, g, λ)( j, h, μ) =
(i, gpλ j h, μ) where P = (pλ j )λ∈�, j∈I is a |�| × |I | matrix over G.

Proposition 5.5 If S is the Rees matrix semigroup M[G; I,�; P] where I =
{i1, i2, . . . , in} and � = {λ1, λ2, . . . λm}, G is a finitely generated group and P is
a m × n matrix with entries in G then the right ends of S form an anti-chain of size
n · |�G| and the left ends of S form an anti-chain of size m · |�G|.
Proof Let X be a finite semigroup generating set for G containing 1G and let

A =
{
(i, p−1

μ, j x, λ)|x ∈ X, λ, μ ∈ �, i, j ∈ I
}

.

Clearly A is a finite generating set for S.
Let �i be the induced subgraph of �r (S, A) on the vertices {i}×G×� and let �λ,i

be the subgraph of �i with vertices {i} × G × {λ} and edges with labels (i, p−1
λ,i x, λ).

As (i, g, λ)( j, h, μ) = (i, gpλ, j h, μ) note that �r (S, A) is the disjoint union of the
�i . This means that ��r (S, A) is n incomparable copies of ��i . As all ends in �G
are incomparable it suffices to show that ��i is isomorphic to �G for all i ∈ I .

We first note that for a fixed λ ∈ �, �λ,i is isomorphic to �r (G, X). We now prove
that any ray in �i is equivalent to a ray in �λ,i , the proof for anti-rays is analogous.
Let r = ((i, g0, λ j0), (i, g1, λ j1) . . .) be a ray and let r′ = ((i, g0, λ), (i, g1, λ) . . .) be
a sequence in �λ,i . We show that there is an infinite walk w in �λ,i containing r′ in
which every vertex appears finitely often.

We construct w by concatenating the shortest paths in �λ,i between each (i, gk, λ)

and (i, gk+1, λ). These shortest paths exist because �λ,i is isomorphic to �(G, X).
Next we show that there is a global bound on the lengths of these shortest paths. If
(i, g, μ) = (i, h, ν)( j, p−1

ξ,k x, π) then it follows μ = π and g = hpν, j p
−1
ξ,k x . This

means the shortest path in �λ,i between any consecutive elements of r′ is of length
less than or equal to K = max{|pμ, j p

−1
ν,k |X : j, k ∈ I, μ, ν ∈ �} + 1. As r is a ray

it follows there are at most |�| repetitions of vertices in r′. Every vertex of w has a
path of length less than K to a vertex of r′ and as �λ,i is out-locally finite this means
that if some vertex v appears infinitely often in w then infinitely many elements of r′
can be reached from v by a path of length less than or equal to K . But each vertex
in r′ appears at most |�| times so any infinite set of elements of r′ contains infinitely
many vertices, a contradiction. By Lemma 1.3, w contains a ray s with infinitely many
disjoint paths from s to and from r′ and hence to and from r.

This means any ray in �i is equivalent to a ray in �λ,i . To complete the proof we
must now verify that if we have rays r1 and r2 in �λ,i such that r1 	� r2 then r1 	� r2
in �i . Let r1 and r2 be incomparable rays in �λ,i . As the rays are incomparable in
�λ,i there exists a finite set F = {(i, f1, λ), . . . , (i, fm, λ)} such that all paths from
r1 to r2 in �λ,i pass through F . For any edge ((i, g, μ), (i, gpμ, j p

−1
ν,k x, ξ)) we have

a word w = x1x2 . . . xp over X of minimal length such that w =G pμ, j p
−1
ν,k x and a

corresponding path

(
(i, g, μ), (i, g, λ), (i, gx1, λ), . . . , (i, gx1x2 . . . xp, λ), (i, gpμ, j p

−1
ν,k x, ξ)

)
.
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This means that any path in �i has a corresponding walk in �λ,i such that any point
on the walk has a path of length less than K + 2 to a vertex on the path in �i . This
means any path π from r1 to r2 in �i has a corresponding walk in �λ,i and this must
pass through F and hence π must contain an element that can be reached from F by
a path of length less than or equal to K + 2. As �i is out-locally finite there are only
finitely many such elements so r1 	� r2. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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