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Abstract The main goal of this paper is to initiate study of analytic monoids as a
general framework for quantitative theory of factorization. So far the latter subject
was developed either in concrete settings, for instance in orders of number fields, or
abstractly, in an axiomatic way. Some of the abstract approaches are too general to
address delicate problems concerning oscillatory nature of the related counting func-
tions, or are too restrictive in the sense that they suffer from the lack of examples
except classical ones i.e. the Hilbert monoids of algebraic integers and their products.
The notion of an analytic monoid is enough flexible to allow constructions of many
other examples, and also ensures sufficiently rich analytic structure. In particular, we
construct examples of suchmonoids with the associated L-functions being products of
classical Dirichlet L-functions and L-functions of twisted irreducible unitary cuspidal
automorphic representations of GLd(AQ) satisfying the Ramanujan conjecture and
having real coefficients. Finally, to illustrate how a typical problem from the quantita-
tive theory of factorization can be studied in the framework of analytic monoids, we
formulate several results concerning oscillations of the remainder term in the asymp-
totic formula for the number of irreducible elements with norms less or equal x , as x
tends to infinity.
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1 Introduction and statement of results

The main goal of this paper is to initiate study of analytic monoids as a general frame-
work for quantitative theory of factorization. So far the latter subject was developed
either in concrete settings, for instance in orders of number fields [18], or abstractly, in
an axiomatic way [2]. We refer to [2,18] and to references cited there, for an overview
of the basic theory, and to [8,9,11,14,21] for a selection of more recent results. Most
abstract approaches are too general to address deeper problems concerning oscillatory
nature of the related counting functions. For instance arithmetic formations considered
in [2] are well suited for a study of the main terms, but are not sufficiently delicate to
deal with more refine problems concerning remainders. On the other hand concept of
an L-semigroup from [21] is perfect for the latter purposes, but suffers from a lack of
examples except classical ones i.e. the Hilbert monoids of algebraic integers and their
products. The notion of an analytic monoid (see below for the definition) is enough
flexible to allow constructions of many other examples and also ensures sufficiently
rich analytic structure.

Let us set the following basic notation.
For a non-empty setP we denote byF(P) the free abelian monoid generated byP .

By a divisor theory of a commutative and cancellative monoid S with a unit element
e we mean a monoid homomorphism ∂ : S → F(P) satisfying the following two
conditions.

(D1) For every s1, s2 ∈ S if ∂(s1) divides ∂(s2) in F(P) then s1 divides s2 in S.
(D2) For every g ∈ P there exist s1, . . . , sn ∈ S such that

g = g.c.d.(∂(s1), . . . , ∂(sn)).

The elements of P are called primes of S. If q(F(P)) and q(∂(S)) denote the groups
of fractions of F(P) and ∂(S) respectively, then the quotient group

Cl(S) = q(F(P))/q(∂(S))

and its order h = #Cl(S) are called the class group and the class number of S
respectively. In this paper we shall use the following equivalent description of the class
group. For g ∈ F(P), let [g] denote the set of all g′ ∈ F(P) such that g∂(s) = g′∂(s′)
for certain s, s′ ∈ S. It is called the divisor class of g. Divisor classes under the
multiplication [g][g′] = [gg′] form a group which is identified with Cl(S). We refer
to the monograph [2] for the basic results on the monoids with divisor theory. Let us
recall here that a monoid S has a divisor theory if and only if S is a Krull monoid (see
Chap. 2 in [2]). In particular, analytic monoids as defined later on are Krull monoids.

By a norm we understand a map || · || : F(P) → N such that

(N1) ||e|| = 1 and ||a|| �= 1 for a ∈ F(P)\{e},
(N2) ||ab|| = ||a||||b|| for all a, b ∈ F(P),
(N3) for every real positive x the set {a ∈ F(P) : ||a|| ≤ x} is finite and there exists

a positive constant A such that for every n ≥ 1

#{a ∈ F(P) : ||a|| = n} � nA.
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534 J. Kaczorowski

It is easy to see that ||u|| = 1 if u ∈ S is invertible. Thus if a monoid admits a
norm function then necessarily e is the only invertible element, i.e. it is reduced. From
our point of view, restricting to such monoids yields no loss of generality since in
the quantitative theory of factorization we count elements up to invertible factors.
In particular, we see that for normed monoids, every divisor homomorphism ∂ is an
injection. Therefore in such case we can assume simply that S is a subset of F(P),
and the trivial class in Cl(S) coincides with S. For a character χ of the class group
Cl(S), we define the corresponding L-function as follows

L(s,S, χ) =
∑

g∈F(P)

χ([g])
||g||s .

Using (N3) it is easy to see that the series absolutely converges for 	(s) > A + 1.
Through the paper we adopt the usual conventions used in the analytic number theory
and denote the complex variable by s = σ + i t with real σ and t .

The Selberg class is the set of all Dirichlet series F(s) = ∑∞
n=1 aF (n)n−s which

are absolutely convergent in the half-plane σ > 1, have meromorphic continuation to
C with at most one singularity at s = 1, admit Euler product expansion and satisfy
a general Riemann type functional equation. We refer to surveys [7,10,19,20] for
precise definition and results concerning the Selberg class. Let us remark only that
this class contains, at least conjecturally, all known L-functions from number theory
and automorphic representation theory. Basic informations on the automorphic L-
functions which shall be used in this paper can be found in [4,17].

Let H1/2 denote the set of all Dirichlet series

H(s) =
∞∑

n=1

h(n)

ns

with complex coefficients and such that both H(s) and 1/H(s) absolutely converge
for σ > 1/2 and have meromorphic continuation to {s ∈ C : σ ≥ 1/2}\{ 12 } with
at most a finite number of zeros and poles. In particular, possible zeros and poles of
H(s) with real parts ≥ 1/2 must necessarily lie on the vertical line σ = 1/2.

By an analytic monoid we mean a commutative and cancellative monoid S with
divisor theory ∂ : S → F(P) satisfying the following conditions.

(AS1) The class group Cl(S) is finite.
(AS2) There exists a norm map || · || : F(P) → N.
(AS3) There exists a real number λ such that for every character χ of the classgroup

Cl(S) there is an L-function F(s, χ) from the Selberg class and H(s, χ) ∈
H1/2 satisfying

L(s + λ,S, χ) = F(s, χ)H(s, χ).

(AS4) The functions F(s, χ) are entire for χ �= χ0, whereas F(s, χ0) has a positive
degree (χ0 denotes the trivial character of Cl(S)).
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Analytic monoids and factorization problems 535

Note that F(s, χ0) has a pole at s = 1 (see the proof of Theorem 1.1 below). If this
pole is simple, we call S a simple analytic monoid.

We call λ and L-functions F(s, χ), where χ runs over the characters of the class
group Cl(S), the principal shift and canonical L-functions of S respectively.

Theorem 1.1 The principal shift and the set of canonical L-functions of an analytic
monoid S are uniquely determined by S. The principal shift is non-negative.

Example 1.2 It is easy to see that L-semigroups in the sense of [21] are obvious
examples of analytic monoids with the principal shift λ = 0. In particular, Hilbert
monoids of algebraic number fields are analytic monoids as well. Their canonical
L-functions are Hecke L-functions, see Sect. 2.1 in [21].

Example 1.3 Let P4,1 denote the set all primes p ≡ 1(mod 4). Moreover, let P4,1 =
P4,1 × {−1,+1}. Denote by D = F(P4,1) the free abelian monoid generated by
P4,1. For every (p, ε) ∈ P4,1 let ||(p, ε)|| = p and χ((p, ε)) = ε. We extend both
functions by multiplicativity to D, and set S4,1 := {a ∈ D : χ(a) = 1}. Obviously,
the embedding ∂ : S4,1 → D is a divisor theory. The class number equals 2. Denoting,
as usual, by χ0 the trivial character of the class group, we have

L(s,S4,1, χ0) =
∏

p≡1(mod 4)

(
1 − 1

ps

)−2

= ζQ(i)(s)H(s),

where ζQ(i)(s) denotes the Dedekind zeta function of the quadratic number fieldQ(i),
and

H(s) =
(
1 − 1

2s

) ∏

p≡3(mod 4)

(
1 − 1

p2s

)−1

.

The second character of the class group can be identified with χ , and we have

L(s,S4,1, χ) =
∏

p≡1(mod 4)

(
1 − 1

p2s

)−1

.

We see therefore that S4,1 is an analytic monoid with principal shift 0 and canonical L-
functions ζQ(i)(s) and I(s) (the constant function 1). The corresponding H -functions
are not a finite products of Euler factors, and thus S4,1 is not an L-semigroup in the
sense of [21]. In a similar way one can construct infinitely many examples of analytic
monoids which are not L-semigroups.

Example 1.4 Let S be a simple analytic monoid with the principal shift λ = 0. Then
by a standard application of the Perron formula we have for every class X ∈ Cl(S)

#{a ∈ X : ||a|| ≤ x} = κx + O(xθ ),
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536 J. Kaczorowski

with certain real κ > 0 and θ < 1 depending on S. Note that it is expected that
F(1) �= 0 for all entire L-functions from the Selberg class, cf. the non-vanishing
conjecture in [9]. Thus all simple analytic monoids with a trivial principal shift are
presumably arithmetical formations in the sense of [2], Chap. 8. On the other hand
analytic monoids with positive principal shifts are not arithmetical formations. Indeed,
for the former we have #{a ∈ X : ||a|| ≤ x} � x1+λ as x → ∞ for every X ∈ Cl(S).
This follows from the fact that L(s,S, χ0) has a pole of positive degree at s = 1+ λ.

Example 1.5 Wenowprovide an example showing that simple analyticmonoidswith a
trivial principal shift form a proper subclass of the class of arithmetical formations. Let
us fix (1/2) < θ < 1. For every sequence b(n), n ≥ 2, of non-negative integers such
that the series

∑∞
n=2 b(n)n−σ converges for every σ > θ we construct an arithmetical

formation as follows. For n ≥ 2 let 
(n) be a finite set of cardinality b(n). Moreover,
let P denote the set of all primes. We assume that 
(n) ∩ 
(n′) = ∅ for n �= n′ and
P ∩ 
(n) = ∅ for n ≥ 2. Let

P = P ∪
∞⋃

n=2


(n)

and

S := F(P).

For p ∈ P we put

||p|| =
{
p if p ∈ P,

n if p ∈ 
(n),

and extend this definition to S by multiplicativity. The class group of S is trivial, and
the only associated L-function for 	(s) > 1 equals

L(s, χ0) =
∏

p∈P

(
1 − 1

ps

)−1 ∞∏

n=2

(
1 − 1

ns

)−b(n)

= ζ(s) exp(B(s))H(s),

where ζ(s) denotes the Riemann zeta function,

B(s) =
∞∑

n=2

b(n)

ns
,

and

H(s) = exp

( ∞∑

n=2

∞∑

m=2

b(n)

mnms

)
.
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Analytic monoids and factorization problems 537

Obviously, H(s) is holomorphic for 	(s) > θ/2 and bounded in every closed smaller
half-plane.Hence in this half-plane analytic character of L(s, χ0) is totally governedby
the Riemann zeta function and the behavior of B(s). For generic coefficients b(n) the
latter function cannot be continued analytically beyond the half-plane of convergence
	(s) > θ > (1/2) (see Sect. 6 below), and thus in general S is not an analytic monoid.
On the other hand, standard application of the Perron summation formula gives

#{a ∈ S : ||a|| ≤ x} =
∞∏

n=2

(
1 − 1

n

)−b(n)

x + O(xδ)

as x → ∞ for certain δ < 1. Thus S is an arithmetical formation in the sense of [2],
Chap. 8.

Our next result significantly extends the set of examples of analytic monoids.
For an irreducible unitary cuspidal automorphic representation π of GLd(AQ) let

us denote by

L(s, π) =
∞∑

n=1

aπ (n)

ns
(1.1)

the corresponding L-function. If π is written as a restricted tensor product of local
representations π = π∞ ⊗ ⊗pπp, then L(s, π) splits into the corresponding local
factors

L(s, π) =
∏

p

L p(s, π),

where

L p(s, π) =
d∏

j=1

(
1 − απ, j (p)

ps

)−1

(1.2)

for certain complex numbersαπ, j (p). TheRamanujan conjecture asserts that aπ (n) �
nε for every ε > 0 or, equivalently, that |απ, j (p)| ≤ 1 for all primes p and all
1 ≤ j ≤ d. Under the Ramanujan conjecture, L(s, π) belongs to the Selberg class.
For every primitive Dirichlet character χ(mod q) with q coprime to the conductor of
π the twist

L(s, π ⊗ χ) =
∞∑

n=1

aπ (n)χ(n)

ns

belongs to the Selberg class as well. In case when q and the conductor of π are
not coprime, L(s, π ⊗ χ) ‘almost’ belongs to the Selberg class in the sense that
a correction of a finite number of local factors is needed. For our purposes this is
completely acceptable since products of such factors belong to H1/2. For simplicity
however we restrict ourselves to the case of coprime conductors.
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538 J. Kaczorowski

Theorem 1.6 Let π be an irreducible unitary cuspidal automorphic representation
of GLd(AQ) satisfying the Ramanujan conjecture and having real coefficients aπ (n).
Then for every real λ > 1/2 and every positive integer q coprime to the conductor of
π , there exists an analytic monoid S(λ) with the principal shift equal to λ, the class
group isomorphic to (Z/qZ)×and the set of canonical L-functions equal to

Ld(s, χ∗)L(s, π ⊗ χ∗),

whereχ runs over all Dirichlet characters (mod q),χ∗ denotes the primitive character
inducing χ , and L(s, χ∗) denotes the classical Dirichlet L-function corresponding to
χ∗.

The proof of this theorem given in Sect. 5 below contains an explicit construction
of S(λ). An analytic monoid can be called automorphic if all its canonical L-functions
are products of automorphic L-functions corresponding to cusp forms. Monoids S(λ)

in Theorem 1.6 can serve as examples. Let us remark that according to the main
structural conjecture in the Selberg class theory, we expect that all analytic monoids
are automorphic. Unfortunately, we are still very far away from being able to prove
that in full generality.

2 A sample result on factorization in analytic monoids

In this section we shall illustrate how a typical problem from the quantitative theory
of factorization can be studied in the framework of analytic monoids.

Let S be an analytic monoid with the principal shift λ. Let MS denote the set of
irreducible elements of S, and

MS(x) = #{b ∈ MS : ||b|| ≤ x}

be the corresponding counting function. For complex s = σ + i t , σ > 1 + λ, let

ZS(s) =
∑

b∈MS

1

||b||s

be the associated zeta function. Let us write Cl(S) = {X1 = S, X2, . . . , Xh}, and for
1 ≤ i ≤ h, σ > 1 + λ

Pi (s) =
∑

p∈Xi∩P

1

||p||s .

Moreover, let V denote the set of all sequences [d1, . . . , dh], di ∈ N ∪ {0}, such that
the following identity Xd1

1 . . . Xdh
h = S holds and is minimal in the sense that the

product Xe1 . . . Xeh
h with 0 ≤ ei ≤ di equals S if and only if either all e′

i s are zero or
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Analytic monoids and factorization problems 539

ei = di holds for i = 1, . . . , h. The constant

D(Cl(S)) = max[d1,...,dh ]∈V

h∑

i=1

di

is called the Davenport constant of the class group Cl(S) (compare [2,18], Chap. 5).
With this notation we have

ZS(s) =
∑

[d1,...,dh ]∈V

h∏

i=1

di∑

k=0

1

k!
∑

m1≥1

. . .
∑

mk≥1

Pi (m1s) . . . Pi (mks)

m1 . . .mk

m1+...+mk=di

. (2.1)

This identity can be established following Sect. 8 in [8], where a special case was
treated. For σ > 1 + λ we have

Pi (s) = 1

h

∑

χ∈Ĉl(S)

χ(Xi )

∞∑

m=1

μ(m)

m
log L(ms,S, χm), (2.2)

where μ(n) denotes the classical Möbius function. This gives analytic continuation of
ZS(s) to a region containing the closed half-plane σ ≥ 1/2 + λ with slides starting
either at s = 1 + λ or s = (ρ + λ)/m and going left to the boundary of the region.
Here ρ denotes a generic non-trivial zero of canonical L-functions F(s, χ), and m is
a positive integer. Let η > 0 and δ > 0 be so small that ZS(s) is holomorphic in the
following sliced rectangle

{
s = σ + i t : 1

2
+ λ − η ≤ σ ≤ 2 + λ, |t | ≤ δ

}
\
(1
2

+ λ − η, 1 + λ
]
. (2.3)

Moreover, let C be the path consisting of the following three parts. The line segment
from (1/2) + λ − η to 1+ λ − δ on the lower side of the real axis, the circumference
s = 1+ λ + δeiθ , −π ≤ θ ≤ π and the line segment from 1+ λ − δ to (1/2) + λ − η

on the upper side of the real axis. Then put

TS(x) = 1

2π i

∫

C
ZS(s)

xs

s
ds. (2.4)

Theorem 2.1 Let S be an analytic monoid with the principal shift λ. Moreover, sup-
pose that its canonical L-functions do not vanish for s = σ + i t with

σ > 1 − c0
log τ

(τ = |t | + 10) (2.5)

and certain c0 = c0(S) > 0.
Then, as x → ∞, we have
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540 J. Kaczorowski

(1)

MS(x) ∼ TS(x),

(2)

TS(x) ∼ x1+λ

log x

∞∑

j=0

Pj (log log x)

(log x) j
,

where Pj are complex polynomials of degrees ≤ D(Cl(S)) (the Davenport con-
stant of Cl(S)) and deg P0 = Cl(D(S)) − 1.

(3) Under the Generalized Riemann Hypothesis for canonical L-functions of S we
have

ES(x) = MS(x) − TS(x) � x
1
2+λ+ε

for every ε > 0.
(4) There exists a positive constant M = M(S) such that for the error term ES(x)

we have the following omega estimate

ES(x) = 
±

(
x

1
2+λ

(log x)M

)
.

(5) For sufficiently large T the error term ES(x) changes sign � log T times in the
interval (1, T ].

Let us remark that after suitable modifications, a part of assertions of Theorem 2.1
hold true for arithmetical formations. In particular, asymptotic formulae similar to (1),
(2) and (3) (with λ = 0) are proved in [2], Sect. 8.5. So, in principle, there is no novelty
in this part of Theorem 2.1 (not counting the appearance of arbitrary shifts λ ≥ 0).

With respect to the main terms of asymptotic formulae, quantitative theories of
factorization in arithmetic formations and analytic monoids run parallel. Nevertheless,
there are differences, even on the level of their formulations. For instance, definition
of the main term in the form of a contour integral (2.4) should be modified in the
case of formations. The point is that L-functions of formations exist on a half-plane
of the form σ > θ for certain unspecified constant θ < 1, and there is no guarantee
that they can be continued any further to the left. In fact, Example 1.5 shows that
there exist formations with θ < 1 arbitrarily close to 1, and L-functions for which the
vertical line σ = θ is a natural boundary. In such cases the integrand in (2.4) is not
holomorphic on the whole contour C. Thus we have to shorten it by taking a part lying
on the half-plane σ ≥ θ1 for certain θ < θ1 < 1. This is perfectly okay when dealing
with the main term, since two such integrals with θ1 and θ2 respectively differ by a
negligible error of size O(xmin(θ1,θ2)).

In contrary, proofs of (4) and (5) require finer properties of the involved L-functions,
and the latter are not available for general formations, see Theorem 2.2 below. To
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Analytic monoids and factorization problems 541

illustrate the situation let us assume for simplicity that the class group is trivial. Then
MS(x) counts simply prime divisors with norms ≤ x . Let S denote the formation
constructed in Example 1.5. We have

MS(x) = π(x) +
∑

n≤x

b(n).

According to the above remarks on the required modifications in the definition of
the main term, we should replace C in (2.4) by a part of it lying in the half-plane
σ ≥ θ1(> θ). Then an easy computation shows that

TS(x) = li(x) − li(xθ1).

Suppose that the Riemann hypothesis for ζ(s) is true. Then the difference ES(x) =
MS(x) − TS(x) equals

li(xθ1) + O(xθ+ε) (ε > 0)

which for sure is not what one would like to call a proper remainder term.
One could argue that a better choice for a main term here would be the integral

logarithm li(x) alone. Then, however, there error term would read as

ES(x) =
∑

n≤x

b(n) + O(
√
x log x),

and could be dominated by partial sums of the coefficients b(n). The latter can be
almost arbitrary, the only restriction being that

∑
n≤x b(n) � xθ+ε for every ε > 0

as x → ∞. In particular, with a proper choice of b(n)’s one could make ES(x) of a
constant sign, so that neither (4) nor (5) would hold true.

A proof of Theorem 2.1 could be conducted modifying ideas from [6,8,9,14]. In
order to keep the size of this paper in a reasonable limits,weprefer to postponedetails to
a future paper, where oscillations of various remainder terms arising in the quantitative
theory of factorization in analytic monoids shall be treated in a more systematic way.
Here we shall outline the main idea leading to the following weakened version of the
omega estimate from (4)

ES(x) = 
±
(
x

1
2+λ−ε

)

as x → ∞ for every ε > 0. The main tool in the proof is the following theorem on
the independence of singularities of L-functions from the Selberg class. LetA denote
the set of all functions f (s) holomorphic for σ > 1 and having analytic continuation
to σ ≥ (1/2) and |t | > T1 for certain T1 ≥ 0.

Theorem 2.2 For every non-constant polynomial P(X1, . . . , XN )of N variableswith
coefficients in A, and for arbitrary L-functions F1(s), . . . , FN (s) from the Selberg
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542 J. Kaczorowski

class for which the logarithms log F1, . . . , log FN are linearly independent over Q,
the function

p(s) = P(log F1(s), . . . , log FN (s)) (2.6)

has infinitely many singularities in the half-plane σ ≥ 1
2 .

This is a special case of Theorem 1 in [11].
Let F(s, χ1), . . . , F(s, χN ) be the canonical L-functions of S. Without loss of

generality, we can assume that their logarithms log F(s, χ1), . . . , log F(s, χN ) are
linearly independent over Q. Otherwise, we just replace the whole set

{log F(s, χ1), . . . , log F(s, χN )}

by its maximal linearly independent subsubset. From (2.1), (2.2) and axiom (AS3) it
is obvious that ZS(s + λ) is of the form (2.6), with Fj (s) = F(s, χ j ), j = 1, . . . , N .
Thus ZS(s) has infinitely many singularities in the half-plane σ ≥ 1

2 + λ. Knowing
this, the rest of the proof is just a standard application of the classical Landau’s theorem
(see, e.g. Chap. 5 of Ingham [3]) and runs as follows. Suppose that

ES(x) ≥ −Ax
1
2+λ−ε

for certain positive A and all x ≥ 1. Without lost of generality we can assume that
ε < η, where η has the same meaning as in (2.3). Let us consider the following
function defined on the positive real axis

f (x) =
{
0 if 0 < x < 1,

ES(x) + Ax
1
2+λ−ε if x ≥ 1.

For σ > 1 + λ + δ, where δ has the same meaning as in (2.3), its Mellin transform
equals

F(s) =
∫ ∞

0
f (x)x−s−1 dx

=
∫ ∞

1
MS(x)x−s−1 dx −

∫ ∞

1
TS(x)x−s−1 dx + A

∫ ∞

1
x

1
2+λ−ε−s−1 ds

= 1

s
ZS(s) − 1

2π i

∫

C
ZS(w)

w(s − w)
dw + A

s − ( 12 + λ − ε)
.

This gives meromorphic continuation of F(s) to the rectangle

{
s : 1

2
+ λ − η < 	(s) ≤ 1 + λ + δ, |�(s)| < δ

}

123



Analytic monoids and factorization problems 543

with the only singularity at s = 1
2 + λ − ε. By Landau’s theorem the integral

∫ ∞

0
f (ξ)ξ−s−1 dξ

converges absolutely for σ > 1
2 + λ − ε. In particular, F(s) is holomorphic in this

half-plane. It follows also that ZS(s) is holomorphic for σ ≥ 1
2 + λ, t �= 0 which, as

we have seen before, is not true.
This shows that

ES(x) = 
−
(
x

1
2+λ−ε

)
.

The corresponding 
+-estimate can be proved in a similar way, one has to change
‘+’ to ‘−’ in the definition of f (x).

Let us remark finally, that a more refined methods needed in the proofs of (4) and
(5) of Theorem 2.1, as well as some other similar results, require that the involved zeta
functions have singularities of a special type, see [8,9,14,21]. For instance, they should
be isolated and be combinations of poles and logarithmic branch points. Observe, that
Theorem 2.2 guarantees the existence of singularities of the desired type.

3 Some open problems on analytic monoids

We hope that the following list of open problems shall stimulate research on analytic
monoids. Solutions of some of them could be not very hard, some of them however
seem to lie quite deep.

(1) Develop quantitative theory of factorization in analytic monoids focusing on the
involved error terms (estimates from above, mean value estimates of remainders,
omega estimates, changes of sign, distribution of elements with prescribed fac-
torization properties in short intervals, and so on).

(2) Give further examples (constructions) of analytic monoids. In particular, give
examples with the principal shift 0 < λ ≤ 1/2.

(3) Let F(s, χ0) be the canonical L-function of an analytic monoid S corresponding
to the trivial character of the class group. Let d be its degree and let m be the
order of the pole at s = 1. We can call these constants the degree and the order
of S, and denote them by dS and mS respectively. For instance, the monoid S(λ)

in Theorem 1.6 is of degree 2d and order d. Prove that for every S one has
mS ≤ dS . For a given positive integers m ≤ d give examples of analytic monoid
with dS = d and mS = m. In some instances this is not difficult. If m ≥ d/2
one can start with ζ 2m−d(s)ζ d−m

K (s), where ζK (s) is the Dedekind zeta function
of a quadratic number field K , and then proceed suitably modifying the proof of
Theorem 1.6. There are also other easy cases.

(4) Which sets {Fj (s)}Nj=1 of elements of the Selberg class are the sets of canonical L-
functions? Give full characterization. A sufficient or necessary conditions would
be interesting as well. Example 1.3 shows that they do not need to be of of the
same degree. Do they have some special properties?
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(5) Characterize analytic monoids with the same sets of canonical L-functions (note
that they do not have to be isomorphic).

(6) Characterize analytic monoids with the same L-function corresponding to the
trivial character. In particular, describe all analytic monoids with F(s, χ0) = ζ(s)
(the Riemann zeta function).

(7) Does a canonical L-function of an analytic monoid have a polynomial Euler
Product? Probably every L-function from the Selberg class does, but for canonical
L-functions this could be easier to prove, possibly assuming some additional
conditions on S. Note that for every character χ of the class group the associated
L-function has two product expansions, the first due to multiplicativity of norm
function and unique factorization in F(P)

L(s,S, χ) =
∏

p∈P

(
1 − χ([p])

||p||s
)−1

,

and the second,

L(s,S, χ) =
∏

p

Fp(s, χ)H(s, χ),

due to the fact that F(s, χ) belongs to the Selberg class. There is an obvious
question about the exact meaning of this fact. Does this imply that the norms of
prime divisors p ∈ P are powers of rational primes (probably “No”), or at least
are somehow close to them (probably “Yes”)?

(8) Can we relax condition (AS3) in the definition of analytic monoid assuming that
the canonical L-functions F(s, χ) belong to the extended Selberg rather than to
the Selberg class itself (possibly at the cost of sharpening (N3) by a change of the
exponent A to λ + ε)?

(9) Prove zero-free regions for canonical L-functions. In some cases it is possible to
follow the classical method of de la Vallée Pouissin (for instance for monoids of
order 1).

4 Proof of Theorem 1.1

Let σa(S) denote the abscissa of absolute convergence of L(s,S, χ0), where χ0 is
the trivial character of Cl(S). We show that λ = σa(S) − 1. This will prove that λ is
uniquely determined.

We have
L(s + λ,S, χ0) = F(s, χ0)H(s, χ0), (4.1)

with F(s, χ0) from the Selberg class and H(s, χ0) ∈ H1/2. The RHS is holomorphic
for 	(s) > 1/2 except possibly for s = 1 where could be a pole of a finite order.
Suppose that there is no such a pole. Since L(s + λ,S, χ0) has non-negative coeffi-
cients, it converges absolutely for 	(s) > 1/2 by the classical Landau theorem (see
for instance Theorem 11.13 in [1]). Thus
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F(s, χ0) = L(s + λ,S, χ0)/H(s, χ0)

converges absolutely for 	(s) > 1/2 as well. But this is impossible since the abscissa
of absolute convergence of a function from the Selberg class of a positive degree d is
greater or equal to 1/2 + 1/(2d) > 1/2 as trivially follows from Theorem 1 in [13].
Thus F(s, χ0) has a pole at s = 1 and hence L(s,S, χ0) has a pole at 1 + λ. This
shows that σa(S) = 1 + λ, as claimed.

Weprove now that the set of canonical L-functions of an analyticmonoid is uniquely
determined. Suppose in contrary that

L(s + λ,S, χ) = Fj (s, χ)Hj (s, χ)

for certain F1(s, χ) �= F2(s, χ) from the Selberg class, H1(s, χ), H2(s, χ) ∈ H1/2
and a character χ of the class group Cl(S). Hence

F1(s, χ) = F2(s, χ)H(s, χ)

for H(s, χ) ∈ H1/2. Thus zeros of F1 and F2 in the half-plane	(s) ≥ 1/2 are the same
up to a finite number of exceptions. The same holds for F1(s, χ) and F2(s, χ). Hence,
by the functional equation of L-functions from the Selberg class we see that F1(s, χ)

and F2(s, χ) have the same non-trivial zeros ρ = β + iγ with γ > 0 up to a finite
number of exceptions. Now we could proceed along the lines of the proof of the main
theorem in [12], i.e. using Stirling’s formula and Bohr’s theorem on almost periodic
functions. Instead, we give an alternative proof based on k-functions associated to
Fj ’s defined for z in the upper half-plane as follows

k
(
z, Fj (s, χ)

) =
∑

γ>0

eρz ( j = 1, 2),

where the summation is over non-trivial zeros of Fj (s, χ) with positive imaginary
parts. Obviously, in our case they differ by an entire function

k (z, F1(s, χ)) = k (z, F2(s, χ)) + E(z, χ), (4.2)

say.

Lemma 4.1 Let F be an L-function from the Selberg class, and let −�F (n) denote
Dirichlet coefficients of its logarithmic derivative, i.e.

− F ′

F
(s) =

∞∑

n=1

�F (n)

ns
(	(s) > 1).

Then the corresponding k(z, F)-function is holomorphic on the upper half-plane and
has meromorphic continuation to the whole complex plane with the slit along the
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negative imaginary axis. The only singularities on C\(−i∞, 0] are simple poles at
points ± log n, where n > 2 are integers such that �F (n) �= 0. We have

Resz=log nk(z, F) = 1

2π i
�F (n).

Proof The lemma easily follows from Theorem 1 of [15].
Computing residues of both sides of (4.2) at s = log n, n ∈ N, with the help of

Lemma 4.1 we infer that the Dirichlet coefficients of F ′
1/F1(s, χ) and F ′

2/F2(s, χ)

are the same. Thus F ′
1/F1(s, χ) = F ′

2/F2(s, χ) and hence F1(s, χ) = cF2(s, χ) for
certain complex number c. Comparing the first Dirichlet coefficient of both sides we
see that c = 1, and hence F1(s, χ) = F2(s, χ), a contradiction.

To prove the last assertion suppose in contrary that the principal shift λ is negative.
Take the trivial character χ0 of the class group and compare coefficients of Dirichlet
series of both sides of (4.1). With obvious notation we have

aL(n)n|λ| ≤
∑

d|n

∣∣∣aF (n)aH
(n
d

)∣∣∣ � nε (4.3)

for every positive ε since both F and H satisfy Ramanujan condition. But aL(n) is
the number of g ∈ F with ||g|| = n, and hence is a non-negative integer. Thus (4.3)
implies n|λ| � nε if aL(n) �= 0. This is impossible if ε < |λ| and n sufficiently large.
Thus L(s,S, χ0) is a Dirichlet polynomial. Then, as at the beginning of the proof,
we conclude that F(s, χ0) converges absolutely for 	(s) > 1/2, which is impossible.
Theorem 1.1 follows. ��

5 Proof of Theorem 1.6

Let aπ (n) and απ, j (p) have the same meaning as in (1.1) and (1.2) respectively. Let
us put

α∗
π, j (p) =

{
απ, j (p) if 1 ≤ j ≤ d

1 if d + 1 ≤ j ≤ 2d

and

L∗(s, π) =
∏

p

2d∏

j=1

(
1 − α∗

π, j (p)

ps

)−1

.

Obviously,

L∗(s, π) = ζ d(s)L(s, π),
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where ζ(s) is the familiar Riemann zeta function. For 	(s) > 1 we write

L∗(s, π) =
∞∑

n=1

a∗
π (n)

ns
.

Lemma 5.1 For all primes p we have

a∗
π (p) ≥ 0 (5.1)

and
1

2
a∗
π (p)

(
a∗
π (p) + 1

) ≤ a∗
π

(
p2

) + da∗
π (p). (5.2)

Proof Comparing coefficients of both sides of the identity

∞∑

n=1

a∗
π (n)

ns
=

∏

p

2d∏

j=1

(
1 − α∗

π, j (p)

ps

)−1

we obtain

a∗
π (p) =

2d∑

j=1

α∗
π, j (p) = d +

d∑

j=1

απ, j (p),

and

a∗
π

(
p2

) =
d∑

j=1

απ, j (p)(απ, j (p) + d) +
d∑

j1=2

j1−1∑

j2=1

απ, j1(p)απ, j2(p) + 1

2
d(d + 1).

Thus

a∗
π (p) ≥ d −

d∑

j=1

|απ, j (p)| ≥ 0

and (5.1) follows. Moreover, after some easy computations we obtain

a∗
π

(
p2

) + da∗
π (p) − 1

2
a∗
π (p)

(
a∗
π (p) + 1

)

= d2 + 1

2

d∑

j=1

απ, j (p)(απ, j (p) + 2d − 1) ≥ d2 − d2 = 0,

and (5.2) follows. ��
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Let λ > 0 be fixed. For primes p let us put

Aλ(p) = [
a∗
π (p)pλ

]

and

Bλ(p) =
[(

a∗
π

(
p2

) + da∗
π (p)

)
p2λ

]
.

According to Lemma 5.1 they are non-negative integers.

Lemma 5.2 For p ≥ 31/λ we have

1

2
Aλ(p)(Aλ(p) + 1) ≤ Bλ(p).

Proof We can assume that
a∗
π (p) ≥ p−λ (5.3)

since otherwise the assertion is trivial. If this inequality holds we have using
Lemma 5.1

1

2
Aλ(p)(Aλ(p) + 1) ≤ 1

2
a∗
π (p)pλ

(
a∗
π (p)pλ + 1

)

≤
(
a∗
π

(
p2

) + da∗
π (p)

)
p2λ − 1

2
a∗
π (p)(pλ − 1)pλ

≤ Bλ(p) + 1 − 1

2
a∗
π (p)(pλ − 1)pλ.

Using (5.3) we have

1

2
a∗
π (p)(pλ − 1)pλ ≥ 1

2
(pλ − 1) ≥ 1

if p ≥ 31/λ, and the lemma follows. ��
Let

Cλ(p) = Bλ(p) − 1

2
Aλ(p)(Aλ(p) + 1).

For p ≥ 31/λ this is a non-negative integer.
For 	(s) > 1 + λ we put

G(s) =
∏

p

(
1 − 1

ps

)−Aλ(p) (
1 − 1

p2s

)−Cλ(p)

. (5.4)
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Lemma 5.3 For λ > 1/2 we have

G(s + λ) = ζ d(s)ζ d2(2s)L(s, π)Ld(2s, π)H(s), (5.5)

where H(s) is a Dirichlet series such that both H(s) and 1/H(s) converge absolutely
for 	(s) > (1/2) − δ with certain positive δ.

Proof Let Gp(s) denote the local factor of G(s) corresponding to a prime p. For
σ = 	(s) > 0 we have

logGp(s + λ) = −Aλ(p) log

(
1 − 1

ps+λ

)
− Cλ(p) log

(
1 − 1

p2s+2λ

)

= Aλ(p)

ps+λ
+ Cλ(p)

p2s+2λ + O

(
1

p2σ+λ

)

= a∗
π (p)

ps
+ a∗

π

(
p2

) + da∗
π (p) − 1

2a
∗
π (p)2

p2s
+ O

(
1

pσ+λ

)
.

We have also

log L∗
p(s, π) = log

(
1 + a∗

π (p)

ps
+ a∗

π

(
p2

)

p2s
+ O

(
1

p3σ

))

= a∗
π (p)

ps
+ a∗

π

(
p2

) − 1
2a

∗
π (p)2

p2s
+ O

(
1

p3σ

)
.

Thus

logGp(s + λ) = log
(
L∗
p(s, π)L∗

p(2s, π)d
)

+ O

(
1

p3σ
+ 1

pσ+λ

)
.

Note that the O-term in the above formula is in fact a Dirichlet series supported on
positive powers of p. Taking exponentials of both sides and then product over all
primes we arrive at (5.5) with δ = min(1/6, λ − 1/2). ��

From this point on we assume that λ > 1/2. For primes p > max(11, q)(>31/λ)
let 
(p) and 
(p2) be finite sets such that

#
(p) = Aλ(p), #

(
p2

) = Cλ(p)

and for all primes p1, p2 and l1, l2 ∈ {1, 2}



(
pl11

)
∩ 


(
pl22

)
= ∅ if pl11 �= pl22 .

Moreover, let

P =
⋃

p>max(11,q)

(

(p) ∪ 


(
p2

))
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and let F = F(P) be the free abelian monoid generated by P . We define the norm
function on P by putting

||g|| =
{
p if g ∈ 
(p),

p2 if g ∈ 

(
p2

)

and then we extend it multiplicatively to the whole monoid F(P).
We define the monoid S(λ) as follows

S(λ) = {g ∈ F(P) : ||g|| ≡ 1(mod q)}.

We are going to show now that the natural embedding

∂ : S(λ) → F(P)

is a divisor theory.

Lemma 5.4 For every 0 < c0 < d and every (a, q) = 1 there exist infinitely many
primes p ≡ a(mod q) such that a∗

π (p) ≥ c0. In particular, there exist infinitely many
primes p ≡ a(mod q) such that 
(p) �= ∅.
Proof For σ > 1 we have

∑

p≡a(mod q)

a∗
π (p)

pσ
= 1

ϕ(q)
log L∗(σ, π)

+ 1

ϕ(q)

∑

χ �=χ0

χ(a) log L∗(σ, π ⊗ χ∗) + O(1).

From the main theorem of [5] it easily follows that L∗(σ, π ⊗ χ∗) �= 0 if χ �= χ0 and
σ ≥ 1. For χ = χ0 there is a pole at s = 1. The order is d if π is non-trivial or 2 if
L(s, π) reduces to the Riemann zeta function. Thus for σ > 1 we have

∑

p≡a(mod q)

a∗
π (p)

pσ
≥ d

ϕ(q)
log

1

σ − 1
+ O(1),

and the lemma easily follows since

∑

p≡a(mod q)

1

pσ
∼ 1

ϕ(q)
log

1

σ − 1

as σ → 1+. ��
In order to check that the embedding ∂ : S(λ) → F(P) is a divisor theory we

show that
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(1) for every g1, g2 ∈ S(λ) if g1 divides g2 in F(P) then g1 divides g2 in S(λ).
(2) For every g ∈ P there exist g1, . . . , gn ∈ S(λ) such that g is the greatest common

divisor of g1, . . . , gn .

Proof of (1) is easy. If g2 = g · g1 for g1, g2 ∈ S(λ) and g ∈ F(P) then ||g|| ≡
||g|| · ||g1||(mod q) ≡ ||g ·g1||(mod q) ≡ ||g2||(mod q) ≡ 1(mod q). Thus g ∈ S(λ),
and (1) follows.

To show (2) fix arbitrary g ∈ P . We have ||g|| = pl , l ∈ {1, 2}, p > q. Hence
||g|| ≡ a(mod q) for certain (a, q) = 1. Let a denote the multiplicative inverse
of a(mod q). By Lemma 5.4 there exist infinitely many primes � ≡ a(mod q) with

(�) �= ∅. Take two such primes �1 �= �2 and two elements g j = g · g′

j , g
′
j ∈ 
(� j ),

j = 1, 2. Then g1, g2 ∈ S(λ), g = g.c.d.(g1, g2), and (2) follows even in a stronger
form (n = 2).

Suppose that g1, g2 ∈ F(P) belong to the same divisor class in Cl(S(λ)). Then
||g1|| ≡ ||g2||(mod q). Hence we have a group homomorphism

φ : Cl(S(λ)) � X = [g] �→ ||g||(mod q) ∈ (Z/qZ)×

From the definition of S(λ) we see that the kernel of this homomorphism is trivial,
whereas Lemma 5.4 easily implies that it is onto. Thus the class group of S(λ) is
isomorphic to (Z/qZ)×. In particular, characters of the class group can be identified
with Dirichlet characters (mod q). For simplicity we shall use the same symbol χ to
denote class group character and the corresponding Dirichlet character χ(mod q). For
	(s) > 1 + λ we have

L(s,S, χ) =
∑

g∈F

χ([g])
||g||s =

∞∑

n=1

aS(n)χ(n)

ns
,

where aS(n) denotes the number of g ∈ F(P) with ||g|| = n. The last expression is
equal to

∏

p>max(11,q)

(
1 − χ(p)

ps

)−Aλ(p) (
1 − χ(p)2

p2s

)−Cλ(p)

= G(s, χ∗)H(s, χ),

where G(s, χ∗) is the twist of G(s) defined in (5.4) by χ∗ and H(s, χ) ∈ H1/2 is a
finite product of inverses of local factors corresponding to primes less than or equal
to max(11, q) and not dividing the conductor of χ . Since ζ d2(2s)Ld(2s, π) and all
its twists Ld2(2s, χ∗)Ld(2s, π ⊗χ∗) belong toH1/2, we conclude using Lemma 5.3
that

L(s + λ,S, χ) = Ld(s, χ∗)Ld(s, π ⊗ χ∗)H1(s, χ)

for certain H1(s, χ) ∈ H1/2. Hence Ld(s, χ∗)Ld(s, π ⊗ χ∗), where χ runs over
Dirichlet characters (mod q) are canonical L-functions of S(λ), and the result follows.
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6 An auxiliary result on Dirichlet series

In this section we briefly discuss a result on Dirichlet series which was mentioned in
Example 1.5. Its formulation and proof use some basic facts from general topology
related to the Baire category theorem, and can be found for instance in Chap. 6 of
Kelley’s classic monograph [16]. Let us recall that every countable union of closed
and nowhere dense sets in a complete metric space is called ameager and is interpreted
as a ‘small’ set, whereas its complement, called co-meager or residual, as ‘large’.

Let 0 < θ < 1 be fixed, and let X (θ) denote the set of all sequences b = (b(n))∞n=1
of non-negative integers such that

∞∑

n=1

b(n)

nσ
< ∞

for all σ > θ . For two sequences b, c ∈ X (θ) we define the distance between them
by the following formula

ρ(b, c) =
∞∑

m=1

1

2m
min

( ∞∑

n=1

|b(n) − c(n)|
nθ+ 1

m

, 1

)
.

It is easy to see that (X (θ), ρ) is a complete metric space. For b ∈ X (θ) we put

f (s,b) =
∞∑

n=1

b(n)

ns
.

Obviously, f (s,b) is a holomorphic function for σ = 	(s) > θ .

Proposition 6.1 The set of b ∈ X (θ) for which the vertical line σ = θ is a natural
boundary of f (s,b) is residual in X (θ), in particular it is dense.

In the proof we shall need the following lemma.

Lemma 6.2 For every t0 ∈ R there exists bt0 ∈ X (θ) such that

lim
σ→θ+ | f (σ + i t0,bt0)| = ∞.

Proof Given t0 we construct bt0 as follows. Let for ξ ≥ 1

φ(ξ) = ξθ (1 + α cos(t0 log ξ)) ,

where

α = α(t0) = θ

2(1 + |t0|) .
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Obviously, the derivative φ′(ξ) is positive for all ξ > 1, and φ(ξ) → ∞, φ′(ξ) → 0
as ξ → ∞. We deduce that there exists a sequence of positive integers Mm , m ≥ 1,
such that

φ(Mm) = m + O(1)

for all m ≥ 1. We have ∑

Mm≤ξ

1 = φ(ξ) + O(1). (6.1)

We put bt0 = (b(n))∞n=1, where

b(n) =
{
1 if n = Mm for certain m ≥ 1,

0 otherwise.

Recalling (6.1) we have for σ > θ

f (s,bt0) =
∞∑

m=1

1

Ms
m

= s
∫ ∞

1

∑

Mm≤ξ

1
dξ

ξ s+1

= s
∫ ∞

1
φ(ξ)

dξ

ξ s+1 + h(s),

where h(s) is holomorphic for σ > 0. A direct computation shows that the last integral
equals

1

s − θ
+ α

2

1

s − (θ + i t0)
+ α

2

1

s − (θ − i t0)
.

Thus f (s,bt0) has a pole at s = θ + i t0, and the lemma follows. ��
Now we can complete the proof of Proposition 6.1. For a fixed positive integer

k, and a rational number η ∈ Q, let Q = Q(k, η) denote the square defined by the
following inequalities

θ < 	(s) < θ + 1

k
, |�(s) − η| <

1

2k
.

For every such Q and every positive integer l let


(Q, l) = {b ∈ X (θ) : | f (s,b)| ≤ l for all s ∈ Q}.

It is easy to see that 
(Q, l) is closed in the topology induced by the metric ρ.
We shall prove that is it also nowhere dense. Indeed, for every b ∈ 
(Q, l) and

every positive ε let us define bε ∈ X (θ) as follows. First we apply Lemma 6.2 for
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t0 = η. We deduce that there exists bη ∈ X (θ) such that f (s,bη) is unbounded in Q.
Then, let us fix M so large that

∑
m>M 1/2m < ε/2. Moreover, let N be so large that

∑

n>N

b(n)

nθ+ 1
M

<
ε

2
and

∑

n>N

bη(n)

nθ+ 1
M

<
ε

2
.

For such N let bε = (bε(n))∞n=1, where

bε(n) =
{
b(n) if 1 ≤ n ≤ N ,

bη(n) if n > N .

One easily checks that ρ(b,bε) < ε. Since bε /∈ 
(Q, l), we see that the interior of

(Q, l) is empty, i.e. 
(Q, l) is nowhere dense.

Applying the Baire category theorem we see that the set

⋃

η∈Q

⋃

k∈N

⋃

l∈N


(Q(k, η), l)

is a meager in X (θ). Observe that for every b from the complement set the function
f (s,b) is unbounded in every square Q(k, η), η ∈ Q, k ∈ N, and the Proposition
follows.
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