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Abstract We show an alternative—axiomatic approach to the direct sums of count-
ably many Banach spaces, called here B-direct sums (BDS). We develop “direct
summing” of linear operators and the problems of generating the C0-semigroups in
such “Banach direct sums of Banach spaces” by “the direct sums of the generators”.
We study special types of BDS, including M-BDS—the one closely related to Day’s
construction of a direct sum (M.M. Day, Normed linear spaces, 1973). The main
abstract results of the paper concern C0-semigroup generation properties for diagonal
operators in M-BDS type direct sums. The paper is motivated by stochastic particle
systems and the problem of existing C0-semigroups defined by the corresponding
hierarchies for marginal probability densities. We use our abstract M-BDS results to
get a solution of the respective differential equation in the C0-semigroup sense.

Keywords Direct sum of Banach spaces · C0-semigroup of operators · Stochastic
particle system

1 Introduction

The notion of a direct sum (or external product) of normed spaces, being unique up to
an isometry in the Hilbert space case, is far from being unique in Banach space case,
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when we impose only Banach space requirement for the appropriate direct sum. This
non-uniqueness is especially visible when we consider an infinite family of spaces.
The existing literature of such infinite case seems to be not very rich. The best known
constructions are the “ �p type direct sums” (see e.g. [7]) which are natural gener-
alizations of the standard Hilbert space construction corresponding to p = 2. Much
more general is the construction introduced by Day (see [3,4]), based on the notion
of full function space.

One of the main goals (an abstract one) of the present paper is to show a different
approach to the direct sums of Banach spaces. Contrary to the above constructions,
we show an axiomatic way of thinking on various direct sums. Using this approach we
mainly develop “direct summing” of linear operators and problems of generating the
C0-semigroups in such “Banach direct sums of Banach spaces” by “the direct sums
of the generators”. We study here only the case of countably mamy spaces, however
some parts of our considerations could be also generalized onto an arbitrary index set
of the Banach spaces.

Our second main goal is to use the abstract results of this theory to show the
existence of solutions with certain strong differentiability properties for an important
example of stochastic particle system.

Section 2 starts with some preliminaries, including notation. We consider there the
formal direct sum

⊕
j∈N X j of the Banach spaces X j , j ∈ N, being just a linear space

of all the sequences f = { f j
}

j∈N with f j ∈ X j , and with the standard pointwise
linear structure. Then we distinguish in an natural axiomatic way some normed spaces
{(X, ‖ · ‖)} j∈N with X being linear subspaces of

⊕
j∈N X j , called here B-direct sums

(abbreviated to BDS). Surely, one of the conditions imposed onto this normed space
is the completness. We also study here several further abstract conditions for such
normed spaces, and some relations between them. This leads us to the definitions of
some special kinds of S-BDS: S-BDS, S+-BDS and M-BDS.

In practice the most difficult part of the proof that a given {(X, ‖ · ‖)} j∈N is a BDS
of the spaces X j is often checking the completness. Thus we formulate a result on
sufficient conditions for S-BDS and for M-BDS, which allow to omit the necessity
of a direct proof of the completness We also study close relations between the Day’s
construction and our M-BDS notion.

In Sect. 3 we consider the diagonal operators diag
j∈N

A j , being “maximal

domain”direct sums of operators A j in X j , and we collect several results on such
sums. Note, that the most important case for us is the M-BDS case, where we get the
naturally expected formula for the operator norms:

‖A‖Op = sup
j∈N

‖A j‖Op.

We also study some elementary spectral properties for such direct sums.
The most important abstract results are contained in Sect. 4. We prove that having

C0-semigroups in all the spaces X j , j ∈ Nwith growth bounds uniform in j , we obtain
a C0-semigroup on any M-BDS of X j by taking direct sums of the semigroup operators
from X j . Moreover we prove that the generator of this semigroup is a direct sum of
the appropriate generators of the semigroups on X j . (see Theorems 4.3 and 4.4).
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The results of the present paper are motivated by the general theory of stochastic
particle systems. In such a system usually in the limit of N → ∞, where N is a
number of interacting agents, the infinity hierarchy of equations is obtained for the
marginal probability densities (see [1, Chapter 8], [8] and references therein). The
main problem is the existence and uniqueness results in the appropriate Banach space
setting. The corresponding results in the mentioned references are of a weak type.
Although there are some semigroup approaches in similar contexts (see e.g. [6,11])
there is no general semigroup approach referred to the infinite hierarchies mentioned
before. This is why we decided to develop the general theory of infinite Banach direct
sums and diagonal C0-semigroups contained in Sects. 2–4.

An application to a simplified version of the infinite hierarchy of equations appear-
ing in (see [1, Chapter 8], [8] and references therein) is showed in Sect. 5. The
simplification is in that we assume the hierarchy in a case when the equations of
the hierarchy are decoupled. It follows from the assumption that during the interaction
between two agents the new state of the first agent is chosen with probability that is
independent of the current state of the second agent. From the mathematical point of
view the assumption leads to the diagonal operator.

The main goal is there to show that thanks to the abstract results of the previous
sections, the appropriate system can be solved in a „strong” way for some particular
initial conditions.

To make the presentation more convenient some more technical proofs and addi-
tional facts are collected in the Appendix.

2 Infinite Banach direct sums

2.1 General notation

Having a normed space (Y, ‖ · ‖) we shall often use here the common shorter notation
Y for it, if the choice of the norm ‖ · ‖ is fixed or standard. The symbols

Y→,
Y

n→+∞
→,

are then used for the convergence of sequences in this space. C-sequence is here the
abbreviation for Cauchy sequence. We shall also use the abbreviation: Y is a norm
subspace of X, which means here that Y is the linear subspace of the normed space X
and the norm in Y is just the restriction to Y of the norm in X (i.e.: Y is a subspace of
X in the normed spaces sense).

The linear space of the all complex functions (sequences) on N is denoted here by

�(N)

and �p(N) is the standard p-summable complex sequence space with ‖ f ‖ :=
(∑

j∈N | f j |p
) 1

p
for 1 ≤ p < +∞. �∞(N) is the bounded complex sequence space

with ‖ f ‖ := sup j∈N | f j | and c0(N) is the norm subspace of �∞(N), consisting of all
the sequences converging to 0.
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The operator norm of linear map A between normed spaces Y1 �= {0} and Y2 is
denoted by

‖A‖Op.

The symbols

L(Y ), C(Y ), B(Y )

denote here the spaces/sets of linear, closed, and bounded operators on the normed
space Y , respectively, in the usual meaning, i.e.: A ∈ L(Y ) means that the domain
D(A) of A is a linear subspace of Y and A : D(A) −→ Y is a linear map; A ∈ C(Y )

means that A ∈ L(Y ) and A is closed in the graph sense, and A ∈ B(Y ) means that
A ∈ L(Y ), D(A) = Y and ‖A‖Op < +∞ (so A is continuous).

Let us adopt here the following notation for the “generalized inverse operator” of
A ∈ L(Y ). For A such that Ker A = {0} the symbol A−1• denotes the operator in
L(Y ) being the inverse map to A treated as the map A : D(A) −→ Ran A, i.e.,

∀x,y∈Y

(
A−1•x = y ⇐⇒ Ay = x

)
. (2.1)

In particular D(A−1•) = Ran A and Ran (A−1•) = D(A). When Ran A = Y then
obviously A−1• = A−1, with the common meaning of −1. Using the notions Ker and
−1• we can easily express the standard notions of the point spectrum σp(A) of A, of
the resolvent ρ(A) of A and of the spectrum σ(A) of A for an arbitrary A ∈ L(Y ),
Y �= {0}, because for λ ∈ C, we have:

λ ∈ σp(A) ⇐⇒ Ker (A − λ) �= {0}, (2.2)

λ ∈ ρ(A) ⇐⇒ Ker (A − λ) = {0} and (A − λ)−1• ∈ B(Y ), (2.3)

λ ∈ σ(A) ⇐⇒ λ �∈ ρ(A); (2.4)

by ‖A‖sp we denote the spectral norm for bounded operator A
We shall use here also the following notions concerning maps F : Y1 −→ Y2

between two normed spaces (Y1, ‖ · ‖1) and (Y2, ‖ · ‖2):

• F is norm-monotonic iff for any y, y′ ∈ Y1 ‖y‖1 ≤ ‖y′‖1 �⇒ ‖F(y)‖2 ≤
‖F(y′)‖2.

• F is a similarity iff there exists a constant C ≥ 0 such that for any y ∈
Y1 ‖F(y)‖2 = C‖y‖1.

Some notation is also placed in the proper subsections.

2.2 Formal direct sums and its base subspaces

Consider Banach spaces (X j , ‖ · ‖ j ), j ∈ N. Denote the linear space being the direct
sum1 of all the linear spaces X j by

1 The name product instead of “direct sum” is also very popular, especially in set theory and topology
context. Then also the „multiplicative” notation

∏
or × instead of ⊕ is used.
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⊕

j∈N
X j ,

i.e.,
⊕

j∈N X j is the set of all the sequences f = { f j
}

j∈N such that ∀ j∈N f j ∈ X j ,
with the standard pointwise linear structure. We call here

⊕
j∈N X j the formal direct

sum of the above spaces.
Fix r ∈ N. The “copy of Xr in

⊕
j∈N X j ” is denoted by X̃r , i.e.

X̃r :=
⎧
⎨

⎩
f ∈
⊕

j∈N
X j : ∀ j �=r f j = 0

⎫
⎬

⎭
.

For u ∈ Xr the symbol ũr denotes the appropriate “copy of u in
⊕

j∈N X j ”:

(
ũr )

j :=
{

u for j = r
0 for j �= r,

and Ir : Xr −→⊕ j∈N X j is the map given by

Ir (u) := ũr , u ∈ Xr . (2.5)

Consider also “the r -th coordinate map” pr :⊕ j∈N X j −→ Xr :

pr f := fr , f ∈
⊕

j∈N
X j , (2.6)

and “the natural projection onto X̃r ”, i.e. the map πr :⊕ j∈N X j −→⊕ j∈N X j given
by:

πr ( f ) :=
{

fr for j = r
0 for j �= r,

f ∈
⊕

j∈N
X j , (2.7)

i.e., πr := Ir ◦ pr , and we have X̃r = Ran Ir = Ran πr .
Define also “the cut-off projection” Pr :⊕ j∈N X j −→⊕ j∈N X j :

Pr f :=
{

f j for j ≤ r
0 for j > r,

f ∈
⊕

j∈N
X j . (2.8)

Denote

Xfin :=
⎧
⎨

⎩
f ∈
⊕

j∈N
X j : ∃r∈N∀ j>r f j = 0

⎫
⎬

⎭
.

In particular X̃r ⊂ Xfin and Xfin is the linear span of all the X̃ j -s.
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Consider the following linear subspaces of Xfin ⊂⊕ j∈N X j :

X≤r :=
⎧
⎨

⎩
f ∈
⊕

j∈N
X j : ∀ j>r f j = 0

⎫
⎬

⎭
, r ∈ N.

We have thus X≤r = RanPr and Xfin =⋃r∈N X≤r .
For f, g ∈⊕ j∈N X j denote also

f � g ⇐⇒ (∀ j∈N ‖ f j‖ j ≤ ‖g j‖ j
)
.

We shall be interested only in such linear subspaces X of
⊕

j∈N X j which satisfy

Xfin ⊂ X. (2.9)

Each such X is called here a base subspace of
⊕

j∈N X j , and we use the notation
X �
⊕

j∈N X j for such a case. If, moreover, X is a normed space with a norm ‖ · ‖
then we call it a normed base subspace of

⊕
j∈N X j , and we use the similar notation

(X, ‖ · ‖) �
⊕

j∈N X j .

2.3 BDS and S-BDS

We distinguish some normed base subspaces called here B-direct sums.

Definition 2.1 A normed base subspace (X, ‖ · ‖) of
⊕

j∈N X j is a B-direct sum

(abbreviated to BDS) of the sequence
{
(X j , ‖ · ‖ j )

}
j∈N of Banach spaces iff

(i) X is a Banach space;
(ii) Xfin = X ;

(iii) I j : X j −→ X is continuous (as the map between the normed space X j and X )
for any j ∈ N.

(iv) p j |X is continuous (as the map between normed spaces X and X j ) for any j ∈ N.

We shall often simplify the use of the above BDS notion by writing something like:
X is a BDS of the spaces X j , and similarly for some stronger versions of BDS, which
we introduce later.

Example 2.2 Let X j = C for any j ∈ N (with the absolute value as the norms). So
we have

⊕
j∈N X j = C

N = �(N). Let us choose X := �p(N) for p ∈ [1;+∞).
Obviously, �p(N) is a BDS of spaces C for all p ∈ [1;+∞). But for “p = +∞”
the similar fact is not true, because the above density condition (ii) is not satisfied.
However, we can consider the norm subspace c0(N) of �∞(N), which is obviously
also a BDS of spaces C.

There exists a well known generalization of the above construction (see e.g. [7]).
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40 M. Lachowicz, M. Moszyński

Example 2.3 Now the above choice of constant sequence of the spaces with one-
dimensional space C is replaced by an arbitrary sequence X = {(X j , ‖ · ‖ j )

}
j∈N

of Banach spaces. With the previous “scalar context” it is natural to denote here
�(N,X ) :=⊕ j∈N X j and

�p(N,X ) := { f ∈ �(N,X ) : ‖ f ‖p,X < +∞}, 1 ≤ p ≤ +∞,

c0(N,X ) := { f ∈ �(N,X ) : lim
j→+∞ ‖ f j‖ j = 0},

where ‖ f ‖p,X :=
(∑

j∈N ‖ f j‖p
j

) 1
p

when p < +∞ and ‖ f ‖∞,X := sup j∈N ‖ f j‖ j

for any f ∈ �(N,X ). The restrictions of ‖ · ‖p,X and ‖ · ‖∞,X to �p(N,X ) (1 ≤ p ≤
+∞) and to c0(N,X ), respectively, are choosen for the norms here. Then it is known
[7] that �p(N,X ) for 1 ≤ p ≤ +∞ and c0(N,X ) are Banach spaces. Knowing this
we can immediately check that �p(N,X ) for 1 ≤ p < +∞ and c0(N,X ) are BDS of
the spaces X j . Note, that condition (iii) of the definition of BDS is satisfied “with the
excess” in those cases—hereI j : X j −→ X̃ j are even isometries between the normed
space X j and the normed subspace X̃ j of X . Hovever this is not a necessary property
of BDS (see e.g. Example 2.18, where similar but weighted classes are considered)
and we do not need it for purposes of this paper.

BDS is the “weakest” variant of the notion of “infinite direct sum of Banach spaces”
considered here. This weakness is related to the condition (ii), which does not say
anything on a concrete way of approximating the vectors of X by the vectors of Xfin.
In the next notion the “approximation by cut-off” is postulated.

Definition 2.4 A normed base subspace (X, ‖ · ‖) of
⊕

j∈N X j is an S-B-direct sum

(abbreviated to S-BDS) of the sequence
{
(X j , ‖ · ‖ j )

}
j∈N of Banach spaces iff it is a

BDS of
{
(X j , ‖ · ‖ j )

}
j∈N and

(ii’) ∀ f ∈X ‖ f − Pr f ‖ r→+∞→ 0.

One can easily see that all the examples of BDS from Example 2.3 (and thus also
from Example 2.2) are also the examples of S-BDS.

Open Question 2.5 How to construct a BDS which is not an S-BDS? Is it possible?

2.4 Some abstract properties and special kinds of S-BDS

We study here some abstract conditions that could be satisfied by a normed base
subspace (X, ‖ · ‖) of

⊕
j∈N X j . Most of them are typical conditions satisfied in the

cases of �p(N,X ) (with 1 ≤ p < +∞) and of c0(N,X ). Some of them are often very
simple to check in concrete cases. They include also all the conditions which already
appeared in the definitions of BDS and S-BDS.
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Definition 2.6 Let (X, ‖ · ‖) �
⊕

j∈N X j . We say that X (more precisely: (X, ‖ · ‖))
satisfies2:

(coor) if ∀r∈N pr |X is continuous, i.e.

∀r∈N∃Cr >0∀ f ∈X ‖ fr‖r ≤ Cr‖ f ‖;

(inj) if ∀r∈N Ir : Xr −→ X is continuous, i.e.

∀r∈N∃Dr >0∀u∈Xr ‖ũr‖ ≤ Dr‖u‖r ;

(iso) if ∀r∈N Ir : Xr −→ X̃r is an isomorphism, i.e.

∀r∈N∃Dr ,dr >0∀u∈Xr dr‖u‖r ≤ ‖ũr‖ ≤ Dr‖u‖r ;

(sim) if ∀r∈N Ir : Xr −→ X is a similarity, i.e.

∀r∈N∃Cr ≥0∀u∈Xr ‖ũr‖ = Cr‖u‖r ;

(pointbound) if

∀ f ∈X sup
r∈N

‖Pr f ‖ < +∞;

(proj − −) if ∀r∈N Pr |X : X −→ X is continuous , i.e.

∀r∈N∃Kr >0∀ f ∈X ‖Pr f ‖ ≤ Kr‖ f ‖;

(proj−) if

∃C>0∀ f ∈X sup
r∈N

‖Pr f ‖ ≤ C‖ f ‖;

(proj) if

∀ f ∈X sup
r∈N

‖Pr f ‖ ≤ ‖ f ‖;

(proj+) if

∀ f ∈X sup
r∈N

‖Pr f ‖ = ‖ f ‖;

2 In some cases it would be somewhat more correctly to say “(X, ‖ · ‖)) satisfies …with respect to{
(X j , ‖ · ‖ j )

}
j∈N”.
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(proj + −) if

∃C,c>0∀ f ∈X c‖ f ‖ ≤ sup
r∈N

‖Pr f ‖ ≤ C‖ f ‖;

(ban) if X is a Banach space;
(bel) if

∀ f ∈⊕ j∈N X j

(

sup
r∈N

‖Pr f ‖ < +∞ �⇒ f ∈ X

)

; (2.10)

(bel−) if

∀ f ∈⊕ j∈N X j

({Pr f }r≥1 is a C-sequence �⇒ f ∈ X
) ;

(bel − +) if

∀ f ∈⊕ j∈N X j

(

{Pr f }r≥1 is a C-sequence �⇒
(

f ∈ X and Pr f
X

r→+∞
→ f

))

;

(den) if Xfin = X ;
(appr) if

∀ f ∈X ‖ f − Pr f ‖
r→+∞

→ 0; (2.11)

(incr) if

∀r≥s≥1∀ f ∈⊕ j∈N X j ‖Pr f ‖ ≥ ‖Ps f ‖;

(mono) if

∀ f,g∈Xfin ( f � g �⇒ ‖ f ‖ ≤ ‖g‖) ;

(major) if

∀ f,g∈⊕ j∈N X j (( f � g and g ∈ X ) �⇒ ( f ∈ X and ‖ f ‖ ≤ ‖g‖)) .

Example 2.7 The spaces �p(N,X ) for 1 ≤ p < +∞ satisfy all the above conditions.
Typically (even for the scalar case of the Example 2.2) c0(N,X ) do not satisfy the
condition (bel) and �∞(N,X ) do not satisfy the condition (appr) nor (den), but both
spaces always satisfy the remaining conditions.

Remark 2.8 Replacing the norm in X or the norms in X j by any equivalent norms we
do not change the BDS nor the S-BDS property. More precisely, if (X, ‖ · ‖) is a BDS
(resp. S-BDS) of the sequence

{
(X j , ‖ · ‖ j )

}
j∈N of Banach spaces, the norm ‖ · ‖′ in

X is equivalent to ‖ ·‖ and the norms ‖ ·‖′
j in X j are equivalent to ‖ ·‖ j for j = 1, . . .,
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then (X, ‖ · ‖′) is a BDS (resp. S-BDS) of the sequence
{
(X j , ‖ · ‖′

j )
}

j∈N. Also the

properties (coor), (inj), (iso), (pointbound), (proj−−), (proj−), (proj+−), (ban),
(bel), (bel−), (bel − +), (den), (appr) do not change under replacing the norm in X
or the norms in X j by any equivalent norms.

The proof of this remark is obvious directly by the definitions of all the properties
mentioned there.

Using Remark 2.8 one can easily construct examples of such (X, ‖·‖) �
⊕

j∈N X j

that satisfy all the properties mentioned in the remark, but do not satisfy: (proj),
(proj+), (incr), (mono). It suffices to “deform equivalently” (in an appropriate man-
ner) the norm in one of BDS-s from Examples 2.2 and 2.3. In particular, (proj+) does
not have to hold in each S-BDS. So we distinguish here two special types of S-BDS.

Definition 2.9 A normed base subspace (X, ‖ · ‖) of
⊕

j∈N X j is

• a S+-B-direct sum (abbreviated to S+-BDS) of the sequence
{
(X j , ‖ · ‖ j )

}
j∈N of

Banach spaces if it is a S-BDS of
{
(X j , ‖ · ‖ j )

}
j∈N and X satisfies (proj+);

• a M-B-direct sum (abbreviated to M-BDS) of the sequence
{
(X j , ‖ · ‖ j )

}
j∈N of

Banach spaces if it is a S+-BDS of
{
(X j , ‖ · ‖ j )

}
j∈N and X satisfies (mono).

Let us summarize now the definitions of all the kinds of BDS, assuming that we
consider here only normed base subspaces:

BDS ⇔ (ban) & (den) & (inj) & (coor),

S-BDS ⇔ (ban) & (appr) & (inj) & (coor),

S+-BDS ⇔ (ban) & (appr) & (inj) & (coor) & (proj+),

M-BDS ⇔ (ban) & (appr) & (inj) & (coor) & (proj+) & (mono).

However, it will be clear soon by Proposition 2.11, that the last definition can be
much simplified—see Corollary 2.12. In Theorem 2.14 some convenient sufficient
conditions for S-BDS and M-BDS are formulated.

2.5 “The distance” between BDS, S-BDS and S+-BDS, and relations between
the abstract properties

On the other hand each of our particular types of BDS (S-BDS, S+-BDS and M-BDS)
automatically satisfies more conditions from Definition 2.6.

Theorem 2.10 If X is a BDS of spaces X j , then it satisfies (bel −+), (proj−−) and
(iso). If it is an S-BDS of spaces X j , then it satisfies also (pointbound) and (proj+−).
If it is an S+-BDS of spaces X j , then it satisfies also (incr). If it is an M-BDS of spaces
X j , then it satisfies also (sim) and (major).

Moreover:

(a) If X is an BDS of spaces X j , then the following conditions are equivalent:
(i) X is an S-BDS of spaces X j ;
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(ii) X satisfies (pointbound);
(iii) X satisfies (proj−);
(iv) X satisfies (proj + −).

(b) If X is an S-BDS of spaces X j , then the formula

‖ f ‖+ := sup
r∈N

‖Pr f ‖, f ∈ X (2.12)

defines a norm in X which is equivalent to ‖ · ‖ and (X, ‖ · ‖+) is an S+-BDS of
spaces X j .

We shall prove this result later, after discussing some basic relations between the
considered properties.

Proposition 2.11 Suppose (X, ‖ · ‖) �
⊕

j∈N X j .

1. If X satisfies (mono), then it satisfies (incr).
2. If X satisfies (incr), then

∀ f ∈⊕ j∈N X j sup
r∈N

‖Pr f ‖ = lim
r→+∞ ‖Pr f ‖. (2.13)

3. If X satisfies (appr), then it satisfies (pointbound) and

∀ f ∈X ‖ f ‖ = lim
r→+∞ ‖Pr f ‖. (2.14)

4. If X satisfies (coor) and (inj), then it satisfies (proj − −).
5. If X satisfies (ban), (pointbound) and (proj − −), then it satisfies (proj−).
6. If X satisfies (appr) and (proj−), then it satisfies (proj + −).
7. If X satisfies (den) and (proj−), then it satisfies (appr).
8. If (appr) and (proj), then (proj+) and moreover

∀ f ∈X ‖ f ‖ = lim
r→+∞ ‖Pr f ‖ = sup

r∈N
‖Pr f ‖. (2.15)

9. If X satisfies (appr) and (mono), then it satisfies (proj+) and moreover (2.15).
10. Suppose that X satisfies (inj) and let r ∈ N. If f, f (n) ∈ X≤r for any n ∈ N and

f (n)
j

X j
n→+∞→ f j for any j = 1, . . . , r , then f (n) X

n→+∞→ f .

11. If X satisfies (coor), then X≤r and X̃r are closed subspaces of X for any r ∈ N.
12. Suppose that X satisfies (inj), (coor) and (ban), then it satisfies (iso).
13. If X satisfies (mono), then it satisfies (iso) and (sim), and in particular (inj) holds.
14. If X satisfies (mono) and (proj − −), then it satisfies (coor).
15. If X satisfies (proj), then it satisfies (incr).
16. If X satisfies (bel), then it satisfies (bel−).
17. If X satisfies (ban) and (coor), then it satisfies (bel − +).
18. If X satisfies (mono), (bel−) and (appr), then it satisfies (major).

For the proof see Appendix “The proof of Proposition 2.11” section.
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Proof of Theorem 2.10 The proof is based on the appropriate parts of Proposi-
tion 2.11—the numbers of the parts refer to this proposition. When X is BDS, then we
get (bel − +) from part 17., (proj − −) from part 4. and (iso) from part 11. When X
is S-BDS, then we get (pointbound) from part 3. and (proj + −) from parts 5. and 6.
If X is S+-BDS, then we get (incr) from part 15. For X being M-BDS we get (sim)
from part 13 and (major) from part 18.

Let us prove now the following implications of part a) of the theorem:

(i) �⇒ (ii) we get from part 3;
(ii) �⇒ (iii) we get from the first part (just proved) of the theorem and part 5;
(iii) �⇒ (i) It suffices to use part 7;
(iii) �⇒ (iv) We use the previuos implication and part 6;
(iv) �⇒ (iii) — it is obvious by the definitions of (proj−) and (proj + −).

Having all these implications we get a).
To obtain b) note first that the formula (2.12) for ‖ f ‖+ makes sense for any f ∈ X ,

because (pointbound) is satisfied by the part a). And to prove that ‖ · ‖+ satisfies all
the conditions for norm in X we just need to use that ‖ · ‖ satisfied them and that Pr

are linear operators. These two norms are equivalent—this is just exactly the meaning
of (proj + −) which holds by part a). To finish the proof of b) we have only to prove
that for any f ∈ X

sup
n∈N

‖Pn f ‖+ = ‖ f ‖+. (2.16)

Denote An := {‖Pr f ‖ : r ≤ n}. For f ∈ X and n ≥ 1 we have by definition

‖Pn f ‖+ = sup
r∈N

‖Pr (Pn f )‖ = sup
r≤n

‖Pr f ‖ = sup An .

Thus using the formula for supremum of a general sum of subsets of R, we get

sup
n∈N

‖Pn f ‖+ = sup{sup An : n ∈ N} = sup

(
⋃

n∈N
An

)

.

But
⋃

n∈N An = {‖Pn f ‖ : n ∈ N}, hence we finally get

sup
n∈N

‖Pn f ‖+ = sup
n∈N

‖Pn f ‖ = ‖ f ‖+.

��

Corollary 2.12 For normed base subspaces

M-BDS ⇔ (ban) & (appr) & (mono).

Proof See Proposition 2.11 parts 9., 13. and 14. ��
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2.6 Some sufficient conditions for S-BDS and for M-BDS. Completness almost
for free…

Usually the most complex part of the proof that a normed base subspace is a BDS
of the spaces X j is checking the completness (condition (i) of the definition, denoted
also by (ban)). We shall formulate here some general and easy to check sufficient
conditions for S-BDS and for M-BDS, which allow us to omit the necessity of a direct
proof of completness. As we shall see—the key property allowing to omit it is the one
we called (bel) (see (2.10)), which is in fact usually much easier to check than (ban).
In some sense (bel) helps us “even when it is not satisfied” (as in the case of the space
c0(N,X ), where it does not hold, but it holds in the larger space �∞(N,X )). All the
remaining sufficient conditions we shall use are some necessary conditions. The results
presented here generalize the standard methods used in the proofs of completness for
�p(N,X ) (with 1 ≤ p < +∞) and for c0(N,X ).

For (X, ‖ · ‖) �
⊕

j∈N X j let us denote:

Xappr :=
{

f ∈ X : ‖ f − Pn f ‖
n→+∞

→ 0

}

.

Remark 2.13 Xappr is a linear subspace of X satisfying Xfin ⊂ Xappr ⊂ Xfin. If X
satisfies (proj−), then Xappr = Xfin.

Proof One obtains immediately the first part by the linearity of the projections Pn and
by the fact that Xfin = ⋃r∈N X≤r = ⋃r∈N RanPr and that PnPr = Pr for n ≥ r .
If X satisfies (proj−), then Xfin, treated as a norm subspace of X , satisfies (den) and
(proj−). Hence by Proposition 2.11 part 7. X satisfies (appr), i.e. Xfin ⊂ Xappr. ��
Theorem 2.14 Suppose that

{
X j
}

j∈N is a sequence of Banach spaces and (X, ‖ · ‖)

is a normed base subspace of
⊕

j∈N X j .

1. If X satisfies (coor), (inj), (proj + −) and (bel), then X is a Banach space,
Xappr = Xfin and Xfin is an S-BDS of spaces X j . In particular, if X satisfies
(coor), (inj), (proj + −), (bel) and (den), then X is an S-BDS of spaces X j .

2. If X satisfies (mono), (proj+−) and (bel), then X is a Banach space, Xappr = Xfin

and Xfin is an M-BDS of spaces X j . If X satisfies (mono), (appr) and (bel), then
X is an M-BDS of spaces X j .

Proof 1. Let us prove the completness of X, assuming that (coor), (inj), (proj + −)

and (bel) hold. First, using (proj + −), choose real positive c and C such that

∀ f ∈X c‖ f ‖ ≤ sup
r∈N

‖Pr f ‖ ≤ C‖ f ‖. (2.17)

Consider a Cauchy sequence
{

f (n)
}

n≥n0
in X . We shall prove its convergence, so

let ε > 0. Choose first N ≥ n0 such that

∀n,m≥N ‖ f (n) − f (m)‖ < ε. (2.18)
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For any j ∈ N, by (coor),
{

f (n)
j

}

n≥n0
is a Cauchy sequence in X j , so it is

convergent in X j . Let g be such the element of
⊕

j∈N X j that f (n)
j

X j
n→+∞→ g j for

any j ∈ N.
Now, consider an arbitrary r ∈ N and let n ≥ N . For any j = 1, . . . , r we have

(
Pr
(

f (n) − f (m)
))

j
= f (n)

j − f (m)
j

X j

m→+∞
→ f (n)

j − g j =
(
Pr
(

f (n) − g
))

j

and by (inj) and by Proposition 2.11 part 10. we get

Pr ( f (n) − f (m))
X

m→+∞
→ Pr ( f (n) − g).

Thus, using (2.17) and (2.18), we obtain

‖Pr ( f (n) − g)‖ = lim
m→+∞ ‖Pr ( f (n) − f (m))‖ ≤ Cε,

and hence supr∈N ‖Pr ( f (n) − g)‖ ≤ Cε (note that c, C are “r - independent”).
Therefore by (bel) f (n) − g ∈ X for any n ≥ N . So, in particular, g ∈ X and the
LHS inequality from (2.17) can be used also for f (n) − g, which gives

c‖ f (n) − g‖ ≤ sup
r∈N

‖Pr ( f (n) − g)‖ ≤ Cε.

We get ‖ f (n) − g‖ ≤ C
c ε for any n ≥ N , so f (n) X

n→+∞→ g is proved, and (ban)
is satisfied for X . Thus Xfin is also a Banach space and by Remark 2.13 we get
Xappr = Xfin. This means that Xfin satisfies (ban), (appr), (inj) and (coor), i.e. it
is an S-BDS of spaces X j .

2. Assume (mono), (proj + −) and (bel) for X . In particular we have (proj − −).
We get (inj) and (coor) for X using parts 13. and 14. of Proposition 2.11. So using
the first part of the theorem we get (ban) for X . Moreover Xappr = Xfin and Xfin is
an S-BDS of spaces X j . To prove that it is also an M-BDS it suffices to prove that
Xfin satisfies (proj+), but this property follows from part 9. of Proposition 2.11
used to the space Xfin.
Now assume (mono), (appr) and (bel) for X . From (mono) and (appr) we get
(proj+), and thus also (proj + −) for X , by part 9. of Proposition 2.11. Now the
above proved part of the theorem gives that Xappr is an M-BDS of spaces X j , but
by (appr) we have Xappr = X . Therefore X is an M-BDS. ��

Note that both parts of this theorem generalize e. g. the case of �p(N,X ) with
1 ≤ p < +∞ (see Examples 2.3, 2.7). Note also that both assertions concerning the
(ban) property of X works also for �∞(N,X ) (see Examples 2.3, 2.7 again) and the
assertions on Xfin work for c0(N,X ).
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2.7 Some more general examples of M-BDS: Day’s construction

There exists a generalization of such constructions as �p(N,X ) and c0(N,X ) from
Example 2.3. It is given by Day’s construction3 - see [4, Def. 2, Sect. 2, p. 35]. Let
us recall it for the case of the index set equal N. A full function space (on N) is any
Banach space (F, ‖ · ‖F ) such that F is a linear subspace of the scalar sequence space
�(N) (real or complex case) and the following condition holds

∀h′,h∈�(N)

(
h ∈ F and ∀n∈N |h′

n| ≤ |hn|
) �⇒ (h′ ∈ F and ‖h′‖F ≤ ‖h‖F

)
. (2.19)

Now, for a sequence X = {(X j , ‖ · ‖ j )
}

j∈N of Banach spaces we consider the

substitution space4 (of X in F) denoted by F⊕
j∈N X j and defined as follows:

F
⊕

j∈N X j :=
⎧
⎨

⎩
f ∈
⊕

j∈N
X j : {‖ f j‖ j

}
j∈N ∈ F

⎫
⎬

⎭
,

and for f ∈ F⊕
j∈N X j the norm is given by

‖ f ‖F,X := ‖ {‖ f j‖ j
}

j∈N ‖F .

Proposition 2.15 ([4, (10), Sect. 2,p. 35]5)
If F is a full function space and X j are Banach spaces for any j ∈ N, then

F⊕
j∈N X j is a Banach space.

The natural question is:

What should be extra assumed on the space F to get F⊕
j∈N X j being one of the

BDS types?

It turns out that adding only the natural assumption on the density of �fin(N) we
immediately get the M-BDS.

Theorem 2.16 Suppose that F is a full function space, �fin(N) ⊂ F and �fin(N) is
dense in F. If X = {(X j , ‖ · ‖ j )

}
j∈N is a sequence of Banach spaces, then F⊕

j∈N X j

is an M-BDS of X .

3 Most probably, the construction was introduced by Day - see [3,4].
4 Note some mishmash in the existing terminology: some mathematicians use the notion substitution space
instead of the notion full function space formulated above (or instead of some notion „equivalent” to f.f.
space)—see e.g [9]. This change should be treated as a mistake, since it is not consistent with the Day
terminology of [4]. Unfortunately, [4] contains some misprints slightly complicating the decision to choose
his original terminology…
5 The result in Day’s book is formulated as: “all X j are complete ⇐⇒ F⊕

j∈N X j is complete”, but there

is a small mistake. One can easily see that the part “⇐�” is not true without some extra asumptions on the
space F . E.g. F cannot be a subspace of functions vanishing in a certain point.
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For the proof see Appendix “The proof of Theorem 2.16” section.

Remark 2.17 The converse of the above result is also true, namely: If X is an M-BDS
of a sequence of Banach spaces X , then there exists such a full function space F that
�fin(N) ⊂ F , �fin(N) is dense in F and X = F⊕

j∈N X j .
We shall not give here the details of the proof—we shall only give the construction

of the appropriate full function space F for the M-BDS X . We define:

F := {h ∈ �(N) : ∃ f ∈X∀ j∈N‖ f j‖ j = |h j |},

and for h ∈ F

‖h‖F := ‖ f ‖,

where f is such an element of X that ∀ j∈N‖ f j‖ j = |h j | (one may check, that the
choice of particular f satisfying this condition does not change the value of ‖ f ‖).

Example 2.18 Let w := {w j
}

j∈N be “a weight sequence”—a sequence of positive

(> 0) numbers and let X = {(X j , ‖ · ‖ j )
}

j∈N be a sequence of Banach spaces. As in
Example 2.3 we denote here �(N,X ) :=⊕ j∈N X j and

�p
w(N,X ) := { f ∈ �(N,X ) : ‖ f ‖p,w,X < +∞}, 1 ≤ p ≤ +∞,

c0,w(N,X ) := { f ∈ �(N,X ) : lim
j→+∞ w j‖ f j‖ j = 0},

where ‖ f ‖p,w,X :=
(∑

j∈N w j‖ f j‖p
j

) 1
p

when p < +∞ and ‖ f ‖∞,w,X :=
sup j∈N w j‖ f j‖ j for any f ∈ �(N,X ). The restrictions of ‖ · ‖p,w,X and ‖ · ‖∞,w,X
to �

p
w(N,X ) (1 ≤ p ≤ +∞) and to c0,w(N,X ), respectively, are choosen for the

norms here. In particular, for the constant sequence of spacesC (i.e. X j = C) we get a
standard “weighted” generalization of scalar sequences spaces from Example 2.2 and
we use a simpler notation �

p
w(N), c0,w(N), ‖ f ‖p,w in these cases. In the general case

(for arbitrary Banach space sequence X ) we get generalization of spaces from Exam-
ple 2.3. Moreover, this is a special case of F⊕

j∈N X j —the substitution space (of X
in F) defined above with the full function space (F, ‖ · ‖F ) equall to (�

p
w(N), ‖ · ‖p,w)

or (c0(N), ‖ · ‖∞,w), respectively. Thus, by Theorem 2.16, �
p
w(N) for 1 ≤ p < +∞

and c0,w(N) is an M-BDS of X .

3 Direct sums of operators (diagonal operators)

3.1 Diagonal operators: “the maximal” choice

Suppose that (X j , ‖ · ‖ j ) are Banach spaces and that A j ∈ L(X j ) for any j ∈ N. Let
(X, ‖ · ‖) be a normed base subspace of

⊕
j∈N X j . We define “the direct sum in X”

for the above operators choosing the maximal reasonable domain in X for it.
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Definition 3.1 The direct sum of
{

A j
}

j∈N on X is the operator A ∈ L(X) denoted

by diag
j∈N

A j
6 and given by

D(A) :=
{

f ∈ X : ∀ j∈N f j ∈ D(A j ),
{

A j f j
}

j∈N ∈ X
}

, (3.1)

A f := {A j f j
}

j∈N for f ∈ D(A). (3.2)

An operator T ∈ L(X) is called diagonal iff T = diag
j∈N

A j for some sequence
{

A j
}

j∈N
of operators.

It is easily seen that the above definition can be also expressed as follows:

∀ f,g∈X

((

diag
j∈N

A j

)

f = g ⇐⇒ ∀ j∈N A j f j = g j

)

. (3.3)

3.2 The closedness, dense definitness and the boundedness of diagonal operators

We collect here several basic facts on direct sums of operators. Note that extra assump-
tions on the base space X (e.g., assumptions of a BDS kind) differ here for various
results. We start from the closedness problem.

Proposition 3.2 Suppose that (X, ‖ · ‖) �
⊕

j∈N X j and X satisfies (coor). If A j ∈
C(X j ) for any j ∈ N, then diag

j∈N
A j ∈ C(X).

Proof Let A = diag
j∈N

A j and suppose that f, g ∈ X , D(A) � f (n) X
n→+∞→ f and

A f (n) X
n→+∞→ g. Then by (coor), for any j ∈ N, we have D(A j ) � f (n)

j
X j

n→+∞→ f j

and
(

A f (n)
)

j
X j

n→+∞→ g j , so by the closedness of A j we have f j ∈ D(A j ) and

A j f j = g j . Hence
{

A j f j
}

j∈N = g ∈ X , which means that f ∈ D(A) and A f = g.
��

Let us study now the problem of density of the domain. Denote

Dfin

({
A j
}

j∈N
)

:= { f ∈ Xfin : ∀ j∈N f j ∈ D(A j )}.

If f ∈ Dfin

({
A j
}

j∈N
)

, then
{

A j f j
}

j∈N ∈ Xfin ⊂ X . Hence we always have

Dfin

({
A j
}

j∈N
)

⊂ D(diag
j∈N

A j ). (3.4)

6 Note that diag
j∈N

A j is determined not only by the choice of
{

A j
}

j∈N but also by the choice of X , however

we omit here ‘X ’ in the notation, assuming that the choice of X “is fixed”.
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Observe also, that

∀ j∈N D(A j ) = X j �⇒ Xfin = Dfin

({
A j
}

j∈N
)

⊂ D(A). (3.5)

Proposition 3.3 Suppose that (X, ‖ · ‖) �
⊕

j∈N X j and X satisfies (inj) and (den).

If A j ∈ L(X j ) and A j is densely defined for any j ∈ N, then Dfin

({
A j
}

j∈N
)

is

dense in X, and in particular diag
j∈N

A j is densely defined.

Proof We shall prove that Xfin ⊂ Dfin

({
A j
}

j∈N
)

, which gives the assertion by (den).

Let f ∈ Xfin; choose r ∈ N such that f ∈ X≤r and for any j = 1, . . . , r choose a
sequence u( j) = {u( j,n)

}
n≥1 such that D(A j ) � u( j,n) X j

n→+∞→ f j . For n ≥ 1 define

f ( j,n) :=
{

u( j,n) for j ≤ r
0 for j > r,

and f (n) := { f ( j,n)
}

j∈N ∈ ⊕ j∈N X j . For any n ≥ 1 we have f (n) ∈
Dfin

({
A j
}

j∈N
)

∩ X≤r , and for any j = 1, . . . , r

f (n)
j = f ( j,n) = u( j,n) X j

n→+∞
→ f j .

By Proposition 2.11 part 10. we get f (n) X
n→+∞→ f , i.e. f ∈ Dfin

({
A j
}

j∈N
)

. ��
In particular we immediately obtain the following result in BDS case.

Corollary 3.4 Suppose that (X, ‖ · ‖) is a BDS of a sequence
{
(X j , ‖ · ‖ j )

}
j∈N of

Banach spaces, and A j ∈ L(X j ) for any j ∈ N.

(i) If A j is densely defined for any j ∈ N, then diag
j∈N

A j is densely defined with

Dfin

({
A j
}

j∈N
)

being a dense subdomain.

(ii) If A j ∈ C(X j ) for any j ∈ N, then diag
j∈N

A j ∈ C(X).

Now we come to the boudedness of operators.

Proposition 3.5 Suppose that (X, ‖·‖) is an M-BDS of a sequence
{
(X j , ‖ · ‖ j )

}
j∈N

of Banach spaces and A = diag
j∈N

A j , where X j �= {0}, A j ∈ L(X j ) for any j ∈ N.

For any M ≥ 0 the following conditions are equivalent:

(i) A ∈ B(X) and ‖A‖Op ≤ M,
(ii) ∀ j∈N A j ∈ B(X j ) and ‖A j‖Op ≤ M.

In particular, if A ∈ B(X), then ‖A‖Op = sup j∈N ‖A j‖Op.
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Proof Suppose (ii). Let f ∈ X and let h := {A j f j
}

j∈N ∈⊕ j∈N X j . We have

‖h j‖ j ≤ M‖ f j‖ j = ‖(M f ) j‖ j , j ∈ N,

i. e., h � M f . By Theorem 2.10 we know that (major) holds for X and thus h ∈ X
and ‖h‖ ≤ ‖M f ‖ = M‖ f ‖. Hence f ∈ D(A), h = A f and ‖A f ‖ ≤ M‖ f ‖, i. e.,
(i) holds.

To get the opposite implication, assume (i), consider arbitrary j ∈ N and u ∈ X j .
Since D(A) = X ⊃ Xfin we have I j u ∈ D(A) and thus, by A = diag

k∈N
Ak , u =

(I j u) j ∈ D(A j ). Hence D(A j ) = X j , and A ◦ I j = I j ◦ A j . But by Theorem 2.10
(iso) and (sim) hold for X , which means that for some C j > 0 we have

‖I jv‖ = C j‖v‖ j for any v ∈ X j .

Thus

‖A j u‖ j = C−1
j ‖I j A j u‖ = C−1

j ‖AI j u‖ ≤ MC−1
j ‖I j u‖ = M‖u‖ j ,

and (ii) holds. Note that ‖A‖Op as well as ‖A j‖Op have been well-defined, because it
was assumed, that X j �= {0}. We have proved that (i) ⇐⇒ (ii) for any M ≥ 0, i. e. the
set of the upper bounds of the set {‖A j‖Op : j ∈ N} is equal to the set of the upper
bounds of the one point set {‖A‖Op}, hence the suprema are also equal. ��

3.3 Basic spectral properties of diagonal operators

The last results of this section concern some elementary spectral properties of general
linear operators.

Assume that (X, ‖ · ‖) �
⊕

j∈N X j and A j ∈ L(X j ) for any j ∈ N. We shall use
the following notation:

ρ∞
({

A j
}

j∈N
)

:=
⎧
⎨

⎩
λ ∈
⋂

j∈N
ρ(A j ) : sup

j∈N
‖(A j − λ)−1‖Op = +∞

⎫
⎬

⎭
.

Proposition 3.6 Assume that (X, ‖ · ‖) is an M-BDS of a sequence
{
(X j , ‖ · ‖ j )

}
j∈N

of Banach spaces and X j �= {0}, A j ∈ L(X j ) for any j ∈ N. Then:

(i) σp

(

diag
j∈N

A j

)

=
⋃

j∈N
σp(A j );

123



Infinite Banach direct sums and diagonal C0-semigroups... 53

(ii) ρ

(

diag
j∈N

A j

)

=
⎧
⎨

⎩
λ ∈
⋂

j∈N
ρ(A j ) : sup

j∈N
‖(A j − λ)−1‖Op < +∞

⎫
⎬

⎭
and

(

diag
j∈N

A j − λ

)−1

= diag
j∈N

(A j − λ)−1 for λ ∈ ρ

(

diag
j∈N

A j

)

; (3.6)

(iii) σ

(

diag
j∈N

A j

)

=
⋃

j∈N
σ(A j ) ∪ ρ∞

({
A j
}

j∈N
)

;

Proof Let A := diag
j∈N

A j . Obviously, for any λ ∈ C we have A − λ = diag
j∈N

(A j −
λ). Thus, by (2.2), we obtain (i) using Lemma 6.3 (i) to the sequence of operators{

A j − λ
}

j∈N. Similarly, we get (ii) by (2.3), using Lemma 6.3 (ii) and Proposition 3.5.
And now (iii) follows from (ii). ��
Corollary 3.7 With the assumptions of Proposition 3.6, if moreover A j ∈ C(X j ) for
any j ∈ N and there exists δ > 0 such that

‖(A j − λ)−1‖sp ≥ δ‖(A j − λ)−1‖Op, j ∈ N, (3.7)

then σ

(

diag
j∈N

A j

)

=
⋃

j∈N
σ(A j ).

See Appendix “Generalized inversion of diagonal operators and the proof of Corol-
lary 3.7” section for the proof.

4 Diagonal C0-semigroups and their generators

We prove here that having C0-semigroups7 in all the spaces X j , j ∈ N with a growth
bound uniform in j we can obtain in a natural way a C0-semigroup on an M-BDS of
X j . Moreover we shall see, that the generator of this semigroup is a direct sum of the
appropriate generators of the semigroups on X j .

4.1 The direct sum of operator functions and operator semigroups

First let us define “the direct sum of operator functions”.
Suppose that (X j , ‖ · ‖ j ) are Banach spaces, that T j : [0;+∞) −→ L(X j ) for

any j ∈ N, and that (X, ‖ · ‖) is a normed base subspace of
⊕

j∈N X j .

7 We use here the following terminology—see e.g. [5]: T is a semigroup of bounded operators on Y (Y —a
Banach space) iff T : [0;+∞) −→ B(Y ) satisfies T (s + t) = T (s)T (t) for any s, t ≥ 0 and T (0) = I ;
such a semigroup T on Y is a C0-semigroup iff limt→0+ T (t)y = y for any y ∈ Y .
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Definition 4.1 The direct sum of
{
T j
}

j∈N on X is the operator function T :
[0;+∞) −→ L(X) denoted by diag

j∈N
T j and given by

T (t) := diag
j∈N

T j (t), t ≥ 0.

Let us start from families being semigroups of bounded operators, without assuming
yet the C0 (the strong continuity) property. Note, that the assumption, that T (t) are in
B(X), and not only in L(X), enforces by Proposition 3.5 the necessity of the uniform
in j estimates for ‖T j (t)‖Op.

Remark 4.2 Assume that (X, ‖ · ‖) is an M-BDS of a sequence
{
(X j , ‖ · ‖ j )

}
j∈N of

Banach spaces, and for any j ∈ N let T j be a semigroup of bounded operators on
X j �= {0}. If M : [0;+∞) −→ [0;+∞) and

∀ j∈N
t≥0

‖T j (t)‖Op ≤ M(t),

then T := diag
j∈N

T j is a semigroup of bounded operators on X satisfying

∀t≥0 ‖T (t)‖Op ≤ M(t). (4.1)

Proof The fact that for any t ≥ 0 we have T (t) ∈ B(X) and that (4.1) holds follows
immediately from Proposition 3.5. For any f ∈ X , s, t ≥ 0, j ∈ N we have

(T (s + t) f ) j = T j (s + t) f j = T j (s)T j (t) f j = T j (s) (T (t) f ) j = (T (s)T (t) f ) j ,

i.e. T (s + t) = T (s)T (t), and (T (0) f ) j = T j (0) f j = f j , i.e. T (0) = I . ��

4.2 The C0-semigroup case and the generators

A priori, the uniform in j estimate by M(t)—the asumption of Remark 4.2—possesses
an arbitrary dependence on t . But in the assertion of this remark we get the same
estimate for the operator function T being the direct sum of the operator functions
T j . And it is a classical result, that in the case when the operator function T is a
C0-semigroup, its estimate M(t) must have very special form: Ceωt with constants
C ≥ 1 and ω ∈ R. So, restricting ourselves only to the C0-semigroup case, we are
doomed to this type of estimates, both in the assertion as well as assumption.

Theorem 4.3 Assume that (X, ‖ · ‖) is an M-BDS of a sequence
{
(X j , ‖ · ‖ j )

}
j∈N of

Banach spaces, and for any j ∈ N let T j be a C0-semigroup on X j �= {0}. Suppose
that A j ∈ L(X j ) is the generator of T j for any j ∈ N. If

∃C≥1
ω∈R

∀ j∈N
t≥0

‖T j (t)‖Op ≤ Ceωt , (4.2)
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then T := diag
j∈N

T j is a C0-semigroup on X satisfying

∀t≥0 ‖T (t)‖Op ≤ Ceωt (4.3)

and diag
j∈N

A j is the generator of T .

Proof T is a semigroup on X satisfying (4.3) by Remark 4.2. We are going to prove
that

lim
t→0+ T (t) f = f (4.4)

for any f ∈ X . But thanks to (4.3) it suffices to prove (4.4) for f ∈ Xfin only (see
[5, Chapter I, Proposition 1.3]), because X satisfies (den). Fix f ∈ Xfin and suppose
that 0 < tn n→+∞→ 0. We have f ∈ X≤r for some r ∈ N, thus using T = diag

j∈N
T j for

any n we get T (tn) f ∈ X≤r and

(T (tn) f ) j = T j (tn) f j
X j

n→+∞
→ f j , j = 1, . . . , r,

because T j is a C0-semigroup on X j . Hence by Proposition 2.11 part 10. we get (4.4),
and T is a C0-semigroup on X .

Consider the generator B ∈ L(X) of T , and denote A := diag
j∈N

A j . We are going

to prove that A = B. Let f ∈ D(B) and consider an arbitrary real sequence {tn} such
that 0 < tn n→+∞→ 0. By the definition of the generator we have

1

tn
(T (tn) f − f )

X

n→+∞
→ B f.

Hence, by (coor), for any j ∈ N

1

tn

(
T j (tn) f j − f j

) = 1

tn
((T (tn) f ) − f ) j

X j

n→+∞
→ (B f ) j ,

which means that f j ∈ D(A j ) and (B f ) j = A j f j . Therefore we get
{

A j f j
}

j∈N =
B f ∈ X and thus f ∈ D(A) with A f = B f , i.e. we obtain B ⊂ A.

We have already proved that the semigroup T generated by B satisfies the growth
estimate (4.3), which is also satisfied by all the semigroups T j generated by A j ,
j = 1, . . .. Thus by General Generation Theorem for C0-semigroups [5, Chap-
ter II,Theorem 3.8] we have

{λ ∈ C : Re λ > ω} ⊂ ρ(B) ∩
⋂

j∈N
ρ(A j ),
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with ω as in (4.3). Let λ0 := ω + 1. We have λ0 ∈ ρ(B) ∩⋂ j∈N ρ(A j ), and using
again General Generation Theorem we get

∀ j∈N ‖(A j − λ0)
−1‖Op ≤ C, (4.5)

with C as in (4.3). So, by Proposition 3.6 (ii) we obtain λ0 ∈ ρ(B) ∩ ρ(A), which
gives A = B (see, e.g. [2, Lemma p. 184]). ��

A natural question to ask is whether the sufficient conditions for diagonal operator
guaranteeing that it generates a C0-semigroup, formulated in Theorem 4.3, are also
necessary conditions. As we shall see, the answer is positive.

Denote by G(Y ) the family of all the operators from L(Y ) which generate a C0-
semigroup on Y and for C ≥ 1, ω ∈ R let G(Y, C, ω) denote the family of all the
operators from G(Y ) for which the generated C0-semigroup T satisfies the growth
estimate

∀t≥0 ‖T (t)‖Op ≤ Ceωt .

Recall that for any Banach space Y and A ∈ G(Y ) we have A ∈ G(Y, C, ω) for some
C ≥ 1, ω ∈ R (see e.g.[5, Chapter I, Proposition 1.4]).

We can summarize the relations between generation properties for A := diag
j∈N

A j

and for all the individual A j in the following theorem, being the main result of the
paper.

Theorem 4.4 Assume that (X, ‖ · ‖) is an M-BDS of a sequence
{
(X j , ‖ · ‖ j )

}
j∈N of

Banach spaces and A := diag
j∈N

A j , where X j �= {0} and A j ∈ L(X j ) for any j ∈ N.

If C ≥ 1, ω ∈ R, then A ∈ G(X, C, ω) iff A j ∈ G(X j , C, ω) for any j ∈ N.
In particular: A ∈ G(X) iff

∃C≥1
ω∈R

∀ j∈N A j ∈ G(X j , C, ω). (4.6)

Proof The part “⇐�” is contained in Theorem 4.3. Suppose that A ∈ G(X, C, ω)

and let T be the C0-semigroup on X generated by A. Fix r ∈ N. By Proposition 2.11
part 11. X̃r is a closed subspace of X . By Chernoff-Post-Widder Product Formula [5,
Chapter IV, Corollary 2.5] for any t > 0 and f ∈ X̃r we have

Rn(t) f
X

n→+∞
→ T (t) f, (4.7)

where Rn(t) ∈ B(X) is defined for sufficiently large n, say for n ≥ N (t), by the
following formula:

Rn(t) := (−n/t)n
((

A − n

t

)−1
)n

, n ≥ N (t).
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In particular the choice of N (t) is such that n
t ∈ ρ(A) for all n ≥ N (t), so by (3.6)

in Proposition 3.6
(

A − n
t

)−1 is a diagonal operator, and thus also Rn(t) is a diagonal
operator for any n ≥ N (t). As a consequence we get Rn(t) f ∈ X̃r for n ≥ N (t), and
hence, we get T (t) f ∈ X̃r by closedness of X̃r and by (4.7). So X̃r is T -invariant,
and we can consider the restriction T̃ of T to X̃r , which is a C0-semigroup on X̃r

defined by
T̃ (t) ∈ B(X̃r ), T̃ (t) := T (t) |X̃r

for t ≥ 0 (4.8)

and generated by Ã ∈ L(X̃r ) given by

Ã ∈ L(X̃r ), D( Ã) := D(A) ∩ X̃r , Ã := A |D( Ã) (4.9)

(see [5, I.1.11 and Corollary in II.2.3]). By (4.8) we have

‖T̃ (t)‖Op ≤ ‖T (t)‖Op ≤ Ceωt , (4.10)

hence Ã ∈ G(X̃r , C, ω). Moreover, by (4.9) and (3.1),

D( Ã) = { f ∈ X̃r : fr ∈ D(Ar )} = {Ir u : u ∈ D(Ar )} = Ir (D(Ar ))

and by (3.2)
Ã(Ir u) = A(Ir u) = Ir (Ar u). (4.11)

Finally by (iso) Ir : Xr −→ X̃r is an isomorphism, and we can consider the C0-
semigroup T̂ on Xr transfering of T̃ from X̃r onto Xr by I−1

r , i.e.

T̂ (t) ∈ B(Xr ), T̂ (t) := I−1
r T̃ (t)Ir for t ≥ 0. (4.12)

It is generated by Â := I−1
r Ã Ir (see, e.g., [5, II.2.1]), so by )4.11) Â = Ar , and this

gives Ar ∈ G(Xr ). But by (sim), using Lemma 6.1 and (4.10) we also have

‖T̂ (t)‖Op ≤ ‖I−1
r ‖Op‖T̃ (t)‖Op‖Ir‖Op ≤ Ceωt , t ≥ 0,

hence Ar ∈ G(Xr , C, ω). ��
Example 4.5 (Scalar diagonal generators) Consider the “scalar product case”, i.e.,
an arbitrary (X, ‖ · ‖) being an M-BDS of countable copies of C: X j = C for any
j ∈ N. Let us try to find, some explicit conditions for a diagonal operator A on X ,
which are equivalent to the condition A ∈ G(X). The equivalent condition (4.6) from
Theorem 4.4, with A = diag

j∈N
A j means in particular that each A j is densely defined,

i.e. D(A j ) = C in this case. Hence each A j is the multiplication by a number a j ∈ C:
A j x = a j x , x ∈ C. Thus, by the definition of diag

j∈N
A j , we have to consider only

the operators of the form A = Ma where Ma denotes operator of multiplication by a
sequence a = {a j

}
j∈N:

D(Ma) := { f ∈ X : a f ∈ X}, Ma f := a f for f ∈ D(Ma)
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and a f denotes the usual product of sequences:
{
a j f j
}

j∈N. Let us express now the
conditions of (4.6) in terms of the scalar sequence a. Obviously the semigroup T j

generated by A j in C is given by T j (t)x = exp(a j t)x for any x ∈ C, t ≥ 0. But

‖T j (t)‖Op = | exp(a j t)| = etRe a j ,

and hence (4.6) holds iff

{
Re a j
}

j∈N is bounded from above. (4.13)

Finally a diagonal operator A is in G(X) iff A = Ma for some a = {a j
}

j∈N satisfying
(4.13). This result generalizes the well-known result on diagonal operators generating
C0-semigroups in all the standard sequence spaces �p(N) with 1 ≤ p < +∞ and
c0(N).

5 Application to a stochastic particle system

5.1 The general model

Let us consider a system of (large) number N of individuals of a population (see [1,8]
and references therein). Every k–th individual, k = 1, . . . , N , is characterized by a
parameter

uk ∈ U ,

describing its biological (or physical) inner state, and (U, μ) is a space with a σ–
finite measure μ. In many particular applications U is a product of a discrete set and a
Lebesgue–measurable subset ofRd , d ≥ 1, and the measure μ is a product of counting
measure and the Lebesgue measure.

We assume that the evolution of the system is defined by the Markov jump processes
corresponding to N interacting individuals (see [1,8] and references therein) and
that the evolution of probability densities is given here by an evolution equation (the
so–called modified Liouville equation) defined by a (linear) generator. The standard
procedure related to taking the limit N → ∞ leads to the following infinite system of
equations (usually referred to as a hierarchy of equations)

(∂t f j )(t) = � j+1( f j+1(t)) , t ≥ 0, j = 1, 2, . . . , (5.1)

where for each t ≥ 0 the sequence
{

f j (t)
}

j≥1 satisfies f j (t) ∈ L1(U j ) for any j ,

with the product measure μ j on U j , and � j+1 : L1(U j+1) −→ L1(U j ) is given by

(� j+1h)(u1, . . . , u j )

=
j∑

s=1

∫

U2

A(us; v, w)a(v, w) h(u1, . . . , us−1, v, us+1, . . . , u j , w) dμ(v) dμ(w)
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−
j∑

s=1

∫

U

a(us, v) h(u1, . . . , u j , v) dμ(v)

for h ∈ L1(U j+1). The problem concerns the existence of a solution of (5.1), i.e.
a function: [0;+∞) � t �−→ { f j (t)

}
j≥1 := f (t) satisfying (5.1) with a certain

“rational” sense of the derivative ∂t , for a given initial data. The approach of [8]
(see also [1] and references therein) gives for some initial conditions a kind of weak
solutions—i.e. solutions which all j-th terms are differentiable (as vector functions
of t with values in Banach space L1(U j )), separately for j ∈ N—see also the notion
separately-weak solution in the next subsection. We ask now for some stronger result—
at least with some extra assumptions and some particular initial conditions.

The above model was determined in [8] by a pair of functions A and a, where

• a(u, v) has the meaning of the rate of interaction of individual with state u ∈ U
and individual with state v ∈ U; a is a measurable bounded function

a : U2 → [0;+∞) ; (5.2)

• A(u; v, w) possesses the meaning of transition probability into state u ∈ U, of
individual with state v ∈ U due to the interaction with individual with state w ∈ U;
A is a measurable function

A : U3 → [0;+∞) , (5.3)

such that for any v, w ∈ U

∫

U

A(u; v, w) dμ(u) = 1 . (5.4)

Referring to the mentioned above standard procedure (related to “the transition
N → ∞”) we are interested only in such solutions t �−→ f (t) which are so-called
admissible hierarchies8 for any t ≥ 0.

Definition 5.1 Admissible hierarchy is a sequence
{

f j
}

j≥1 such that for any j ≥ 1

(i) f j is a probability density on U j with respect to the measure μ j , i.e., f j ≥ 0 and
j∫

U
f j dμ j = 1;

(ii) f j (u1, . . . , u j ) = f j (ur1 , . . . , ur j ) , for (u1, . . . , u j ) ∈ U j and for any permuta-
tion r = {r1, . . . , r j } of the set {1, . . . , j};

(iii) f j (u1, . . . , u j ) = ∫
U

f j+1(u1, . . . , u j+1) dμ(u j+1), for (u1, . . . , u j ) ∈ U j .

8 Note the double meaning of the notion “hierarchy” here: (1)—a special kind of system of equations and
(2)—a special kind of sequence of functions (classes of functions) with growing number of variables.
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5.2 A simplified model

In the present paper, to obtain the above mentioned stronger kind of solutions, we
impose a simplifying assumption:

Assumption 5.2 The function a does not depend on the second variable, i.e.,

a(u, v) = ã(u) , for all (u, v) ∈ U2 ,

for some measurable bounded nonnegative function ã on U, and the function A does
not depend on the third variable, i.e.,

A(u; v, w) = Ã(u; v) , for all (u, v, w) ∈ U3 ,

for some measurable nonnegative function Ã such that

∫

U

Ã(u; v) dμ(u) = 1 , for all v ∈ U. (5.5)

Assumption 5.2 means that during the interaction between two individuals the new
state of the first individual is chosen with probability that is independent of the current
state of the second individual.

One can easily see that making this assumption and restricting ourselves only to
admissible hierarchies, (i.e. assuming that f (t) is an admissible hierarchy for any
t ≥ 0) we can rewrite (5.1) into the form

(∂t f j )(t) = �̃ j ( f j (t)) , t ≥ 0, j = 1, 2, . . . , (5.6)

where �̃ j : L1(U j ) −→ L1(U j ) is given by

(�̃ j h)(u1, . . . , u j ) =
j∑

s=1

∫

U

Ã(us; v)ã(v)h(u1, . . . , us−1, v, us+1, . . . , u j )dμ(v)

−
⎛

⎝
j∑

s=1

ã(us)

⎞

⎠ h(u1, . . . , u j ) (5.7)

for each h ∈ L1(U j ). So we obtain a case of “ j - separation” of all the equations of
the system.

We can first study a more general problem related to system (5.6):

Can this system be solved, without restricting only to solutions t �−→ f (t) being
admissible hierarchies for any t ≥ 0?

Having general solutions t �−→ f (t)—for all such initial conditions f (0) which
satisfy f j (0) ∈ L1(U j ) for any j , we can study also solution satisfying a particular
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initial condition which is an admissible hierarchy. And we can ask then, whether f (t)
is an admissible hierarchy for all t ≥ 0. We shall now show easily, that this problem
can be immediately (and positively) solved by analyzing the equations of system
(5.6) separately for each j , in the standard C0-semigroup sense in the Banach spaces
L1(U j ).

By Tonelli and Fubini theorems it is easy to see that under Assumption 5.2 each
operator �̃ j is a bounded operator in L1(U j ). In fact, by (5.7), we have

‖�̃ j h‖L1(U j ) ≤ 2 j‖ã‖L∞(U)‖h‖L1(U j ) , (5.8)

for each h ∈ L1(U j ).
Now, for each separate j , let us define T j to be the C0-semigroup in L1(U j ) gen-

erated by �̃ j . These semigroups are operator norm continuous, by the boudedness of
the generators, and

T j (t) = et�̃ j for any t ≥ 0. (5.9)

Let us also fix the initial data—a sequence
{

Fj
}

j≥1 such that

Fj ∈ L1(U j ) for any j ≥ 1 (5.10)

and for each t ≥ 0 define the sequence f (t) = { f j (t)
}

j≥1 as follows:

f j (t) := T j (t)Fj , j ≥ 1.

Let (X, ‖ · ‖) be a fixed normed space with X ⊂ ⊕ j∈N L1(U j ). We shall use the
following terminology to make the formulations of our statements precise: a function
[0;+∞) � t �−→ f (t) = { f j (t)

}
j≥1 with f j (t) ∈ L1(U j ) for any j ≥ 1, t ≥ 0 is

• a separately-weak solution of (5.6) iff [0;+∞) � t �−→ f j (t) ∈ L1(U j ) are
differentiable as L1(U j ) vector-valued functions for all j ≥ 1 and (5.6) holds
with ∂t meaning the derivative of an L1(U j ) vector-valued function for each j .

• a X -strong solution of (5.6) iff f (t) ∈ X for any t ≥ 0 and [0;+∞) � t �−→ f (t)
is differentiable as X vector-valued function and

(∂X,t f )(t) =
{
�̃ j ( f j (t))

}

j≥1
, t ≥ 0, (5.11)

holds with ∂X,t meaning the derivative of an X vector-valued function.

Note, that to be an X -strong solution, is not only the differentiability kind problem

for t �−→ f (t). It is also the requirement that
{
�̃ j ( f j (t))

}

j≥1
∈ X for any t ≥ 0.

Obviously each X -strong solution is automatically a separately-weak solution, if X is
such a space that all the coordinate maps X � g �−→ g j ∈ L1(U j ) are continuous.

Corollary 5.3 Suppose that Assumption 5.2 and (5.10) hold. The function [0;+∞) �
t �−→ f (t) defined above is a separately-weak solution of (5.6), and it is the unique
separately-weak solution for the initial data F = {Fj

}
j≥1. If, moreover, F is an

admissible hierarchy, then f (t) is an admissible hierarchy for any t ≥ 0.
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Before the proof we need the following two lemmas.

Lemma 5.4 For each j ≥ 1 the semigroup T j is positive9 and for any h ∈ L1(U j )

∫

U j
T j (t)h dμ j =

∫

U j
h dμ j . (5.12)

Proof By (5.7) the operator �̃ j +γ j I is a positive (and bounded) operator in L1(U j ),
with I —the identity operator and γ j := j‖ã‖L∞ . By the series formula for the expo-

nent et (�̃ j +γ j I ) is also positive for any t ≥ 0. And hence the operator

T j (t) = et (�̃ j +γ j I )e−tγ j

is positive for any t ≥ 0.
For each h ∈ L1(U j ), by (5.7) and (5.5) we have

∫

U j

�̃ j h dμ j = 0 (5.13)

and thus, again by the series formula for the exponent, we get (5.12). ��
We have:

Lemma 5.5 Suppose that X and Y are Banach spaces, A is a generator of the C0-
semigroup TA in X, B is a generator of the C0-semigroup TB in Y and S : X −→ Y
is a bounded operator satisfying

∀x∈D(A) Sx ∈ D(B)&S Ax = BSx .

Then for any t ≥ 0 STA(t) = TB(t)S.

The above is obvious e.g. by the constantness of the function [0;+∞) � t �−→
STA(t)x − TB(t)Sx for x ∈ D(A).

Proof of Corollary 5.3 The first part of the assertion, is just obvious from the basic
C0-semigroup theory separately on each “level” j ; to get the uniqueness we use the
abstract Cauchy problem theory for the C1 solutions (see [10, Th. 1.3 Chapter 4])—it
suffices to observe that for each separately-weak solution [0;+∞) � t �−→ f (t)
for any j ≥ 1 the function [0;+∞) � t �−→ f j (t) is automatically a C1 function
(as L1(U j ) vector-valued function), because of the continuity of the generator �̃ j .
Now assume that

{
Fj
}

j≥1 is an admissible hierarchy. Using Lemma 5.4 we see that

f (t) = { f j (t)
}

j≥1 satisfies part (i) of the definition of admissible hierarchy for any
t ≥ 0.

9 i.e., for any t ≥ 0 and for any 0 ≤ h ∈ L1(U j ) we have T j (t)h ≥ 0.
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Observe that, if g ∈ L1(U j+1) and h ∈ L1(U j ) is given by

h(u1, . . . , u j ) =
∫

U

g(u1, . . . , u j+1) dμ(u j+1)

for (u1, . . . , u j ) ∈ U j , then by (5.7) and (5.5)

∫

U

(�̃ j+1g)(u1, . . . , u j+1) dμ(u j+1) = �̃ j h(u1, . . . , u j ) , (5.14)

for u1, . . . , u j ∈ U. Hence, defining S j : L1(U j+1) −→ L1(U j ) by the formula

(S j g)(u1, . . . , u j ) :=
∫

U

g(u1, . . . , u j+1) dμ(u j+1)

we see that S j is bounded and S j �̃ j+1 = �̃ j S j by (5.14). Therefore using Lemma 5.5
and the fact that S j Fj+1 = Fj we see that f (t) = { f j (t)

}
j≥1 satisfies part (iii)

of the definition of admissible hierarchy for any t ≥ 0. To check part (ii) of the
definition we use a similar reasoning with any „variable permutation operator” Pr :
L1(U j ) −→ L1(U j ), which is an isometry of L1(U j ) and satisies Pr �̃ j = �̃ j Pr for
any permutation r of {1, . . . , j} (i.e. we use Lemma 5.5 with S = Pr and X = Y =
L1(U j )). ��

As we could see, using the standard C0-semigroup approach separately in each
space L1(U j ) we got separately-weak solutions. The main goal of this section is to
show, that thanks to the abstract results of the previous sections, the system 5.6 can be
also solved in a different way, which can guarantee a “stronger kind”of solutions than
separately weak solutions obtained in Corolary 5.3. In particular we shall get a stronger
“ j - joint” sense of the derivative ∂t , provided we restrict ourselves to an apropriate
class of initial conditions. To formulate the above more precisely and to prove it we
shall apply the theory of Sect. 4.2, namely Theorems 4.3 and 4.4. But observe that
we do not have any j-joint upper bound for ‖�̃ j h‖L1(U j ) (conversly—our estimate in
(5.8) grows linearly in j…). Hence, obtaining a j-joint upper bound for the growth
of the semigroups T j needs a more delicate argumentation, based on the positivity of
operators.

Lemma 5.6 ‖T j (t)‖Op ≤ 2
√

2 for any j ≥ 1, t ≥ 0.

Proof By Lemma 5.4, if h ∈ L1(U j ) is positive, then T j (t)h is also positive and thus

‖T j (t)h‖L1(U j ) =
∫

U j
T j (t)h dμ j =

∫

U j
h dμ j = ‖h‖L1(U j ).
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Decomposing a real–valued function L1(U j ) � h = h+ − h−, where h+ = |h|+h
2

and h− = |h|−h
2 we have

T j (t)h = T j (t)h+ − T j (t)h− ,

and

|T j (t)h| ≤ T j (t)h+ + T j (t)h− = 2T j (t)|h| .

Thus

‖T j (t)h‖L1(U j ) ≤ 2‖h‖L1(U j ) ,

for each real–valued h ∈ L1(U j ). Finally, for a complex–valued function h ∈ L1(U j ),
decomposing it onto the real and imaginary part, we analogously obtain

‖T j (t)h‖L1(U j ) ≤ 2
√

2‖h‖L1(U j ) . (5.15)

��
Now we may adopt the theory developed in the previous sections. Let

(
X j , ‖ . ‖ j

)
,

j ∈ N, be defined as

X j := L1(U j ) , ‖ .‖ j := ‖ . ‖L1(U j ) .

Let (X, ‖·‖) be any of the corresponding M–BDS of the sequence
{
(X j , ‖ · ‖ j )

}
j∈N

(cf. Definition 2.9). Let us define in X :

�̃ := diag
j∈N

�̃ j , T := diag
j∈N

T j .

By Theorems 4.3 and 4.4 T is a C0-semigroup in X and �̃ is the generator of T .
Recall that the function [0;+∞) � t �−→ f (t) was defined by the initial data—a

sequence
{

Fj
}

j≥1. Suppose now, that

{
Fj
}

j≥1 ,
{
�̃ j Fj

}

j≥1
∈ X, (5.16)

and define [0;+∞) � t �−→ f̂ (t) by the formula f̂ (t) := T (t)
{

Fj
}

j≥1 for t ≥ 0.
This function can be treated as the announced earlier new solution of the system (5.6)
“stronger than f ”. In particular, for any t ≥ 0 we have f̂ (t) ∈ X .

Theorem 5.7 Suppose that X is an M–BDS of the sequence
{
(X j , ‖ · ‖ j )

}
j∈N and

that (5.16) holds. Then the function t �−→ f (t) is an X-strong solution of (5.6) and
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f (t) = f̂ (t) for any t ≥ 0. In particular f (t) ∈ X fot any t ≥ 0 and the function
t �−→ f (t) is differentiable on [0;+∞) as an X-vector function. Moreover for any t

‖ f (t)‖ ≤ 2
√

2 ‖{Fj
}

j≥1‖.

Proof Observe first that f̂ (t) = f (t) for any t , because by the definition of the direct
sum of operator functions (see Definition 4.1) we have f̂ j (t) = T j (t)Fj = f j (t).
And (5.16) means exactly that

{
Fj
}

j≥1 ∈ D(�̃). Hence the assertion follows directly
from Theorem 4.3 and from the generator domain-strong differentiability property of
C0-semigroups (see e.g. [10, Th. 1.2.4]). ��

Referring to Example 2.18 we may note that the appropriate M–BDS X can be
constructed for instance on the basis of any

�p
w(N,X ) , 1 ≤ p < ∞ , (5.17)

or
c0,w(N,X ). (5.18)

Note also, that a reasonable choice of the weight sequence w = {w j } j∈N should guar-
antee that each admissible hierarchy is in X . We shall obtain this condition choosing
such w that:

∑

j∈N
w j < +∞ ,

in case of (5.17), or

lim
j→∞ w j = 0 ,

in case of (5.18). And if we want more—namely—that the results of Theorem 5.7
could be applied to any initial condition being an admissible hierarchy, due to (5.8) it
suffices to assume

∑

j∈N
jw j < +∞ ,

in case of (5.17), or

lim
j→∞ jw j = 0

in case of (5.18).

Acknowledgments The paper is supported by MNiSW (Polish Ministry of Science and Higher Education)
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Appendix

A lemma on norm-monotonic and on similaritity linear maps

The result below is used mainly in the proofs of Proposition 2.11 and Theorem 4.4.

Lemma 6.1 Suppose that T : Y1 −→ Y2 is a linear map. Then the following three
conditions are mutually equivalent:

(a) T is norm-monotonic;
(b) for any y, y′ ∈ Y1

(‖y‖1 = ‖y′‖1 �⇒ ‖T y‖2 = ‖T y′‖2
)
;

(c) T is a similarity.

If moreover Ran T = Y2 �= {0}, then each of the above conditions is equivalent to:

(d) T is invertible, T and T −1 are bounded and

‖T ‖Op · ‖T −1‖Op = 1. (6.1)

The obvious proof is omitted.

Remark 6.2 The condition (6.1) can be equivalently replaced by

‖T ‖Op · ‖T −1‖Op ≤ 1, (6.2)

because always ‖T ‖Op · ‖T −1‖Op ≥ ‖T T −1‖Op = ‖I‖Op = 1.

The proof of Proposition 2.11

Proof 1. If r ≥ s ≥ 1 and f ∈ ⊕ j∈N X j , then ‖(Pr f ) j‖ j = ‖(Ps f ) j‖ j for s ≥
j ≥ 1 and ‖(Pr f ) j‖ j ≥ 0 = ‖(Ps f ) j‖ j for j > s. This gives ‖Pr f ‖ ≥ ‖Ps f ‖
by (mono).

2. For increasing sequences “lim” and “sup” coincide.
3. It suffices to use the triangle inequality:

|‖ f ‖ − ‖Pr f ‖| ≤ ‖ f − Pr f ‖

and the boundedness of each convergent sequence.
4. (coor) and (inj) give the continuity of Pr |X , because π j = I j ◦ p j for j ∈ N, and

thus

Pr |X=
r∑

j=1

π j |X=
r∑

j=1

I j ◦ (p j |X ).
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5. It suffices to use Banach – Steinhaus Theorem to the family {Pn |X }n≥1 of linear
operators, being bounded thank to (proj − −).

6. By (appr) and part 4. we have ‖ f ‖ = limr→+∞ ‖Pr f ‖ ≤ supr∈N ‖Pr f ‖, so it
suffices to use (proj−).

7. The family of linear operators {I − Pn |X }n≥1 on the space X is equibounded by
(proj−). Moreover, if f ∈ Xfin, then (I − Pn) f = 0 for n large enough, so we
get (2.11) by (den).

8. It is obvious by part 3.
9. It is obvious by parts 1., 2. and 3.

10. By f, f (n) ∈ X≤r we have f (n) = ∑r
j=1 I j f (n)

j for any n ∈ N and f =
∑r

j=1 I j f j . So by f (n)
j

X j
n→+∞→ f j for any j = 1, . . . , r and by the continuity of

all the maps I j we get f (n) X
n→+∞→ f .

11. If f ∈ X, f (n) ∈ X≤r and f (n) X
n→+∞→ f , then by (coor) for any s > r we have

0 = f (n)
s

Xs
n→+∞→ fs , which means that fs = 0. So f ∈ X≤r . The proof for X̃r is

analogic.
12. The map Ir : Xr −→ X̃r is a linear bijection, which is continuous by (inj).

By (coor) and by part 11. X̃r is a closed subspace of X , so by (ban) X̃r is also
a Banach space. But Xr is a Banach space, hence it suffices to use the inverse
mapping theorem.

13. By (mono) Ir : Xr −→ X̃r is norm-monotonic, thus by Lemma 6.1 it is a
similarity and, also by this lemma, it is an isomorphism (in the case Xr �= {0}, but
when Xr = {0} this fact is obvious).

14. We have

pr |X= I−1
r ◦ (Pr − Pr−1) |X ,

with P0 = 0 and with Ir treated as a map into X̃r . Thus we get the continuity
of pr |X from the continuity of I−1

r which follows from part 13., and from the
continuity of all the P j |X , which follows from (proj − −).

15. Let r ≥ s ≥ 1 and f ∈⊕ j∈N X j . By (proj) we have ‖Ps f ‖ = ‖PsPr f ‖ ≤
‖Pr f ‖.

16. It follows from the fact that each C-sequence in a norm space is bounded.
17. If f ∈⊕ j∈N X j and {Pr f }r≥1 is a C-sequence, then by (ban) Pr f X

r→+∞→ g for

some g ∈ X . By (coor) (Pr f ) j
X j

r→+∞→ g j for any j ∈ N, but for any j we have
(Pr f ) j = f j for r ≥ j , which gives f j = g j . Hence f = g.

18. Let 0 ≤ m ≤ n. Observe that for any h ∈⊕ j∈N X j and j ∈ N

‖((Pn − Pm)h) j‖ j =
{ ‖h j‖ j for j ∈ (m; n]

0 for j �∈ (m; n] , (6.3)

where we denote P0 = 0. Hence if f, g ∈⊕ j∈N X j and f � g, then for any
j ∈ N

‖((Pn − Pm) f ) j‖ j ≤ ‖((Pn − Pm)g) j‖ j ,
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i. e. (Pn − Pm) f � (Pn − Pm)g, which by (mono) gives

‖(Pn − Pm) f ‖ ≤ ‖(Pn − Pm)g‖. (6.4)

When g ∈ X , then by (appr) Pr g X
r→+∞→ g, hence {Pr g}r≥1 is a C-sequence, and

by (6.4) also {Pr f }r≥1 is a C-sequence. By (bel−) we have f ∈ X and by (appr)
and (6.4) (with m = 0) we get

‖ f ‖ = lim
r→+∞ ‖Pr f ‖ ≤ lim

r→+∞ ‖Pr g‖ = ‖g‖.

��

The proof of Theorem 2.16

Proof Observe first that F⊕
j∈N X j is a normed base subspace of

⊕
j∈N X j thanks to

�fin(N) ⊂ F . By Proposition 2.12 and by Proposition 2.15 we must prove that (mono)
and (appr) hold. Let f, g ∈ Xfin with f � g. Then by (2.19) we have

‖ f ‖F,X = ‖ {‖ f j‖ j
}

j∈N ‖F ≤ ‖ {‖g j‖ j
}

j∈N ‖F = ‖g‖F,X

which proves (mono). To get (appr) consider any f ∈ F⊕
j∈N X j and observe first

that

‖ f − Pn f ‖F,X = ‖(I − Pn) f ‖F,X = ‖Rn
{‖ f j‖ j

}
j∈N ‖F , n ∈ N (6.5)

where Rn : F −→ F is the linear operator given by

(Rnh) j =
{

0 for j ≤ n
h j for j > n

, h ∈ F, j ∈ N.

Note, that the fact that the above formula properly defines the element Rnh from F
follows from (2.19), which also gives ‖Rn‖Op ≤ 1 for any n. In particular {Rn}n≥1
is an equibounded family of operators from B(F). Moreover if h ∈ �fin(N) then Rnh
is the zero vector from F for n sufficiently large, so Rnh F

n→+∞→ 0. Thus by the

equiboundance and by the density of �fin(N) in F we get Rnh F
n→+∞→ 0 for any h ∈ F ,

including h = {‖ f j‖ j
}

j∈N, which gives (appr) by (6.5). ��

Generalized inversion of diagonal operators and the proof of Corollary 3.7

To prove Corollary 3.7 it will be convenient to prove first the following lemma.

Lemma 6.3 Suppose that (X, ‖ · ‖) �
⊕

j∈N X j . If A j ∈ L(X j ) for any j ∈ N and
A = diag

j∈N
A j , then
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(i) Ker A = {0} ⇐⇒ ∀ j∈N Ker A j = {0};
(ii) If Ker A = {0}, then A−1• = diag

j∈N
(
(A j )

−1•).

Proof “⇐” for (i) is obvious from the definition of diag
j∈N

A j . To get “⇒” assume

Ker A = {0} and suppose that u ∈ Ker A j0 . Then we have
{

A j (I j0 u) j
}

j∈N =
{0} j∈N ∈ X , hence I j0 u ∈ D(A) and A(I j0 u) = 0. Thus I j0 u = 0, which gives
also u = 0.

To prove (ii), let’s again assume Ker A = {0}. By (i) both operators A−1• and
diag
j∈N
(
(A j )

−1•) are well-defined, thus to prove their equality it suffices to check that

A−1• f = g ⇐⇒ diag
j∈N
(
(A j )

−1•) f = g for any f, g ∈ X . But taking f, g ∈ X and

using twice both (3.3) and (2.1) we get

A−1• f = g ⇐⇒ f = Ag ⇐⇒ ∀ j∈N f j = A j g j ⇐⇒ ∀ j∈N (A j )
−1• f j = g j

⇐⇒ diag
j∈N

(
(A j )

−1•) f = g.

��
Proof of Corollary 3.7 Let A := diag

j∈N
A j . By Proposition 3.2 A ∈ C(X). Thus σ(A)

is a closed subset of C and by Proposition 3.6 (iii) we have σ(A) ⊃
⋃

j∈N
σ(A j ).

Let λ ∈ σ(A); we shall prove that λ ∈
⋃

j∈N
σ(A j ). It suffices to study such λ that

λ �∈
⋃

j∈N
σ(A j ), and in such a case we have λ ∈ ρ∞

({
A j
}

j∈N
)

by Proposition 3.6

(iii). By (3.7) we also have

sup
j∈N

‖(A j − λ)−1‖sp = +∞.

Let ε > 0. By the definition of the spectral norm there exists j ∈ N and ν ∈ σ((A j −
λ)−1) satisfying |ν| > 1

ε
. But by “spectral mapping theorem” for resolvents of closed

operators in Banach space (see e.g. [5, Chapter V, Theorem 1.13])

σ((A j − λ)−1) =
{ {(z − λ)−1 : z ∈ σ(A j )} for D(A j ) = X j

{(z − λ)−1 : z ∈ σ(A j )} ∪ {0} for D(A j ) �= X j
,

thus there exists j ∈ N and z ∈ σ(A j ) such that |(z − λ)−1| > 1
ε
. The above means

that there exists z ∈
⋃

j∈N
σ(A j ) with |z − λ| < ε. Hence λ ∈

⋃

j∈N
σ(A j ). ��
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References

1. Banasiak, J., Lachowicz, M.: Methods of Small Parameter in Mathematical Biology. Birkhäuser, New
York (2014)
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