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Abstract Models describing transport and diffusion processes occurring along the
edges of a graph and interlinked by its vertices have been recently receiving a consid-
erable attention. In this paper we generalize such models and consider a network of
transport or diffusion operators defined on one dimensional domains and connected
through boundary conditions linking the end-points of these domains in an arbitrary
way (not necessarily in the way the edges of a graph are connected). We prove the
existence of C0-semigroups solving such problems and provide conditions fully char-
acterizing when they are positive.

Keywords Networks · Diffusion · Transport · Strongly continuous semigroups ·
Positive semigroups

1 Introduction

Recently there has been an interest in dynamical problems on graphs, where some
evolution operators, such as transport or diffusion, act on the edges of a graph and
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interact through its nodes. One can mention here quantum graphs, see e.g. [1–4],
diffusion on graphs in probabilistic context, [2,5,6], transport problems, both linear
and nonlinear, [7–12], migrations, [13], and several other applications discussed in e.g.
[4,14]. In particular, the recent monograph [14] is a rich source of network models and
methods. However, most of these works focus on particular problems. For instance,
in the quantum graph theory the main interest is to determine whether the operators
defined on the edges of a graph are self-adjoint and the work is confined to the Hilbert
space setting. Most papers on the linear transport theory on graphs focus on long term
dynamics of the flow. Papers such as [2,5,6], motivated by probabilistic applications,
look at Feller or Markov processes on graphs.

The present paper, which provides the theoretical foundation for [15], is similar in
spirit to [5,6] in the sense that we prove the existence of strongly continuous semi-
groups in the space of continuous functions, as well as in the space of integrable
functions, that solve the diffusion problem on a network. However, we extend the
existing results of [5,6] by considering processes that are more general than the dif-
fusion along edges of a metric graph with Robin boundary conditions at its vertices.
More precisely, we allow for communication between domains that are not necessar-
ily physically connected. In fact, the models we analyse can be also interpreted as
diffusion on a hypergraph, [16], but we shall not pursue this line of research here. For
completeness, we also present similar results for transport problems, generalizing [7]
in a similar way.

To explain the idea of our extension, in the next section we consider two examples,
see [5,17].

1.1 Motivation

First, let us introduce basic notation which will help to formulate the problems
and results. We will work in a finite dimensional space, say, R

m . The bold-
face characters will typically denote vectors in R

m , e.g. u = (u1, . . . , um). We
denote M = {1, . . . ,m}. Further, for any Banach space X , we will use the nota-
tion X = X × . . . × X

︸ ︷︷ ︸

m times

, e.g. for X = L1(I ), I = [0, 1] we denote L1(I ) =

L1(I ) × . . . × L1(I )
︸ ︷︷ ︸

m times

.

Let (A, D(A)) be an operator in X. If A is a generator, we will denote by {etA}t≥0
the semigroup generated by A.

1.1.1 Diffusion

We consider a finite metric graph without loops and isolated edges, G = (V, E) with,
say, n vertices andm edges. On each edge there is a substancewith density u j , j ∈ M,

which diffuses along this edge according to

∂t u j = σ j∂xxu j , x ∈]0, 1[, j ∈ M, (1)
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where σ j > 0 are constant diffusion coefficients, and can also enter the adjacent
edges. To simplify considerations, each edge is identified with the unit interval I. In
the model of [5], the particles can permeate between the edges across the vertices that
join them according to a version of the Fick law. To write down its analytical form,
first we note that, since diffusion does not have a preferred direction, we can assign
the tail, or the left endpoint, (that is, 0) and the head, or the right endpoint (that is, 1)
to the endpoints of the edge in an arbitrary way. Let li and ri be the rates at which the
substance leaves ei through, respectively, the left and the right endpoints and lik and
rik be the rates of at which it subsequently enters the edge ek . Then the Fick law at,
respectively, the head and the tail of ei , gives

− ∂xui (1) = ri ui (1) −
∑

j �=i

ri j u j (v),

∂xui (0) = li ui (0) −
∑

j �=i

li j u j (v), (2)

where we have written u j (v) as v may be either the tail or the head of the incident
edge e j . In particular, if there are no edges incident to the tail of ei , or there are no
edges incident to the head of ei , then the Fick’s laws take the form

∂xui (0) = li ui (0), −∂xui (1) = ri ui (1), (3)

respectively, where either coefficient on the right hand side can be 0.
It is clear that if ri j �= 0 or li j �= 0, the edges ei and e j are incident and thus we can

define an m × m matrix A = {ai j }1≤i≤m,1≤ j≤m by setting ai j = 1 if either ri j �= 0
or li j �= 0 and zero otherwise. Then A is the adjacency matrix of the line graph L(G)

of G, see e.g. [18]. However, it turns out that such a matrix is not easy to use. On the
other hand, introducing, for any i, j ∈ M,

k00i j = −li j if v = 0, k01i j = −li j if v = 1, k00i i = li ,

k10i j = ri j if v = 0, k11i j = ri j if v = 1, k11i i = −ri , (4)

where v is, respectively, the tail or the head of the edge under consideration, the
problem can be written as

∂tu(x, t) = D∂xxu(x, t), (x, t) ∈]0, 1[×R+,

∂xu(0, t) = K
00u(0, t) + K

01u(1, t), t > 0,

∂xu(1, t) = K
10u(0, t) + K

11u(1, t), t > 0,

u(x, 0) = ů(x), x ∈]0, 1[, (5)

where u = (u1, . . . , um), D = diag{σi }1≤i≤m and ů is the initial distribution. This
form of the problem allows for its analysis.

It is also clear that there is no mathematical reason why the matrices Kω, ω ∈ � =
{00, 01, 10, 11}, in (5) should be restricted to the matrices given by (4) which, indeed,
form a strictly smaller class, see [17]. In this paper we study the well-posedness of (5)
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for arbitrary matrices Kω in spaces C(I ) and L1(I ), extending and simplifying the
results of [5,6]. We also find necessary and sufficient conditions for the semigroup
solving (5) to be positive.

1.1.2 Transport problems

We consider a digraph G = (V (G), E(G)) = ({v1, . . . , vn}, {e1, . . . , em}) with n
vertices and m edges. We suppose that none of the vertices is isolated. As before,
each edge is normalized so as to be identified with I with the head at 1 and the tail
at 0. Following [7,9–12], we consider a substance of density u j (x, t) on the edge e j ,
moving with speed c j along this edge. The conservation of mass at each vertex is
expressed by the Kirchhoff law,

m
∑

j=1

φ−
i j c j u j (0, t) =

m
∑

j=1

φ+
i j c j u j (1, t), t > 0, i ∈ 1, . . . , n, (6)

where �− = {φ−
i j }1≤i≤n,1≤ j≤m and �+ = {φ+

i j }1≤i≤n,1≤ j≤m are, respectively, the

outgoing and incoming incidence matrices; that is, matrices with the entry φ−
i j (resp.

φ+
i j ) equals 1 if there is edge e j outgoing from (res. incoming to) the vertex vi , and zero

otherwise. Note that due to definitions of the matrices �− and �+, the summation on
the right hand side is over all incoming edges of the vertex vi and on the left hand side
over all outgoing edges of vi .

In [7] we considered a slightly more general model

∂t u j (x, t) + c j∂xu j (x, t) = 0, x ∈ (0, 1), t ≥ 0,

u j (x, 0) = ů j (x),

φ−
i j ξ j c j u j (0, t) = wi j

m
∑

k=1

φ+
ik(γkckuk(1, t)), (7)

where γ j > 0 and ξ j > 0 are the absorption/amplification coefficients at, respectively,
the head and the tail of e j .Here thematrix {wi j }1≤i≤n,1≤ j≤m describes the distribution
of the incoming flow at the vertex vi into the edges outgoing from it; it is a column
stochastic matrix, [11]. We denote C = diag{c j }1≤ j≤m, 
 = diag{ξ j }1≤ j≤m and
� = diag{γ j }1≤ j≤m .

It follows, [7], that ifG has a sink, than there is noC0-semigroup solving (7). Hence
we discard this case and then it can be proved, e.g. [9, Proposition 3.1], that (7) can
be written as an abstract Cauchy problem

ut = Au, u(0) = ů, (8)

in X = L1(I ), where A is the realization of A = diag{−c j∂x }1≤ j≤m on the domain

D(A) =
{

u ∈ W1
1(I ); u(0) = 
−1

C
−1

B�Cu(1)
}

, (9)

where B is the (transposed) adjacency matrix of the line graph of G.
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As with the diffusion problems, there is no mathematical reason to restrict our
analysis to the matrices of the form 
−1

C
−1

B�C in the boundary conditions which,
in fact, see [17], form a strict subset of the set of all matrices. Thus, we consider the
following generalization of (8), (9),

ut = Au, u(0) = Ku(1), u(0) = ů, (10)

where K is an arbitrary matrix.

Example 1.1 The main difference between (10) with arbitrary K and the model with
K given in (9) is that in the former, the exchange of the substance can occur instanta-
neously between any edges, while in the latter the edges must be physically connected
by vertices for the exchange to take place. So, for instance, if there is a connec-
tion e1 → e2 and e2 → e3, then there is no connection e1 → e3. So, while in
general (10) cannot model a flow in a physical network, it can describe e.g. a muta-
tion process. Indeed, let a population of cells be divided into m subpopulations, with
v(x) = (v1(x), . . . , vm(x)), where v j (x), j ∈ M, x ∈ [0, 1], is the density of cells
of age x whose genotype belongs to a class j (for instance, having j copies of a gene
of a particular type). We assume that cells of class j mature and divide upon reaching
maturity at x = 1,with offspring, due to mutations, appearing in class i with probabil-
ity ki j , i ∈ M. In such a case (ki j )1≤i, j≤m is a column stochastic matrix. We note that
a particular case of this model is the discrete Rotenberg-Rubinov-Lebowitz model,
[19], where the cells are divided into classes according to their maturation velocity.

A similar interpretation can be given to (5) where the variable x , instead of the age,
denotes the size of the organism, e.g. [20].

Moreover, problems of the form (10) arise e.g. in queuing theory, [21].

2 Well-posedness of the diffusion problem

We shall consider solvability of (5) in X = C(I ) and X = L1(I ). For technical
reasons, we also shall need the solvability of (5) inW1

1(I ). The norms in these spaces
will be denoted, respectively, by ‖ · ‖∞, ‖ · ‖0, ‖ · ‖1. However, if it does not lead to
any misunderstanding, we will use X to denote any of these spaces and ‖ · ‖ or ‖ · ‖X
to denote the norm in X. Similarly, by ||| · |||X we denote the operator norm in the
space of bounded linear operators from X to X.

Our results are based on [22] and thus, introducing relevant spaces and operators,
we try to keep notation consistent with op.cit. First, consider

X 	 u → Lu = (γ0∂xu, γ1∂xu) ∈ Y = R
m × R

m, (11)

where γi , i = 0, 1, is the trace operator at x = i (taking the value at x = i if
X = C(I )). The domains of L are D(L) = C1(I ) if X = C(I ) and D(L) = W2

1(I )
in two other cases. Then we define the operator

X 	 u → �u = K(γ0u, γ1u) =
(

K
00

K
01

K
10

K
11

)(

γ0u
γ1u

)

∈ R
m × R

m .
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Further, let us denote

�∗u = K
∗(γ0u, γ1u) =

(

K
00 T −K

10 T

−K
01 T

K
11 T

)(

γ0u
γ1u

)

, (12)

where KT denotes the transpose of K. Clearly (�∗)∗ = �.
LetA denote the differential expressionAu := D∂xxu.Thenwe define the operators

Aα
�, α = ∞, 0, 1 by the restriction of A to the domains

D(A∞
� ) =

{

u ∈ C2(I ); Lu = �u
}

,

D(A0
�) =

{

u ∈ W2
1(I ); Lu = �u

}

,

D(A1
�) =

{

u ∈ W3
1(I ); Lu = �u

}

, (13)

respectively. As before, we drop the indices from the notation if it will not lead to any
misunderstanding.

2.1 Basic estimates in the scalar case

Consider the general resolvent equation for (5)

λu − D∂xxu = f, x ∈]0, 1[. (14)

Since without the boundary conditions the system is uncoupled, its solution u is given
by

u(x) = E(−μx)C1 + E(μx)C2 + Uμ(x) (15)

where E(±μx) = diag{e±μi x }1≤i≤m, 0 �= λ/σi = μ2
i = |λ/σi |eiθ with �μi > 0,

Uμ(x) = (Uμ1(x), . . . ,Uμm (x)) with

Uμi (x) = 1

2μiσi

1
∫

0

e−μi |x−s| fi (s)ds, (16)

and the vector constantsC1 andC2 are determined by the boundary conditions. Further,
denote

�α,θ0 =
{

λ = |λ|eiθ ∈ C; |λ| ≥ α, |θ | ≤ θ0 < π
}

and �0,θ0 = �θ0 .

The starting point are well-known estimates for the scalar Dirichlet and Neumann
problems, e.g. [23]. We briefly recall them here in a slightly more precise form, sim-
ilarly to [24]. In the scalar case we can use σ = 1, as will become clear when the
estimate is derived. It follows that for the Dirichlet problem we have
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CD
1 = Uμ(1) −Uμ(0)eμ

eμ − e−μ
, CD

2 = Uμ(0)e−μ −Uμ(1)

eμ − e−μ
, (17)

and for the Neumann problem

CN
1 = Uμ(0)eμ +Uμ(1)

eμ − e−μ
, CN

2 = Uμ(1) +Uμ(0)e−μ

eμ − e−μ
.

Further, [23],

‖Uμ‖∞ ≤ ‖ f ‖∞
|μ|�μ

≤ ‖ f ‖∞
|λ| cos θ/2

, ‖Uμ‖0 ≤ ‖ f ‖0
|μ|�μ

≤ ‖ f ‖0
|λ| cos θ/2

, (18)

and, for i = 0, 1,

|Uμ(i)| ≤ ‖ f ‖∞(1 − e−�μ)

2|μ|�μ
, |Uμ(i)| ≤ ‖ f ‖0

2|μ| . (19)

The following result plays an essential role in deriving precise estimates,

∣

∣

∣

∣

1

eμ − e−μ

∣

∣

∣

∣
= e−�μ

∣

∣

∣

∣

∣

∞
∑

n=0

e−2nμ

∣

∣

∣

∣

∣

≤ e−�μ
∞
∑

n=0

e−2n�μ = e−�μ

1 − e−2�μ
. (20)

Then, for either Dirichlet or Neumann problem in C(I ), for λ ∈ �θ0 for any θ0 < π ,
we have for ω = D, N

‖uω‖∞ ≤ |Cω
1 | + |Cω

2 |e�μ + ‖ f ‖∞
|λ| cos θ0/2

≤ ‖ f ‖∞
|λ| cos θ0/2

(

1

1 − e−2�μ

(

1 − e−2�μ

2
+ 1 − e−2�μ

2

)

+ 1

)

≤ 2‖ f ‖0
|λ| cos θ0/2

. (21)

Similarly, in L1(I ), we have

‖uω‖0 ≤ |Cω
1 |1 − e−�μ

�μ
+ |Cω

2 |e
�μ − 1

�μ
+ ‖ f ‖0

|λ| cos θ0/2

≤ ‖ f ‖0
|λ| cos θ0/2

(

1

1 − e−2�μ

(

1 − e−2�μ

2
+ 1 − e−2�μ

2

)

+ 1

)

≤ 2‖ f ‖0
|λ| cos θ0/2

. (22)

Consider now A1
0, see (13); that is, the operator corresponding to the Neumann bound-

ary conditions in one dimension. We have
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Proposition 2.1 A1
0 generates an analytic semigroup in W 1

1 (I ) with the resolvent
R(λ, A1

0) satisfying the estimate

‖R(λ, A1
0) f ‖1 ≤ 2‖ f ‖1

|λ| cos θ0/2
, λ ∈ �θ0 . (23)

Proof Consider the resolvent equation

λu − ∂xxu = f, ∂xu(0) = ∂xu(1) = 0.

If f ∈ W 1
1 (I ), then u ∈ W 3

1 (I ) and we can differentiate the differential equation
getting for v := ∂xu,

λv − ∂xxv = ∂x f, v(0) = v(1) = 0; (24)

that is, v satisfies the resolvent equation for the Dirichlet problem. Hence

‖u‖1 = ‖u‖0 + ‖∂xu‖0 ≤ 2‖ f ‖0
|λ| cos θ0/2

+ 2‖∂x f ‖0
|λ| cos θ0/2

= 2‖ f ‖1
|λ| cos θ0/2

.

�

Since λu − σ∂xxu = f is equivalent to σ−1λu − ∂xxu = σ−1 f , we see that the

estimates above are independent of σ .

2.2 Solvability of (5)

The ideas in this section are based on [5,6] but the analysis is simplified by using the
analyticity of the semigroup and the application of [22, Theorem 2.4].

Since in the vector case and for the Neumann boundary conditions the system of
the resolvent equations decouples, we obtain

‖R(λ,A0) f ‖X ≤ 2‖ f ‖X
|λ| cos θ0/2

, λ ∈ �θ0 (25)

for any θ0 < π and X = C(I ),L1(I ),W1
1(I ). Hence, in particular, A0 generates an

analytic semigroup in X.
We begin with a straightforward consequence of Ref. [22].

Theorem 2.2 Let X be either C(I ), or W1
1(I ). Then the operator A� generates an

analytic semigroup in X with the resolvent R(λ,A�) satisfying the estimate

|||R(λ,A�)|||X ≤ 2|||R(λ,A0)|||X, λ ∈ �α,θ0 (26)

for some α ≥ 0.
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Proof The result follows directly from [22, Theorem 2.4], since A0 generates an
analytic semigroup inX, L is an unbounded operator onXwhich is, however, bounded
as an operator from D(A) to Y, and it is a surjection (the right inverse in each case
is given by [L−1

r (y0, y1)](x) = 1
2 (y1 − y0)x2 − y0x . Furthermore, � is a bounded

operator on X (if X = W1
1(I ) this follows since W1

1(I )-functions are absolutely
continuous on I ). Hence, the assumptions [22, (1.13)] are satisfied and the theorem
follows from [22, Theorem 2.4]. �


In X = L1(I ) the situation is more complicated as � is not bounded on X. First
we show that R(λ,A1

�) extends to a resolvent on L1(I ).

Lemma 2.3 We have

A1
�

L1(I ) = A0
�

and the resolvent set of A0
� satisfies ρ(A0

�) ∩ R+ �= ∅.
Proof Let D(A1

�) 	 un → u ∈ L1(I ) and A0
�un = Aun → v ∈ L1(I ). This shows

that un → u in W2
1(I ) and thus v = Au. Since taking the trace of a W2

1(I ) function
and of its derivative is continuous in W2

1(I ), the boundary values of un and ∂xun are
preserved in the limit and thus u ∈ D(A0

�). Hence

A1
�

L1(I ) ⊂ A0
�.

On the other hand, let u ∈ D(A0
�). Then v = u − f ∈ 0

W2
1(I ), where

f(x) = (u(0) + u′(0) − 2u(1) + u′(1))x3

−(2u(0) + 2u′(0) − 3u(1) + u′(1))x2 + u′(0)x + u(0) ∈ D(A0
�).

Thus there is a sequence (hn)n∈N ⊂ C∞
0 (I ) converging to v in W2

1(I ) and hence u
is the limit in W2

1(I ) of functions un = hn + f ∈ D(A1
�). Since the convergence in

W2
1(I ) implies the convergence of both un and Aun in L1(I ) we see that also

A1
�

L1(I ) ⊃ A0
�.

Finally, we see that, as in the scalar case (36), the solvability of the resolvent problem
for (5) is equivalent to solvability of the linear system

− MC1 + MC2 = K
00(C1 + C2) + K

01(e−μC1 + eμC2)

−MUμ(0) + K
00Uμ(0) + K

01Uμ(1),

−ME(−μ)C1 + ME(μ)C2 = K
10(C1 + C2) + K

11(E(−μ)C1 + E(μ)C2)

+MUμ(1) + K
01Uμ(0) + K

11Uμ(1), (27)

for the vectorsC1,C2, whereM = diag{μ}. Once the constants are found, the solution
is given by the vector version of (15) and thus belongs to W2

1(I ) ⊂ L1(I ). The
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system above is solvable provided its determinant is different from zero. However, the
determinant is clearly an entire function in μ and thus can have only isolated zeros in
C. Hence, there must be positive values of λ ∈ ρ(A0

�). �


Theorem 2.4 The operator A0
� generates an analytic semigroup in L1(I ).

Proof We use the formula from Lemma 1.4 of Ref. [22] stating that

R(λ,A1
�) = (I − Lλ�)−1R(λ,A1

N ) (28)

in X = W1
1(I ), as (I − Lλ�)−1 is an isomorphism of X for large |λ|; here Lλ =

(L|Ker(λ−A))
−1, λ ∈ ρ(A1

N ), see the proof of [22, Theorem 2.4].
However, R(λ,A1

N ) extends by density to R(λ,A0
N ) (the resolvent onL1(I )) which

is a bounded linear operator from L1(I ) to D(A1
N ) ⊂ W2

1(I ). Since the latter space is
continuously embedded inW1

1(I ), R(λ,A1
�) extends to a bounded linear operator, say

R�(λ), on L1(I ). Since R(λ,A1
�) is a resolvent onW1

1(I ), we obtain, by density, that
R�(λ) is a pseudoresolvent on L1(I ). Furthermore, C∞

0 (]0, 1[) ⊂ D(A1
�), thus it is

also a subset of the range of R�(λ) and therefore the range is dense inL1(I ). Also, since
the range of R(λ,A0

N ) is inW2
1(I ) ⊂ W1

1(I ), there is no need to extend (I − Lλ�)−1.
Hence R�(λ) is a one-to-one operator as a composition of two injective operators.
Thus, by Proposition III.4.6 in Ref. [23], R�(λ) is the resolvent of a densely defined
operator, say Â�. Clearly, Â� is a closed extension of A1

� and thus Â� ⊃ A0
� =

A1
�

L1(I )
. From Lemma 2.3, there is λ ∈ ρ(Â�)∩ρ(A0

�), thus R(λ, Â�) ⊃ R(λ,A0
�)

and hence Â� = A0
� and, consequently, R(λ,A0

�) is defined in some sector. To prove
that is a sectorial operator, we use the idea of [6] but in a somewhat simpler way. We
consider the operator A∞

�∗ . Let R#
λ denote the adjoint to R(λ,A∞

�∗) for λ ∈ ρ(A∞
�∗),

which acts in the space of signed (vector)Borelmeasures on I , [25]. R(λ,A∞
�∗) is given

by (15) withC1,C2 given by (27) with the matricesKω replaced by the corresponding
matrices in (12). Hence, apart fromUμ(x), R(λ,A∞

�∗) is a composition of an algebraic
operator coming from inverting the matrix in (27) with a vector of functionals acting
on f . Thus, if f ∈ L1(I ) is the density of an absolutely continuous measure, a standard
calculation shows that

R#
λf = R(λ̄,A0

�)f .

From the definition of the norm of a signed Borel measure, if the latter is absolutely
continuous, its norm is equal to the L1 norm of its density. Since taking the adjoint
preserves the norm of the operator, we obtain

|||R(λ,A0
�)|||L1(I ) = |||R(λ,A∞

�∗)|||C(I ). (29)

Hence, by Theorem 2.2, A0
� is sectorial and, being densely defined, it generates an

analytic semigroup on L1(I ). �
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2.3 Positivity of the semigroup

Let us recall that for an element u of a Banach lattice, we write u > 0 if 0 �= u ≥ 0.
We have the following result

Theorem 2.5 The semigroup {etA∞
� }t≥0 is resolvent positive if and only if

−K
00, K

11 are nonnegative off-diagonal

−K
01, K

10 are nonnegative. (30)

Proof To prove the result we use Theorem B-II.1.6 in [26], which states that if an
operator A onC(K ) (where K is compact) generates a semigroup, then the semigroup
is positive (or, equivalently, A is resolvent positive) if and only if A satisfies the positive
minimumprinciple: for every 0 ≤ f ≤ D(A) and x ∈ K , if f (x) = 0, then (A f )(x) ≥
0. However, to rephrase the problem at hand in the language of the positive maximum
principle, we have to work in the space of real valued continuous functions. To achieve
this, we identify C(I ) with the space C(I), where I = [01, 11] ∪ · · · ∪ [0m, 1m]; that
is, instead of considering a vector function on I, we consider a scalar function on a
disconnected compact space composed of m disjoint closed intervals. In particular,
each edge e j , j ∈ M, is identified with the closed interval [0 j , 1 j ]. Then A∞

� will be
changed to A∞

� which is the restriction of

(Au)(x) =
∑

j∈M
χ[0 j ,1 j ](x)σ j∂xxu(x)

to the space of twice differentiable functions on I ntI =]01, 11[∪ · · · ∪]0m, 1m[, dif-
ferentiable on I and satisfying

∂xu(0 j ) =
m

∑

k=1

k00jku(0k) +
m

∑

k=1

k01jku(1k),

∂xu(1 j ) =
m

∑

k=1

k10jku(0k) +
m

∑

k=1

k11jku(1k).

Thus, if 0 ≤ u ∈ D(A∞
� ) takes the value 0 at some x ∈ I, then either x ∈ I ntI, and

then classically ∂xxu(x) ≥ 0, or x = 0 j or x = 1 j for some j ∈ M. If x = 0 j ,
then ∂xu(0 j ) ≥ 0. If ∂xu(0 j ) = 0, then ∂xxu(0 j ) ≥ 0 follows as in Example B-
II.1.24 of Ref. [26] (or simply by noting that the even extension to [−1, 0] gives a C2

function on [−1, 1] with minimum at x = 0). If ∂xu(0 j ) < 0 then, since u(0 j ) = 0,
such a function cannot be nonnegative on [0 j , 1 j ]. Analogous considerations hold if
u(1 j ) = 0. Therefore the positive minimum principle is satisfied and (30) yields the
positivity of {et A∞

� }t≥0 and thus of {etA∞
� }t≥0.

To prove the conversewe introduce the following notation. For anyα := (α0,α1) ≥
0 with α

j
i = 0 for some i ∈ M, j = 0, 1, we have
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 :=
(−K

00 −K
01

K
10

K
11

)

. (31)

Accordingly, we denote

(
α)rs = (−1)r+1
∑

l=0,1

⎛

⎝

∑

j∈M
krls jα

l
j

⎞

⎠ , r = 0, 1, s ∈ M.

Let us assume that (30) is not satisfied. Then there is a non-diagonal element of 


which is strictly negative. Suppose (−1)r+1krsi j < 0 for some i �= j and r, s = 0, 1,
and consider a vector α with

αs
j = 1, αr

i = 0, αt
l = δ > 0, t = 0, 1, l �= j if t = s and l �= i if t = s. (32)

Then for r = s we obtain

(
α)ri = (−1)r+1

⎛

⎝krri j + δ

⎛

⎝

∑

l∈M,l �= j,i

krril +
∑

l∈M
krtil

⎞

⎠

⎞

⎠ < 0, (33)

where t = 0 if r = 1 and t = 1 if r = 0, while for r �= s

(
α)ri = (−1)r+1

⎛

⎝krti j + δ

⎛

⎝

∑

l∈M,l �=i

krril +
∑

l∈M,l �= j

krtil

⎞

⎠

⎞

⎠ < 0 (34)

for sufficiently small δ > 0.We shall prove that there exists a function 0 ≤ u ∈ C∞(I)
satisfying u(ri ) = αr

i and (−1)r+1∂xu(ri ) = (
α)ri which additionally satisfies
∂xxu(ri ) < 0.

For a given constants αr
i , β

r
i = (
α)ri , r = 0, 1, we consider auxiliary functions

f ri (x) = βr
i x(x − 1)+αr

i . We have f ri (r) = αr
i , ∂x fi (r) = (−1)r+1βr

i and ∂xx f ri =
2βr

i . We observe that as long as αr
i > 0, there is a one-sided interval (]0, ωi [ if r = 0

and ]ωi , 1[ if r = 1), where f ri ≥ 0 irrespective of the sign of βr
i . On the other hand,

if αr
i = 0, for local nonnegativity we need βr

i ≤ 0. Now let φ be a nonnegative C∞
function which is 1 on [−a, a] and 0 outside [−2a, 2a] where 0 < 2a < mini∈M ωi

and define

u(x) = φ(x) f 0j (x) + φ(1 − x) f 1j (x), x ∈ [0 j , 1 j ], j ∈ M.

is a C∞(I) function that satisfies:

1. u ≥ 0;
2. u(0 j ) = α0

j and ∂xu(0 j ) = ∂x f 0j (0 j ) = −β0
j = (
α)0j ;

3. u(1 j ) = α1
j and ∂xu(1 j ) = ∂x f 1j (1 j ) = β1

j = (
α)1j ,
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so that 0 ≤ u ∈ D(A∞
� ). Recalling that we assumed (−1)r+1krsi j < 0 for some i �= j

and r, s = 0, 1,we consider coefficients {αt
j }t=0,1, j∈M satisfying (32). Then we have

u(ri ) = 0. On the other hand, ∂xxu(ri ) = 2βs
i = 2(
α)ri < 0 by (33) or (34). Thus,

there is a nonnegative element u ∈ D(A∞
� ) for which ∂xxu < 0 at a point where the

global minimum of zero is attained. �

We can use this result to prove an analogous result in L1(I ).

Corollary 2.6 The operator A0
� generates a positive semigroup if and only if the

assumptions of Theorem 2.5 are satisfied.

Proof In one direction the result immediately follows by density of C(I ) in L1(I ).
Conversely, if {et A0

�}t≥0 ≥ 0 then, in particular, for any 0 ≤ ů ∈ C(I ) we have

et A
0
� ů = et A

∞
� ů ≥ 0. �


3 Solvability of (8)

We return to the problem (8) where, we emphasize, K is an arbitrary matrix. In this
section we restrict our attention toX = L1(I ) as inC(I ) the operatorA is not densely
defined. Let us recall thatA is the realization ofA = diag{−c j∂x }1≤ j≤m on the domain
D(A) = {u ∈ W1

1(I ); u(0) = Ku(1)}.
The following theorem for (7) has been proved in [7] (see also [27]) but the proof

for any nonnegative matrix K is practically the same. Here we extend this proof to an
arbitraryK. However, for the proof in the general case we need to provide basic steps
of the proof for nonnegative matrices.

Theorem 3.1 The operator (A, D(A)) generates aC0-semigroup onL1(I ). The semi-
group is positive if and only if K ≥ 0.

Proof Clearly, C∞
0 (]0, 1[) ⊂ D(A) and hence D(A) is dense in X. To find the resol-

vent of A, the first step is to solve

λu j + c j∂xu j = f j , j = 1, . . . ,m, x ∈]0, 1[, (35)

with (u1, . . . , um) = u ∈ D(A). Integrating, we find

u(x) = Eλ(x)v + C
−1

x
∫

0

Eλ(x − s)f(s)ds, (36)

where v = (v1, . . . , vm) is an arbitrary vector and Eλ(s) = diag

{

e
− λ

c j
s
}

1≤ j≤m
. To

determine v so that u ∈ D(A), we use the boundary conditions. At x = 1 and at x = 0
we obtain, respectively

u(1) = Eλ(1)v + C
−1

1
∫

0

Eλ(1 − s)f(s)ds, u(0) = v.
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Then, using the boundary condition u(0) = Ku(1) we obtain

(I − KEλ(1))v = KC
−1

1
∫

0

Eλ(1 − s)f(s)ds. (37)

Since the norm of Eλ(1) can be made as small as one wishes by taking large λ, we see
that v is uniquely defined by the Neumann series provided λ is sufficiently large and
hence the resolvent of A exists.

Let us first consider K ≥ 0. Then the Neumann series expansion ensures that A is
a resolvent positive operator and hence we can consider only f ≥ 0. Adding together
the rows in (37) we obtain

m
∑

j=1

v j =
m

∑

j=1

κ j e
− λ

c j v j +
m

∑

j=1

κ j

c j

1
∫

0

e
λ
c j

(s−1)
f j (s)ds, (38)

where κ j =
m
∑

i=1
ki j . Renorming X with the norm ‖u‖c = ∑m

j=1 c
−1
j ‖u j‖L1(I ) and

using (36) and (38), we obtain

‖u‖c = 1

λ

m
∑

j=1

v j e
− λ

c j (κ j − 1) + 1

λ

m
∑

j=1

κ j − 1

c j

1
∫

0

e
λ
c j

(s−1)
f j (s)ds + 1

λ
‖f‖c.

We consider three cases.

(a) κ j ≤ 1 for j ∈ M. Then ‖Eλ(−1)K‖ < 1 and thus v, and hence R(λ,A), are
defined and positive for any λ > 0. Further, dropping the first two terms in (39)
we get

‖u‖c ≤ 1

λ

m
∑

j=1

1

c j

1
∫

0

f j (s)ds = 1

λ
‖f‖c, λ > 0.

Hence (A, D(A)) generates a positive semigroup of contractions in (X, ‖ · ‖c).
(b) κ j ≥ 1 for j ∈ M. Then (39) implies that for some λ > 0 and c = 1/λ we have

‖R(λ,A)f‖c ≥ c‖f‖c

and, by density of D(A), the application of the Arendt-Batty-Robinson theorem
[28,29], gives the existence of a positive semigroup generated by A in (X, ‖ · ‖c).
Since ‖ · ‖c is equivalent to ‖ · ‖X, A generates a positive semigroup in X.

(c) κ j < 1 for j ∈ I1 and κ j ≥ 1 for j ∈ I2, where I1 ∩ I2 = ∅ and I1 ∪ I2 =
{1, . . . ,m}. Let L = (li j )1≤i, j≤m, where li j = ki j for j ∈ I2 and li j = 1
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for j ∈ I1. Denoting by AL the operator given by the differential expression A
restricted to D(AL) = {u ∈ W1

1(I ); u(0) = Lu(1)} we see, by (37), that

0 ≤ R(λ,A) ≤ R(λ,AL) (39)

for any λ ∈ ρ(AL). By item (b), AL generates a positive C0-semigroup and
thus satisfies the Hille–Yosida estimates. Since clearly (39) yields Rk(λ,A) ≤
Rk(λ,AL) for any k ∈ N, for some ω > 0 and M ≥ 1 we have

‖Rk(λ,A)‖ ≤ ‖Rk(λ,AL)‖ ≤ M(λ − ω)−k, λ > ω, k ∈ N,

and hence we obtain the generation of a semigroup by A.

Assume now that K is arbitrary. The analysis up to (37) remains valid. Then (37)
can be expanded as

v =
∞
∑

n=0

(KEλ(1))
n
KC

−1

1
∫

0

Eλ(1 − s)f(s)ds (40)

and hence

u(x) = Eλ(x)
∞
∑

n=0

(KEλ(1))
n
KC

−1

1
∫

0

Eλ(1 − s)f(s)ds + C
−1

x
∫

0

Eλ(x − s)f(s)ds.

(41)

Denoting now |u| = (|u1|, . . . , |un|) and |K| = (|ki j |)1≤i, j≤m, and using the fact that
only K may have non positive entries, we find

|u(x)| ≤ Eλ(x)
∞
∑

n=0

(|K|Eλ(1)|)n|K|C−1

1
∫

0

Eλ(1 − s)|f |(s)ds

+ C
−1

x
∫

0

Eλ(x − s)|f |(s)ds = R(λ,A|K|)|f |,

where A|K| denotes A restricted to D(A|K|) = {u ∈ W1
1(I ); u(0) = |K|u(1)}. So,

we can write

|R(λ,AK)f | ≤ R(λ,A|K|)|f | (42)

and, iterating,

|R(λ,AK)kf | ≤ R(λ,A|K|)k |f |.
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Using the fact that taking the modulus does not change the norm, we find

‖R(λ,AK)kf‖ ≤ ‖R(λ,A|K|)k |f |‖ ≤ M

λ − ω
‖f‖.

with M and ω following from the Hille–Yosida estimates for A|K|.
The fact thatK ≥ 0 yields the positivity of the semigroup follows from the first part

of the proof. To prove the converse, let ki j < 0 for some i, j and consider the initial
condition f(x) = ( f1(x), . . . , fm(x)) with fk = 0 for k �= j and f j ∈ C1([0, 1])
with f j (0) = f j (1) = 0, so that f ∈ D(A), and f j (x) > 0 for 0 < x < 1. Then, at
least for t < min1≤ j≤m{1/c j }, ui satisfies

∂t ui = ci∂xui , ui (x, 0) = 0, ui (0, t) = ki j f j (1 − c j t);

that is,

ui (x, t) = ki j f j

(

1 + c j x

ci
− c j t

)

, t ≥ x

ci
,

and we see that the solution is negative for such t . This ends the proof. �
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