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Abstract We investigate entropicity and the generalized entropic property in n-
semigroups. These two properties are not equivalent for n-semigroups in general, but
we show that there are certain classes of idempotent n-semigroups for which entropic-
ity and the generalized entropic property are equivalent, such asMal’cev n-semigroups
and idempotent n-semigroups derived from binary semigroups. Moreover, we present
an alternative description of entropicity in the variety of semigroups satisfying the
identity xn ≈ x for some n ≥ 2. We also obtain a simple representation of the free
ternary Mal’cev semigroup on two generators.
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1 Introduction and preliminaries

Throughout this paper, we use the following notation. The symbol A stands for an arbi-
trary nonempty set. The set {1, . . . , n} of the first n positive integers is denoted by [n].
Tuples are denoted by bold-face letters and their components by corresponding italic
letters with subscripts; for example, a = (a1, . . . , an) ∈ An . If a = (a1, . . . , an) ∈ An

and σ is a permutation of [n], then we write aσ for the n-tuple (aσ(1), . . . , aσ(n)).
An operation on A is a map f : An → A, where n is a nonnegative integer, called

the arity of f . Two operations f : An → A and g : Am → A commute, denoted
f ⊥ g, if

g( f (a11, . . . , a1n), . . . , f (am1, . . . , amn))

= f (g(a11, . . . , am1), . . . , g(a1n, . . . , amn)), (1.1)

for all a11, . . . , amn ∈ A. An operation that commutes with itself is self-commuting.
Clearly, every unary operation is self-commuting. An algebra A = (A; F) is entropic
if every pair of its fundamental operations commutes (in particular, each fundamental
operation is self-commuting). Note that a groupoid (A; ·) is entropic if it satisfies the
identity

(xy) · (zu) ≈ (xz) · (yu).

According to Saminger-Platz et al. [15], “Commuting is an important property in
any two-step information merging procedure, where the results should not depend on
the order in which the single steps are performed.” The entropic property is widely
present, for example, in aggregation theory or in decision-making problems.

The property of entropicity was first investigated as a generalization of the asso-
ciative law for quasigroups (see Murdoch [11]). The first results concerning entropic
semigroups go back to Tamura [16].

The notion of entropicity appears in literature under different names, among others:
mediality, bi-commutativity, bisymmetry, abelianness, commutativity, and alternation.

We say that an algebra (A; F) has the endomorphism closure property if for any f ∈
F and all endomorphisms ϕ1, . . . , ϕn ∈ End(A), the induced mapping f (ϕ1, . . . , ϕn)

is again an endomorphism. It is well known that there is an equivalence between the
endomorphism closure property and the entropic law (see Evans [3,4] and Klukovits
[7]).

A weaker version of the entropic law is the so-called generalized entropic property.
An algebraA = (A; F) has the generalized entropic property if, for every n-ary f ∈ F
and every m-ary g ∈ F , there exist m-ary terms t1, . . . , tn of A such that A satisfies
the identity

g( f (x11, . . . , xn1), . . . , f (x1m, . . . , xnm))

≈ f (t1(x11, . . . , x1m), . . . , tn(xn1, . . . , xnm)). (1.2)

In particular, a groupoid A = (A; ·) has the generalized entropic property if there are
two binary terms t1 and t2 such that A satisfies the identity
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(xy) · (zu) ≈ t1(x, z) · t2(y, u). (1.3)

The generalized entropic property is a special case of the rectangular generalized
bisymmetry, which plays a key role in consistent aggregation and microeconomic
models. Note also that the generalized entropic property is a natural generalization of
the notion of normal subgroups in a group.

We say that an algebra (A; F) has the subalgebra closure property if for any
f ∈ F and all non-empty subalgebras A1, . . . , An ∈ Sub(A), the complex prod-
uct f (A1, . . . , An) is also a subalgebra of (A; F).

The equivalence of the generalized entropic property and the subalgebra closure
property for a variety of groupoids was proved by Evans [3]. Adaricheva, Pilitowska
and Stanovský [1] extended this result by showing that this equivalence actually holds
for an arbitrary variety of algebras.

The classical property of associativity of binary operations can be generalized to
operations of arbitrary arities as follows. An operation f : An → A is associative if

f ( f (a1, . . . , an), an+1, . . . , a2n−1)

= · · · = f (a1, . . . , ar , f (ar+1, . . . , ar+n), ar+n+1, . . . , a2n−1)

= · · · = f (a1, . . . , an−1, f (an, . . . , a2n−1)),

for all a1, . . . , a2n−1 ∈ A. An algebra (A; f ) with one n-ary associative operation f
is called an n-semigroup.

An (n − 1)-tuple (e1, . . . , en−1) ∈ An−1 is neutral for an operation f : An → A,
if

f (a, eσ(1), . . . , eσ(n−1)) = · · · = f (eσ(1), . . . , eσ(r), a, eσ(r+1), . . . , eσ(n−1))

= · · · = f (eσ(1), . . . , eσ(n−1), a) = a

for every a∈ A and any permutation σ ∈ Sn−1. An element e is neutral for f : An → A
if the (n − 1)-tuple (e, . . . , e) is neutral for f .

An n-semigroup (A; f ) is called an n-group, if for every i ∈ [n] and for
all a1, . . . , ai−1, ai+1, . . . , an, c ∈ A, there exists a unique b ∈ A such that
f (a1, . . . , ai−1, b, ai+1, . . . , an) = c. A group is a 2-group in this sense. We will
refer to n-semigroups with a neutral element as n-monoids, and to n-semigroups with
a neutral (n − 1)-tuple as generalized n-monoids. A monoid is a 2-monoid and a
generalized 2-monoid in this sense.

Let i, j ∈ [n] with i < j . An operation f : An → A is (i,j)-commutative if

f (a1, . . . , ai , . . . , a j ,. . . , an)= f (a1, . . . , ai−1, a j , ai+1, . . . , a j−1, ai , a j+1, . . . , an)

for all a1, . . . , an ∈ A. A (1, n)-commutative operation is called semiabelian. An
operation f is totally symmetric (commutative), if for all permutations σ of [n], we
have f (a) = f (aσ) for all a ∈ An .

It is clear that a binary associative and commutative operation is self-commuting.
This observation is also true for a more general case. Dörnte [2] (see also [5]) proved
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that any n-ary semiabelian and associative operation is self-commuting. (Dörnte stated
this result for n-groups, but his proof works for n-semigroups.)

Theorem 1.1 ([2]) A semiabelian n-semigroup is entropic.

But, of course, the converse is not true. Not every entropic n-semigroup is semiabelian.
For example, an entropic semigroup need not be commutative. On the other hand, in
n-semigroups with a neutral element, entropy (or, equivalently, generalized entropy)
is equivalent to commutativity.

Moreover, Głazek and Gleichgewicht provided the following characterization of
entropic n-groups.

Theorem 1.2 ([5]) An n-group is semiabelian if and only if it is entropic.

As a consequence of results in [8], an analogue of the above is also true for n-
monoids.

Corollary 1.3 An n-monoid is semiabelian if and only if it is entropic.

In fact we have even more.

Theorem 1.4 ([8]) Let (A; f ) be an algebra with one n-ary operation that has a
neutral (n − 1)-tuple. Then (A; f ) is entropic (or equivalently has the generalized
entropic property) if and only if it is a semiabelian generalized n-monoid.

These results give rise to an interesting problem: find necessary and sufficient
conditions for an n-semigroup to be entropic (or to have the generalized entropic
property). Are entropicity and the generalized entropic property equivalent for n-
semigroups or for some classes of n-semigroups? While a definitive solution to this
problemeludes us, this paper aims to shed some light on entropicity and the generalized
entropic property in idempotent n-semigroups.

This paper is organised as follows. First, in Sect. 2, we provide an example of
an n-semigroup that has the generalized entropic property but is not entropic, which
shows that these two properties are not equivalent for n-semigroups in general. Then
we analyse various classes of idempotent n-semigroups. In each case, entropicity and
the generalized entropic property prove to be equivalent. These results support the
conjecture stated in [1] that every idempotent algebra (A; f ) (with only one at least
binary operation f ) with the generalized entropic property is entropic. We start with
Mal’cev n-semigroups in Sect. 3. The particular case of ternary Mal’cev semigroups
is studied more carefully in Sect. 4, in which we provide a simple presentation of
the free ternary Mal’cev semigroup on two generators and show that this free algebra
is entropic and hence has the generalized entropic property. In Sect. 5, we discuss
idempotent n-semigroups satisfying the identities f (x, . . . , x, y) ≈ f (y, x, . . . , x) ≈
f (x, y, x, . . . , x) or f (x, . . . , x, y) ≈ f (y, x, . . . , x) ≈ f (x, . . . , x, y, x) (these
include associative weak near-unanimity operations), as well as associative k-edge
operations. We conclude this paper with an analysis of idempotent n-semigroups
derived from binary semigroups and semigroups satisfying the identity x ≈ xn for
some n ≥ 3 (Sect. 6).
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2 Nonequivalence of entropicity and generalized entropic property
in n-semigroups

Aswewill see in Proposition 2.3, the generalized entropic property and entropicity are
not equivalent in n-semigroups in general. But in some cases they are. For example, it
was shown in [1] that if an idempotent semigroup (a band) has the generalized entropic
property, then it is entropic.

For a positive integer n, the transposition permutation (of order n) is the map
εn : [n] × [n] → [n] × [n], (i, j) �→ ( j, i). A permutation σ of [n] × [n] is called
a shuffle-transposition if for each (i, j) ∈ [n] × [n], there exists k ∈ [n] such that
σ(i, j) = (k, i). Transposition permutations are obviously shuffle-transpositions.

Themap β : [n]×[n] → [n2], (i, j) �→ (i−1)n+ j , is a bijection.Wewill identify
a permutation σ of [n] × [n] with the permutation β ◦ σ ◦ β−1 of [n2]. In particular,
we call β ◦ εn ◦ β−1 a transposition permutation, and we say that a permutation σ of
[n2] is a shuffle-transposition if β−1 ◦ σ ◦ β is a shuffle-transposition.

An operation f : An → A is invariant under a permutation σ of [n], if f (a) =
f (aσ) for all a ∈ An .

Lemma 2.1 Let f : An → A. If the operation f ′ : An2 → A given by

f ′(a1, . . . , an2) = f ( f (a1, . . . , an), f (an+1, . . . , a2n), . . . , f (a(n−1)n+1, . . . , an2))

is invariant under a shuffle-transposition of [n2], then the algebra (A; f ) has the
generalized entropic property.

Proof Let σ be a shuffle-transposition of [n2] under which f ′ is invariant, and let
σ ′ = β−1 ◦ σ ◦ β. Then we have

f ( f (a11, . . . , a1n), . . . , f (an1, . . . , ann))

= f ( f (aσ ′(11), . . . , aσ ′(1n)), . . . , f (aσ ′(n1), . . . , aσ ′(nn))).

Since σ ′ is a shuffle-transposition, we have that for each i ∈ [n],

f (aσ ′(i1), . . . , aσ ′(in)) = τi (a1i , . . . , ani ),

where τi is a suitably chosen term operation of (A; f ) (namely f with permuted
variables). Hence,

f ( f (a11, . . . , a1n), . . . , f (an1, . . . , ann))

= f (τ1(a11, . . . , an1), . . . , τn(a1n, . . . , ann)),

and we conclude that (A; f ) has the generalized entropic property. 
�
Lemma 2.2 For every n ≥ 2, there exists a shuffle-transposition σ of [n] × [n] such
that the transposition permutation εn is not generated by σ .
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Proof Let m be a natural number and let us denote by m mod n the unique element
� of [n] such that m ≡ � (mod n). Define σ : [n] × [n] → [n] × [n] as (i, j) �→
((i + j) mod n, i). It is clear from the definition that σ is a shuffle-transposition.

We denote by Fk the numbers in the Fibonacci sequence: F0 = 0, F1 = 1, and
Fk = Fk−1 + Fk−2 for every k ≥ 2. We claim that

σ k(i, j) = ((Fk+1i + Fk j) mod n, (Fki + Fk−1 j) mod n) (2.1)

for every k ≥ 1. We proceed by induction on k. For k = 1, equation (2.1) yields
σ(i, j) = ((i + j) mod n, i mod n), which is true by the definition of σ . Assume then
that (2.1) holds for k = � for � ≥ 1. Then we have

σ�+1(i, j) = σ(σ �(i, j)) = σ((F�+1i + F� j) mod n, (F�i + F�−1 j) mod n)

= (((F�+1i+F� j) mod n+ (F�i+ F�−1 j) mod n)(mod n), (F�+1i+ F� j) mod n)

= (((F�+1 + F�)i + (F� + F�−1) j) mod n, (F�+1i + F� j) mod n)

= ((F�+2i + F�+1 j) mod n, (F�+1i + F� j) mod n),

as claimed.
Wewant to show that σ does not generate εn , that is, σ k 
= εn for all k ≥ 1. Suppose,

on the contrary, that there exists k ≥ 1 such that σ k = εn . Then the congruences
Fk+1i + Fk j ≡ j (mod n) and Fki + Fk−1 j ≡ i (mod n) hold identically for all
i, j ∈ [n]. Thus, we must have Fk+1 ≡ 0 (mod n), Fk ≡ 1 (mod n), and Fk−1 ≡ 0
(mod n). It follows that 0 ≡ Fk+1 = Fk+Fk−1 ≡ 1+0 = 1 (mod n), a contradiction.


�
Proposition 2.3 For every integer n ≥ 2, there exists an n-semigroup that has the
generalized entropic property but is not entropic.

Proof Let n ≥ 2, denote by [n2]∗ the free monoid over the alphabet [n2] and for
w ∈ [n2]∗, denote by |w| the length of w. Let W = {w ∈ [n2]∗ : 1 ≤ |w| < n2},
and let A = W ∪ {�,⊥}. Let c = (1, 2, . . . , n2), and let σ be a shuffle-transposition
of [n2] that does not generate the transposition permutation εn (such a permutation σ

exists by Lemma 2.2). Define the operation f : An → A as follows:

f (w1, . . . , wn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w1 · · ·wn, if w1, . . . , wn ∈ W and |w1 · · · wn| < n2,

�, if w1, . . . , wn ∈ W, |w1 · · ·wn| = n2, and

w1 · · · wn = cσ k for some k ∈ N,

⊥, otherwise.

Let us verify first that f is associative. Letw1, . . . , w2n−1 ∈ A. Ifw1, . . . , w2n−1 ∈
W and |w1 · · · w2n−1| < n2, then for any i ∈ [n],

f (w1, . . . , wi−1, f (wi , . . . , wi+n−1), wi+n, . . . , w2n−1)

= f (w1, . . . , wi−1, wi · · · wi+n−1, wi+n, . . . , w2n−1) = w1 · · · w2n−1.
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If w1, . . . , w2n−1 ∈ W , |w1 · · · w2n−1| = n2, and w1 · · · w2n−1 = cσ k for some
k ∈ N, then for any i ∈ [n],

f (w1, . . . , wi−1, f (wi , . . . , wi+n−1), wi+n, . . . , w2n−1)

= f (w1, . . . , wi−1, wi · · · wi+n−1, wi+n, . . . , w2n−1) = �.

If w1, . . . , w2n−1 ∈ W , |w1 · · · w2n−1| = n2, and w1 · · · w2n−1 
= cσ k for all k ∈ N,
then for any i ∈ [n],

f (w1, . . . , wi−1, f (wi , . . . , wi+n−1), wi+n, . . . , w2n−1)

= f (w1, . . . , wi−1, wi · · · wi+n−1, wi+n, . . . , w2n−1) = ⊥.

Otherwise we have that either w1, . . . , w2n−1 ∈ W and |w1 · · · w2n−1| > n2, or
w� ∈ {�,⊥} for some � ∈ [2n − 1]. In both cases it is easy to verify that for any
i ∈ [n],

f (w1, . . . , wi−1, f (wi , . . . , wi+n−1), wi+n, . . . , w2n−1) = ⊥.

We conclude that (A; f ) is an n-semigroup.
Next we need to show that the n-semigroup (A; f ) has the generalized entropic

property. By Lemma 2.1, it suffices to show that the operation f ′ : An2 → A given
by

f ′(a1, . . . , an2) = f ( f (a1, . . . , an), f (an+1, . . . , a2n), . . . , f (a(n−1)n+1, . . . , an2))

is invariant under σ . Let a1, . . . , an2 ∈ A. If there exists an index i such that ai is
not a word over [n2] of length 1, then we clearly have that f ′(a1, . . . , an2) = ⊥ =
f ′(aσ(1), . . . , aσ(n2)). Thus, we can assume that for all i ∈ [n2], ai is a word over
[n2] of length 1. Then f ′(a1, . . . , an2) = � if and only if a1 · · · an2 = cσ k for
some k ∈ N; otherwise f ′(a1, . . . , an2) = ⊥. Since a1 · · · an2 = cσ k if and only if
aσ(1) · · · aσ(n2) = cσ k+1, we have that f ′(a1, . . . , an2) = f ′(aσ(1), . . . , aσ(n2)) also
in this case.

Finally, we need to verify that f is not entropic, i.e., the operation f ′ defined above
is not invariant under the transposition permutation εn . This is easy to see: since εn is
not of the form σ k for any k ∈ N, we have that f ′(c) = � and f ′(cεn) = ⊥. 
�

3 Mal’cev n-semigroups

For n ≥ 3, let us denote by Mn the variety of n-ary semigroups (A; f ) that satisfy
the identities

f (x, y, . . . , y) ≈ x, (3.1)

f (y, . . . , y, x) ≈ x . (3.2)

It is easy to notice that the ternary term
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p f (x, y, z) := f (x, y, . . . , y, z) (3.3)

is a Mal’cev term. Hence, we refer to an operation f satisfying identities (3.1) and
(3.2) as an n-ary Mal’cev operation, andMn is the variety ofMal’cev n-semigroups.
Clearly, each variety Mn is idempotent and congruence-permutable.

For i ∈ [n], an operation f : An → A is i-cancellative if it satisfies the quasi-
identity

f (x1, . . . , xi−1, y, xi+1, . . . , xn) = f (x1, . . . , xi−1, z, xi+1, . . . , xn) �⇒ y = z.
(3.4)

The operation f is cancellative if it is i-cancellative for every i ∈ [n].
Lemma 3.1 Mal’cev n-semigroups are cancellative.

Proof Let f be an n-ary Mal’cev operation. Let i ∈ [n], and let x1, . . . , xn, y, z ∈ A
be such that

f (x1, . . . , xi−1, y, xi+1, . . . , xn) = f (x1, . . . , xi−1, z, xi+1, . . . , xn). (3.5)

If i > 1, then by (3.2), we may write

y = f (xi−1, . . . , xi−1, y). (3.6)

If i > 2, then by (3.1), we can substitute f (xi−1, xi−2, . . . , xi−2) for the second-to-last
occurrence of xi−1 on the right side of (3.6), and we obtain

y = f (xi−1, . . . , xi−1, f (xi−1, xi−2, . . . , xi−2), xi−1, y).

Continuing in this fashion, for j = 2, . . . , i − 1, we consecutively substitute
f (xi− j , xi− j−1, . . . , xi− j−1) for the second-to-last occurrence of xi− j in the previous
expression, and we obtain

y = f (xi−1, . . . , xi−1, f (xi−1, xi−2, . . . , xi−2,

f (· · · f (x3, x2, . . . , x2, f (x2, x1, . . . , x1), x2) · · · ), xi−2), xi−1, y). (3.7)

Similarly, if i < n, then by (3.1), we may write

y = f (y, xi+1, . . . , xi+1). (3.8)

Continuing in this fashion, for j = 1, . . . , n − i − 1, we consecutively substitute
f (xi+ j+1, . . . , xi+ j+1, xi+ j ) for the second occurrence of xi+ j in the previous expres-
sion, and we obtain

y = f (y, xi+1, f (xi+2, f (· · · f (xn−1, f (xn, . . . , xn, xn−1), xn−1, . . . , xn−2) · · · ),
xi+2, . . . , xi+2, xi+1), xi+1, . . . , xi+1). (3.9)
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If 1 < i < n, then we substitute the right side of (3.7) for the unique occurrence of y
on the right side of (3.9). Applying the associative law, we arrive at a representation
of y of the form

y = f (· · · f (x1, . . . , xi−1, y, xi+1, . . . , xn) · · · ). (3.10)

Repeating the same steps as above, but taking z in place of y, we get

z = f (· · · f (x1, . . . , xi−1, z, xi+1, . . . , xn) · · · ). (3.11)

By (3.5), the right side of (3.10) is equal to the right side of (3.11), and we conclude
that y = z. 
�
Lemma 3.2 Let (A; f ) be an idempotent n-semigroup. If f is i -cancellative and
j-cancellative for some i, j ∈ [n] with i > 1 and j < n, then (A; f ) ∈ Mn.

Proof By i-cancellativity (i > 1) we have

f (x, . . . , x
︸ ︷︷ ︸

i−1

, y, x, . . . , x
︸ ︷︷ ︸

n−i

) = f (x, . . . , x
︸ ︷︷ ︸

i−2

, f (x, . . . , x), y, x, . . . , x
︸ ︷︷ ︸

n−i

)

= f (x, . . . , x
︸ ︷︷ ︸

i−1

, f (x, . . . , x, y), x, . . . , x
︸ ︷︷ ︸

n−i

) �⇒ y = f (x, . . . , x, y).

Wecan show in a similarway that j-cancellativity ( j < n) implies y = f (y, x, . . . , x).
This completes the proof. 
�
Proposition 3.3 Let (A; f ) be an idempotent n-semigroup. The following are equiv-
alent:

(i) (A; f ) ∈ Mn.
(ii) f is cancellative.
(iii) f is 1-cancellative and n-cancellative.
(iv) f is i -cancellative for some i ∈ {2, . . . , n − 1}.
Proof (i) �⇒ (ii) is Lemma 3.1. (ii) �⇒ (iii) and (ii) �⇒ (iv) are obvious.
(iii) �⇒ (i) and (iv) �⇒ (i) follow from Lemma 3.2. 
�
Theorem 3.4 For n ≥ 3, an n-ary semigroup (A; f ) ∈ Mn has the generalized
entropic property if and only if it is entropic.

Proof Sufficiency is obvious. In order to prove necessity, assume there exist n-ary
terms s1, …, sn such that the identity

f ( f (x11, . . . , x1n), . . . , f (xn1, . . . , xnn)) ≈
f (s1(x11, . . . , xn1), . . . , sn(x1n, . . . , xnn)) (3.12)
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holds in (A; f ). Then for any i ∈ [n] and for any a, x1, . . . , xn ∈ A, we have by
idempotence and associativity that

f (a, . . . , a
︸ ︷︷ ︸

i−1

, si (x1, . . . , xn), a, . . . , a
︸ ︷︷ ︸

n−i

)

= f (s1(a, . . . , a), . . . , si−1(a, . . . , a), si (x1, . . . , xn), si+1(a, . . . , a), . . . , sn(a, . . . , a))

(3.12)= f ( f (a, . . . , a
︸ ︷︷ ︸

i−1

, x1, a, . . . , a
︸ ︷︷ ︸

n−i

), f (a, . . . , a
︸ ︷︷ ︸

i−1

, x2, a, . . . , a
︸ ︷︷ ︸

n−i

), . . . , f (a, . . . , a
︸ ︷︷ ︸

i−1

, xn, a, . . . , a
︸ ︷︷ ︸

n−i

))

= f (a, . . . , a
︸ ︷︷ ︸

i−1

, f ( f (x1, a, . . . , a), f (x2, a, . . . , a), . . . , f (xn−1, a, . . . , a), xn), a, . . . , a
︸ ︷︷ ︸

n−i

)

(3.1)= f (a, . . . , a
︸ ︷︷ ︸

i−1

, f (x1, . . . , xn), a, . . . , a
︸ ︷︷ ︸

n−i

).

Since (A; f ) is cancellative by Lemma 3.1, it follows that si (x1, . . . , xn) =
f (x1, . . . , xn). We conclude that (A; f ) is entropic. 
�
By Dörnte’s Theorem 1.1, each semiabelian n-semigroup is entropic. The next

theorem shows that for Mal’cev n-semigroups the converse is also true.

Theorem 3.5 An n-ary semigroup (A; f ) ∈ Mn is entropic if and only if it is semi-
abelian.

Proof ByTheorem1.1we only have to prove that entropicity implies semiabelianness.
Assume that an n-ary semigroup (A; f ) ∈ Mn is entropic. Hence by idempotency,
associativity and entropicity we have

f (x, y1, . . . , yn−2, z)

≈ f ( f (y1, . . . , y1, x), f (y1, . . . , y1), f (y1, . . . , y1, y2), . . . , f (y1, . . . , y1, yn−2),

f (z, y1, . . . , y1))
(1.1)≈ f ( f (y1, . . . , y1, z), f (y1, . . . , y1), . . . , f (y1, . . . , y1), f (x, y1, . . . , yn−2, y1))

≈ f (z, y1, . . . , y1, f (x, y1, . . . , yn−2, y1))

≈ f ( f (z, y1, . . . , y1, x), y1, . . . , yn−2, y1)

≈ f( f (z, y1, . . . , y1, x), f(y1, . . . , y1), f(y2, y1,. . . , y1), . . . , f(yn−2, y1, . . . , y1),

f (y1, . . . , y1))
(1.1)≈ f( f (z, y1, y2, . . . , yn−2, y1), f(y1, . . . , y1), . . . , f (y1,. . . , y1), f (x, y1, . . . , y1))

≈ f ( f (z, y1, y2, . . . , yn−2, y1), y1, . . . , y1, x)

≈ f (z, y1, y2, . . . , yn−2, f (y1, . . . , y1, x))

≈ f (z, y1, y2, . . . , yn−2, x).

This shows that (A; f ) is semiabelian. 
�
Additionally, by well known results of Gumm and Smith (see, e.g. [10, Theorem

4.155]), we have
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Theorem 3.6 Let (A; f ) ∈ Mn, and let p f be as defined in equation (3.3). The
following conditions are equivalent:

(i) (A; p f ) is entropic,
(ii) (A; f ) is diagonally normal (i.e., the diagonal is a block of a congruence of the

square (A; f ) × (A; f )),
(iii) (A; f ) is polynomially equivalent to a module over a ring.

In particular, by results of Romanowska and Smith [14, Corollary 6.3.2], we have
the following characterization of entropic Mal’cev n-semigroups.

Corollary 3.7 Each entropic algebra (A; f ) ∈ Mn is equivalent to an affine space
(a full idempotent reduct of a module) over a commutative ring.

4 Ternary Mal’cev semigroups

The varietyM3 is the Mal’cev variety of ternary semigroups (A; f ) which satisfy the
identities

f (x, y, y) ≈ x, (4.1)

f (x, x, y) ≈ y. (4.2)

Example 4.1 Let (G;+,−, 0) be an abelian group. Define the ternary operation f on
G by the rule

f (x, y, z) := x − y + z,

for all x, y, z ∈ G. Clearly, the algebra (G; f ) is a ternary semigroup and belongs to
the variety M3.

By associativity and (4.1) the following is true in any (A; f ) ∈ M3:

f ( f (x, y, z), z, u) ≈ f (x, f (y, z, z), u) ≈ f (x, y, u),

and, similarly,

f (x, y, f (y, z, u)) ≈ f (x, z, u).

By Theorems 3.4, 3.5, 3.6, and Corollary 3.7 we immediately obtain the following
characterization of entropicity for ternary Mal’cev semigroups.

Theorem 4.2 Let (A; f ) ∈ M3. The following conditions are equivalent:

(i) (A; f ) is entropic,
(ii) (A; f ) has the generalized entropic property,
(iii) (A; f ) is semiabelian,
(iv) (A; f ) is diagonally normal,
(v) (A; f ) is equivalent to an affine space over a commutative ring.
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The freeM3-algebra FM3({x, y}) on two generators x and y has nice and simple
structure. In order to present it, let us introduce the notation tn for each odd integer n
as follows:

t1 := x, tn+2 := f (x, y, tn), for odd n > 0,

t−1 := y, tn−2 := f (y, x, tn), for odd n < 0.

Lemma 4.3 For every odd integer n,

f (x, y, tn) = f (tn, y, x) = tn+2, (4.3)

f (y, x, tn) = f (tn, x, y) = tn−2. (4.4)

Proof If n is positive, then f (x, y, tn) = tn+2 by definition. The equality f (x, y, tn) =
tn+2 holds also for negative n. Namely, f (x, y, t−1) = f (x, y, y) = x = t1, and for
odd and negative n, we have

f (x, y, tn−2) = f (x, y, f (y, x, tn)) = f ( f (x, y, y), x, tn) = f (x, x, tn) = tn .

We prove the equality f (tn, y, x) = f (x, y, tn) by induction. Obviously,
f (t1, y, x) = f (x, y, t1). Assume that f (tn, y, x) = f (x, y, tn) holds for an odd
and positive n. Then

f (tn+2, y, x) = f ( f (x, y, tn), y, x) = f (x, y, f (tn, y, x)) = f (x, y, tn+2).

It is clear that f (t−1, y, x) = f (y, y, x) = f (x, y, y) = f (x, y, t−1). Assume that
f (tn, y, x) = f (x, y, tn) holds for an odd and negative n. Then

f (tn−2, y, x) = f ( f (y, x, tn), y, x) = f (y, x, f (tn, y, x)) = f (y, x, f (x, y, tn))

= f ( f (y, x, x), y, tn) = f (y, y, tn) = tn = f (x, y, tn−2).

Equality (4.4) is proved in a similar way. 
�
Proposition 4.4 For all odd integers p, q, r ,

f (tp, tq , tr ) = tp−q+r .

Proof Observe first that for all odd integers p, q, r ,

f (tp, tq , tr )
(4.3)= f (tp, f (tq−2, y, x), tr ) = f (tp, tq−2, f (y, x, tr ))

(4.4)= f (tp, tq−2, tr−2),

f (tp, tq , tr )
(4.4)= f (tp, f (tq+2, x, y), tr ) = f (tp, tq+2, f (x, y, tr ))

(4.3)= f (tp, tq+2, tr+2).

An easy inductive argument shows that f (tp, tq , tr ) = f (tp, tq+m, tr+m) for all odd
integers p, q, r and any even m. In particular, taking m := p − q, we have

f (tp, tq , tr ) = f (tp, tq+(p−q), tr+(p−q)) = f (tp, tp, tp−q+r )
(4.2)= tp−q+r .


�
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As an immediate consequence of Proposition 4.4 we have obtained a simple repre-
sentation of the free ternaryMal’cev semigroupon twogenerators. Since the generators
of the free algebra FM3({x, y}) are t1 and t−1, it follows that every element of
FM3({x, y}) is equivalent to a term of the form tn for some odd integer. Proposi-
tion 4.4 provides the computation rule that applies to this representation.

Theorem 4.5 The free ternary Mal’cev semigroup FM3({x, y}) on two generators is
isomorphic to the algebra (2Z + 1; f ), where 2Z + 1 denotes the set of odd integers
and f (x, y, z) = x − y + z.

Theorem 4.6 The free ternary Mal’cev semigroup FM3({x, y}) on two generators is
entropic.

Proof It is clear from Theorem 4.5 that FM3({x, y}) is isomorphic to a subreduct of
the abelian group (Z,+,−, 0), so it is entropic. 
�

5 n-Semigroups satisfying Mal’cev-like identities

We now investigate some further n-semigroups that satisfy identities resembling the
identities (3.1) and (3.2) defining Mal’cev n-semigroups. These include associative
weak near-unanimity operations and associative k-edge operations, which, as we will
see, are trivial algebras and hence obviously entropic.

Proposition 5.1 Let f be an associative and idempotent operation that satisfies the
identities

f (x, . . . , x, y) ≈ f (y, x, . . . , x) ≈ f (x, y, x, . . . , x) (5.1)

or

f (x, . . . , x, y) ≈ f (y, x, . . . , x) ≈ f (x, . . . , x, y, x). (5.2)

Then f is totally symmetric.

Proof Assume first that f is an associative and idempotent operation satisfying the
identities (5.1). (The proof is similar in the case when f satisfies the identities (5.2).)
For any i ∈ [n − 1] and for all x1, . . . , xn ∈ A, we have
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f (x1, . . . , xn) = f (x1, . . . , xi−1, f (xi , . . . , xi ), f (xi+1, . . . , xi+1), xi+2, . . . , xn)

= f (x1, . . . , xi−1, xi , f ( f (xi , . . . , xi , xi+1), xi+1, . . . , xi+1), xi+2, . . . , xn)
(5.1)= f (x1, . . . , xi−1, xi , f ( f (xi+1, xi , . . . , xi ), xi+1, . . . , xi+1), xi+2, . . . , xn)

= f (x1, . . . , xi−1, xi , f (xi+1, f (xi , . . . , xi , xi+1), xi+1, . . . , xi+1), xi+2, . . . , xn)
(5.1)= f (x1, . . . , xi−1, xi , f (xi+1, f (xi+1, xi , . . . , xi ), xi+1, . . . , xi+1), xi+2, . . . , xn)

= · · ·
= f (x1, . . . , xi−1, xi , f (xi+1, . . . , xi+1, f (xi+1, xi , . . . , xi )), xi+2, . . . , xn)

= f (x1, . . . , xi−1, f (xi , xi+1, . . . , xi+1), f (xi+1, xi , . . . , xi ), xi+2, . . . , xn)
(5.1)= f (x1, . . . , xi−1, f (xi+1, . . . , xi+1, xi ), f (xi+1, xi , . . . , xi ), xi+2, . . . , xn)

= f (x1, . . . , xi−1, f (xi+1, . . . , xi+1, f (xi , xi+1, xi , . . . , xi )), xi , xi+2, . . . , xn)
(5.1)= f (x1, . . . , xi−1, f (xi+1, . . . , xi+1, f (xi+1, xi , xi , . . . , xi )), xi , xi+2, . . . , xn)

= f (x1, . . . , xi−1, f (xi+1, . . . , xi+1), f (xi , . . . , xi ), xi+2, . . . , xn)

= f (x1, . . . , xi−1, xi+1, xi , xi+2, . . . , xn),

that is, f is (i, i + 1)-commutative. Since the full symmetric group �n is generated
by the set of all adjacent transpositions (i i + 1), 1 ≤ i ≤ n − 1, we conclude that f
is totally symmetric. 
�

An n-ary operation f is a weak near-unanimity operation if it is idempotent and
satisfies the identities

f (y, x, . . . , x) ≈ f (x, y, x, . . . , x) ≈ . . . ≈ f (x, . . . , x, y, x) ≈ f (x, . . . , x, y).
(5.3)

Corollary 5.2 Every associative weak near-unanimity operation is totally symmetric.

It follows from Proposition 5.1 and Theorem 1.1 that every n-semigroup satisfying
the identities (5.1) or (5.2) (in particular, every weak near-unanimity n-semigroup) is
entropic and hence has the generalized entropic property.

We say that ann-semigroup (A; f ) is a left zero n-semigroup if it satisfies the identity
f (x1, . . . , xn) ≈ x1, and we say that it is a right zero n-semigroup if it satisfies the
identity f (x1, . . . , xn) ≈ xn .

It is clear that left or right zero n-semigroups are entropic.

Proposition 5.3 Let (A; f ) be an n-semigroup. If (A; f ) satisfies the identity
f (x, . . . , x, y) ≈ x, then (A; f ) is a left zero n-semigroup. If (A; f ) satisfies the
identity f (y, x, . . . , x) ≈ x, then (A; f ) is a right zero n-semigroup.

Proof Assume that (A; f ) satisfies the identity f (x, . . . , x, y) ≈ x . (The proof when
(A; f ) satisfies the identity f (y, x, . . . , x) ≈ x is similar.) Since f is idempotent, we
have f (x, . . . , x, y) ≈ f (x, . . . , x). By associativity and idempotency, we have
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f ( f (x, . . . , x, y), y, . . . , y) ≈ f ( f (x, . . . , x, x), y, . . . , y)

≈ f (x, f (x, . . . , x, y), y, . . . , y) ≈ f (x, f (x, . . . , x, x), y, . . . , y)

≈ · · · ≈ f (x, . . . , x, f (x, . . . , x, y)) ≈ f (x, . . . , x, f (x, . . . , x, x)) ≈ x .

Then for any i ∈ [n − 1] we have
f (x1, . . . , xn) ≈ f (x1, . . . , xi−1, f (xi , . . . , xi ), f (xi+1 . . . , xi+1), xi+2, . . . , xn)

≈ f (x1, . . . , xi , f ( f (xi , . . . , xi , xi+1), xi+1, . . . , xi+1), xi+2, . . . , xn)

≈ f (x1, . . . , xi−1, xi , xi , xi+2, . . . , xn).

Consequently,

f (x1, . . . , xn) ≈ f (x1, x1, x3, . . . , xn) ≈ f (x1, x1, x1, x4, . . . , xn)

≈ · · · ≈ f (x1, . . . , x1, xn) ≈ f (x1, . . . , x1, x1) ≈ x1.


�
A (k + 1)-ary operation f is called a k-edge operation if it satisfies the following

identities:

f (x, x, y, y, y, . . . , y, y) ≈ y,
f (x, y, x, y, y, . . . , y, y) ≈ y,
f (y, y, y, x, y, . . . , y, y) ≈ y,
f (y, y, y, y, x, . . . , y, y) ≈ y,

...

f (y, y, y, y, y, . . . , y, x) ≈ y.

Analgebra (A; f )with an associative k-edgeoperation is trivial. (Since (A; f ) satisfies
the identity f (y, . . . , y, x) ≈ y, it follows from Proposition 5.3 that (A; f ) is a left
zero (k + 1)-semigroup. Then x ≈ f (x, x, y, . . . , y) ≈ y.)

Similarly, the only n-semigroups with a near-unanimity operation are the trivial
ones.

Denote by πi the projection on the i-th coordinate.

Lemma 5.4 Let n ≥ 2, 1 ≤ j ≤ n and (A; f ) be an idempotent n-semigroup. If
(A; f ) has the generalized entropic property for an arbitrary term t1 and for terms
t2 = · · · = tn = π j or for terms t1 = · · · = tn−1 = π j and for an arbitrary term tn,
then (A; f ) is entropic.

Proof Assume that the generalized entropic property holds for terms t2 = · · · = tn =
π j and an arbitrary term t1. (The proof is similar for terms t1 = · · · = tn−1 = π j and
tn .) We have that the identity

f ( f (x11, . . . , x1n), . . . , f (xn1, . . . , xnn))

≈ f (t1(x11, . . . , xn1), . . . , tn−1(x1(n−1), . . . , xn(n−1)), tn(x1n, . . . , xnn))

≈ f (t1(x11, . . . , xn1), x j2, . . . , x j (n−1), x jn)
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holds in (A; f ). It means that the value of f ( f (x11, . . . , x1n), . . . , f (xn1, . . . , xnn))
does not depend on variables x12,. . . , x1n,. . . , x( j−1)2, . . . , x( j−1)n, x( j+1)2,

. . . , x( j+1)n, . . . , xn2, . . . , xnn . Hence by idempotency we have

f ( f (x11, . . . , x1n), f (x21, . . . , x2n), . . . , f (xn1, . . . , xnn))

≈ f ( f (x11, . . . , x11), f (x21, . . . , x21), . . . , f (x( j−1)1, . . . , x( j−1)1),

f (x j1, . . . , x jn), f (x( j+1)1, . . . , x( j+1)1), . . . , f (xn1, . . . , xn1))

≈ f (x11, . . . , x( j−1)1, f (x j1, . . . , x jn), x( j+1)1, . . . , xn1). (5.4)

In particular it implies for any 1 ≤ i ≤ n, i 
= j :

f (a1, . . . , f (ai1, . . . , ain), . . . , a j−1, a j , a j+1, . . . , an)

≈ f (a1, . . . , ai1, . . . , a j−1, a j , a j+1, . . . , an). (5.5)

If j 
= n, then we have

f (x1, . . . , xn) ≈ f ( f ( f (x1, . . . , x1), x1, . . . , x1), x2, . . . , xn)

≈ f (x1, . . . , x1, f (x1, . . . , x1), x1, . . . , x1, f (x1, x2, . . . , xn))
(5.5)≈ f (x1, . . . , x1),

i.e., f (x1, . . . , xn) depends only on x1. In this case f is clearly entropic. If j = n,
then

f (x1, . . . , xn) ≈ f ( f (x1, . . . , x1), x2, . . . , xn−1, f (xn, . . . , xn))

≈ f (x1, . . . , x1, f (x1, x1, x2, . . . , xn−1), f (xn, . . . , xn))
(5.5)≈ f (x1, . . . , x1, xn),

i.e., f (x1, . . . , xn) depends only on x1 and xn . This, togetherwith associativity, implies
that

f ( f (x11, . . . , x1n), . . . , f (xn1, . . . , xnn))

≈ f ( f (x11, . . . , x11), . . . , f (x11, . . . , x11), f (x11, . . . , x11, xnn)),

i.e., f ( f (x11, . . . , x1n), . . . , f (xn1, . . . , xnn)) depends only on x11 and xnn . It follows
that f is entropic. 
�

6 Idempotent n-semigroups derived from binary semigroups

Let f : An → A be an arbitrary operation of arity n ≥ 1. For � ≥ 0, define the
operation f (�) of arity N (�) := �(n − 1) + 1 recursively as follows: f (0) := idA, and
for � ≥ 0, let

f (�+1)(a1, . . . , aN (�+1)) = f (�)( f (a1, . . . , an), an+1, . . . , aN (�+1)),
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for all a1, . . . , aN (�+1) ∈ A. Note that f (1) = f . Note also that if ∗ denotes the binary
composition as in iterative algebras [9], we have that f (�+1) = f ∗ f (�) for all � ≥ 0.
An algebra (A; ( fi )i∈I ) of type τ = (ni )i∈I is the τ -algebra derived from f, if for
every i ∈ I there exists an integer �i ≥ 0 such that ni = N (�i ) and fi = f (�i ).

Recall that f ⊥ g denotes that two operations f : An → A and g : Am → A
commute (see Sect. 1).

Proposition 6.1 Let f : Am → A and g : An → A, and assume that f ⊥ g. Then
f (k) ⊥ g(�) for every k, � ≥ 1.

Proof Recall that the centralizer {x : x ⊥ h} of a function h is a clone and that for
every k ≥ 0, the function f (k) is a member of the clone generated by f . Therefore,
the assumption f ⊥ g implies f (k) ⊥ g for all k ≥ 0. Similarly, f (k) ⊥ g implies
that f (k) ⊥ g(�) for all � ≥ 0. 
�

Let 2 ≤ n ∈ N. We say that an n-semigroup (S; f ) is derived from a semigroup
(S; ·) if it is the (n)-algebra derived from the binary, associative operation ·. In the
case when n = 2, (S; f ) = (S; ·). For example, it was observed by Dörnte [2] that
an n-semigroup derived from a group is an n-group. Of course, for n ≥ 3, there are
n-semigroups which are not derived from any semigroup.

Let us denote by Sn the variety of semigroups (S; ·) which satisfy the identity

xn ≈ x . (6.1)

Note that an n-semigroup derived from a semigroup (S; ·) is idempotent if and only
if (S; ·) ∈ Sn .

Let (S; f ) be the n-semigroup derived from a semigroup (S; ·). By Proposition 6.1
it is evident that if (S; ·) is entropic then (S; f ) is entropic, too. We will show that for
idempotent n-semigroups derived from semigroups, the converse is also true. In fact,
we obtain even more: for such n-semigroups the generalized entropic property and
entropicity are equivalent.

Theorem 6.2 Let n ≥ 3, let (S; ·) ∈ Sn, and let (S; f ) be the n-semigroup derived
from (S; ·). Then the following statements are equivalent:

(i) (S; f ) is entropic;
(ii) (S; f ) has the generalized entropic property;
(iii) (S; ·) is entropic;
(iv) (S; ·) has the generalized entropic property.

Proof Implications (i) �⇒ (ii) and (iii) �⇒ (iv) are obvious. Implication
(iii) �⇒ (i) holds by Proposition 6.1. We will complete the proof by proving two
other implications as separate theorems in the remainder of this paper: implication
(ii) �⇒ (iii) will be proved in Theorem 6.7, and implication (iv) �⇒ (iii) will be
proved in Theorem 6.8. 
�
Lemma 6.3 Let (S; ·) ∈ Sn. Then (S; ·) is entropic if and only if it satisfies the identity

abca ≈ acba. (6.2)
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Proof It is clear that entropicity implies (6.2). Assume that (6.2) holds in (S; ·). It is
known (see e.g. [6]) that for any semigroup satisfying (6.2) it holds that for a, b, c, d ∈
S,

(abcd)2 = (abcd)(abcd) = (ab(cd)a)bcd = a(cd)babcd = a(c(dba)bc)d =
a(cb(dba)c)d = acb(db(ac)d) = (acbd)(acbd) = (acbd)2.

Moreover,

(abcd)(acbd) = ab(cdac)bd = (abca)(dcbd)

= a(cb)ad(cb)d = (acbd)(acbd) = (acbd)2.

Hence,

abcd = (abcd)n = ((abcd)2)n/2 = ((acbd)2)n/2 = (acbd)n = acbd, if n is even,

abcd = (abcd)((abcd)2)(n−1)/2 = (abcd)(acbd)n−1

= (abcd)(acbd)(acbd)n−2 = (acbd)2(acbd)n−2 = (acbd)n = acbd, if n is odd.

This completes the proof. 
�

Note that if an n-semigroup (S; f ) is derived from a semigroup (S; ·) then the
generalized entropic property (1.2) takes the form

(x11 . . . xn1) . . . (x1n . . . xnn) ≈ t1(x11, . . . , x1n) . . . tn(xn1, . . . , xnn), (6.3)

for some n-ary terms t1, . . . , tn of (S; f ).
In particular, if an n-semigroup (S; f ) is derived from a semigroup (S; ·) then

(S; f ) is entropic if it satisfies the following identity:

(x11 . . . xn1) . . . (x1n . . . xnn) ≈ (x11 . . . x1n) . . . (xn1 . . . xnn).

Let ES be the set of all idempotents in (S; ·).

Lemma 6.4 Let (S; f ) be an idempotent n-semigroup derived from a semigroup
(S; ·) ∈ Sn and let (S; f ) satisfy the generalized entropic property (6.3). Then for
any a ∈ S and e ∈ ES,

t1(e, a, e, . . . , e)e = eae = etn(a, e, . . . , e). (6.4)
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Proof Let a ∈ S and e ∈ ES . By the idempotency of e and the generalized entropic
property we obtain

t1(e, a, e, . . . , e)e = t1(e, a, e, . . . , e)t2(e, . . . , e) · · · tn(e, . . . , e)
(6.3)= (e · · · e︸ ︷︷ ︸

n

)(a e · · · e︸ ︷︷ ︸
n−1

) (e · · · e︸ ︷︷ ︸
n

) · · · (e · · · e︸ ︷︷ ︸
n

)

︸ ︷︷ ︸
n−2

= eae = (e · · · e︸ ︷︷ ︸
n−1

a) (e · · · e︸ ︷︷ ︸
n

) · · · (e · · · e︸ ︷︷ ︸
n

)

︸ ︷︷ ︸
n−1

(6.3)= t1(e, . . . , e) · · · tn−1(e, . . . , e)tn(a, e, . . . , e) = etn(a, e, . . . , e).


�
Lemma 6.5 Let n ≥ 3, (S; f ) be an idempotent n-semigroup derived from a semi-
group (S; ·) ∈ Sn and assume that (S; f ) has the generalized entropic property (6.3).
Then for any a, b ∈ S and e ∈ ES,

eabe = ebeae. (6.5)

Proof Let a, b ∈ S and e ∈ ES . By the idempotency of e and the generalized entropic
property we have

eabe = (e · · · e︸ ︷︷ ︸
n−1

a)(b e · · · e︸ ︷︷ ︸
n−1

) (e · · · e︸ ︷︷ ︸
n

) · · · (e · · · e︸ ︷︷ ︸
n

)

︸ ︷︷ ︸
n−2

= t1(e, b, e, . . . , e)t2(e, . . . , e) . . . tn−1(e, . . . , e)tn(a, e, . . . , e)

= t1(e, b, e, . . . , e)etn(a, e, . . . , e)
(6.4)= ebetn(a, e, . . . , e)

(6.4)= ebeae.


�
Let (S; ·) ∈ Sn and a ∈ S. If n = 2 then clearly a is idempotent. For n ≥ 3,

obviously

an−1 = anan−2 = an−1an−1,

which means that each element an−1 is idempotent. Moreover, for any a ∈ S

f (an−1, . . . , an−1, a) = a = f (a, an−1, . . . , an−1).

Hence, the following is easily observed.

Corollary 6.6 Let (S; f ) be an idempotent n-semigroup derived from a semigroup
(S; ·) ∈ Sn. Then the following statements are equivalent:

(i) (S; f ) is semiabelian;
(ii) (S; ·) is commutative;
(iii) (S; f ) is totally symmetric.
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Proof (i) �⇒ (i i) Let (S; f ) be a semiabelian n-semigroup. Then for any a, b ∈ S
we have

ab = a an−1 · · · an−1
︸ ︷︷ ︸

n−2

b = f (a, an−1, . . . , an−1, b)

= f (b, an−1, . . . , an−1, a) = b an−1 · · · an−1
︸ ︷︷ ︸

n−2

a = ba,

which shows that (S; ·) is commutative.
The implications (ii) �⇒ (iii) and (iii) �⇒ (i) are obvious. 
�

Theorem 6.7 Let n ≥ 3, let (S; f ) be an idempotent n-semigroup derived from a
semigroup (S; ·) ∈ Sn and assume that (S; f ) has the generalized entropic property
(6.3). Then (S; ·) is entropic.
Proof First note that for any a ∈ S, the set

Sa := {an−1san−1 : s ∈ S}

is a subsemigroup of (S; ·) with identity element an−1. Thus (Sa; f ) is a subalgebra
of (S; f ) which contains the neutral an−1. By Theorem 1.4 and Corollary 6.6, for any
a ∈ S, (Sa; ·) is commutative. Hence, by Lemma 6.5, for any a, b, c ∈ S, we have

an−1bcan−1 (6.5)= an−1can−1ban−1 = an−1can−1an−1ban−1

= an−1ban−1an−1can−1 = an−1ban−1can−1 (6.5)= an−1cban−1.

Consequently, for any a, b, c ∈ S,

abca = acba.

By Lemma 6.3, this shows that (S; ·) is entropic. 
�
It follows from a classification of varieties of bands (idempotent semigroups) that

the generalized entropic property and entropicity are equivalent in idempotent semi-
groups (for a direct proof see [1, Proposition 3.11]). This result may by expanded to
any semigroup (S; ·) ∈ Sn .

Theorem 6.8 Let (S; ·) ∈ Sn. Then (S; ·) has the generalized entropic property if and
only if it is entropic.

Proof First note that the idempotents of an arbitrary semigroup (S; ·) having the
generalized entropic property form a normal (entropic) band. For, let ES be the set of
all idempotent elements of (S; ·) and let t1 and t2 be terms with which (S; ·) satisfies
identity (1.3). Let e, f ∈ ES . Then

(e f )(e f )
(1.3)= t1(e, e)t2( f, f ) = e f,
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which shows that e f ∈ ES , i.e., ES is a subsemigroup. It then follows from [1,
Proposition 3.11] that ES is entropic; in other words, ES is a normal band.

Fromnowon, assume that (S; ·) is amember of the varietySn having the generalized
entropic property.We have that (S; ·) is a completely regular semigroup,with the unary
operation −1 : S → S; a �→ a−1 := an−2, hence (S; ·) is orthodox. (Recall that a
regular semigroup is called orthodox if its idempotents form a subsemigroup.)

A completely regular semigroupwhose idempotents form a normal band is a normal
band of groups ([12, Theorem 4.1, Corollary 4.3]). It thus follows from [13, Theorem
3.2] that (S; ·) is a subdirect product of a band B and a semilattice L of groups. By
the definition of subdirect product, B and L are homomorphic images of S, so B and
L satisfy every identity satisfied by S; hence B and L have the generalized entropic
property.

We have seen in the first paragraph of this proof that every band with the general-
ized entropic property is normal. It was shown in [1, Proposition 4.7] that every group
with the generalized entropic property is abelian. Hence we conclude that (S; ·) is a
subdirect product of a normal band and a semilattice of abelian groups. Since semi-
lattices of abelian groups are commutative and hence entropic, the semigroup (S; ·) is
entropic. 
�
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