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Abstract The graph of an algebra A is the relational structure G(A) in which the
relations are the graphs of the basic operations of A. For a class C of algebras let
G(C ) = {G(A) | A ∈ C }. Assume that C is a class of semigroups possessing a non-
trivial member with a neutral element and let H be the universal Horn class gen-
erated by G(C ). We prove that the Boolean core of H , i.e., the topological preva-
riety generated by finite members of H equipped with the discrete topology, does
not admit a first-order axiomatization relative to the class of all Boolean topological
structures in the language of H . We derive analogous results when C is a class of
monoids or groups with a nontrivial member.

Keywords Topological prevarieties · First order axiomatization · Boolean cores ·
Relational structures · Profinite structures

1 Introduction

The graph of an algebra A = (A,O) is the relational structure

G(A) = (
A, {Ro | o ∈ O}),
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where each Ro is the graph of an operation o. This means that if o is an n-ary opera-
tion, then Ro is the (n + 1)-ary relation consisting of those tuples (a0, . . . , an) which
satisfy o(a0, . . . , an−1) = an. We will work mostly with groupoids (semigroups in
fact) and, without a risk of ambiguity, we will omit the subscript o. For a class C
of algebras by G(C ) we denote the class of all graphs of algebras from C . In [15,
Theorem 1] it is proved that there is no finite basis for the quasi-equational theory
(and thus for the universal Horn theory) of G(C ) whenever C is a class of semi-
groups possessing a nontrivial member with a neutral element, that is, an element e

such that ae = ea = a for all a. (The case when C consists of any individual two-
element semigroup with a neutral element was proved earlier by Gornostaev in [8],
see also [7, Sect. 6.2].) Here we indicate that this shortcoming of relational structures,
compared to algebras, carries over to the topological setting. Every finite structure X
when equipped with the discrete topology becomes a topological structure X

˜
. Fol-

lowing Clark, Davey, Jackson and Pitkethly [6], we define the Boolean core HBC of
a universal Horn class H as the topological prevariety generated by the finite mem-
bers of H (treated as topological structures). Notably, HBC consists of all profi-
nite structures built, as inverse limits, from finite members of H [6, Corollary 2.4].
Specifically, HBC is the class of topologically closed substructures of products, with
nonempty indexing sets, of finite members of H . So the topology on members of
HBC is Boolean, that is, compact, Hausdorff, and totally disconnected. We are in-
terested in when HBC admits a first-order axiomatization (relative to all Boolean
topological structures in the language of H ). With respect to this problem, our con-
tribution is a proof of the following fact.

Theorem 1.1 Let C be a class of semigroups possessing a nontrivial member with
a neutral element and H be the universal Horn class generated by G(C ). Then its
Boolean core HBC is not first-order axiomatizable.

Little modifications in the proof of Theorem 1.1 give us the following corollary.

Corollary 1.2 Let C be a class of monoids or groups possessing a nontrivial member
and H be the universal Horn class generated by G(C ). Then its Boolean core HBC

is not first-order axiomatizable.

First order axiomatizability for topological prevarieties of relational structures was
investigated in a series of papers [10, 16–18] by Jackson and the second author. Re-
sults obtained there, which are recalled below, together with our Theorem 1.1, suggest
that first-order logic is not the right tool for describing topological prevarieties of rela-
tional structures. Clark and Krauss proposed in [3] a logic in which every topological
prevariety may be defined. It is so because this logic is capable of expressing conver-
gence. Still, it seems to be too complex for applications. Thus, the general problem of
finding a simpler logic, in which we could axiomatize most topological prevarieties
of relational structures, is open.

Before delving into the context of our research, we present an example showing
that we cannot drop the assumption of possessing a nontrivial member with a neutral
element in Theorem 1.1.
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Example 1.3 Let Z be the class of semigroups satisfying
(∀u,v,u′, v′)[u · v ≈ u′ · v′]

and let W be the universal Horn class UHG(Z ). It is noted in [15, p. 297] that W is
axiomatized by two sentences

(∀u,v,w,w′)[R(u, v,w) ∧ R
(
u,v,w′) → w ≈ w′] and

(∀u,v,u′, v′,w
)[

R(u, v,w) → R
(
u′, v′,w

)]
.

We will use Separation Principle 3.1 to show that the Boolean core WBC consists of
all members from W equipped with a Boolean topology. So let X

˜
be a Boolean topo-

logical structure, with the non-topological reduct X = (X,RX) satisfying the above
sentences. Then RX = ∅ or RX = X2 × {p} for some p ∈ X. Let 2 be the structure
({0,1},∅). Clearly the topological structure 2

˜
belongs to WBC . Since X

˜
has a Boolean

topology, for every pair of distinct elements x, y ∈ X there is a continuous mapping
hx,y : X

˜
→ 2

˜
(here X

˜
and 2

˜
are just topological spaces) separating points x, y. When

RX = ∅, the map hx,y is also a homomorphism from X onto 2. Thus, by the Separa-
tion Principle, X

˜
∈ WBC . Now suppose RX = X2 × {p}. For x 	= y in X let Sx,y be

the two-element semigroup with the same carrier set as 2 and the multiplication de-
fined by a ·b = hx,y(p) for a, b ∈ S. Then hx,y : X

˜
→ G(Sx,y)

˜

∈ WBC is a continuous

homomorphism separating elements x and y. For (x, y, z) ∈ X3 −RX we have z 	= p

and we may consider the continuous homomorphism hz,p : X → G(Sz,p)

˜

. Then the

triple (hz,p(x),hz,p(y),hz,p(z)) does not belong to the relation of G(Sz,p), and again
by the Separation Principle we conclude that X

˜
∈ WBC .

Similarly one may show that the Boolean core of the class of graphs of semigroups
satisfying (∀u,v)[u · v ≈ u] is axiomatizable by a finite number of universal Horn
sentences.

2 Related works and two problems

2.1 Semigroups

There is not currently a general classification of first-order axiomatizability for topo-
logical prevarieties of semigroups. However, some axiomatizability results have been
proven. Probably the first one is Numakura’s theorem [13] that every semigroup S

˜with a Boolean topology is an inverse limit of finite semigroups (it follows easily that
S
˜

is in the Boolean core of the class of all semigroups). Thus, in contrast to our result,
the Boolean core of the class of all semigroups is equal to the class of all Boolean
topological semigroups, and is therefore axiomatizable by the associativity axiom.
We consider the situation when the Boolean core HBC of a universal Horn class H
is axiomatized by the universal Horn theory of H , as for the class of all semigroups
and the class W from Example 1.3, as the best possible. Following [4], we call such
H standard.
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Numakura’s theorem has a far reaching generalization. It follows from the result
of Clark, Davey, Freese and Jackson [5, Theorem 8.1, Example 8.3] that the members
of H are all profinite whenever H is a variety and has finitely determined syntactic
congruences. In particular, it holds when H is a variety of semigroups, monoids,
groups, rings or is a variety with definable principal congruences. Now Lemma 2.8
of [6] shows that since H is a variety, the members of H are actually inverse limits
of finite members of H , whence H is standard.

Let us recall two more specific results about semigroups. For universal Horn
classes UH(S) generated by a finite cyclic semigroup S it is shown in [6, Theorem 9.1]
that the following properties are equivalent: UH(S) is standard; the Boolean core of
UH(S) is first-order axiomatizable; UH(S) is finitely axiomatizable; S has index at
most 2. Combined with our result and [15], this shows that UH(S) may be standard
and finitely axiomatizable while UHG(S) is neither standard nor finitely axiomatiz-
able. We would like to recall also Jackson’s result [9, Theorem 7.4] that the universal
Horn class generated by a finite completely simple semigroup S is finitely axiomati-
zable iff there is some finitely generated standard universal Horn class containing S
(which need not be the universal Horn class generated by S).

2.2 Relational structures

For some universal Horn classes of relational structures the question of first-order
definability of Boolean cores is settled. Based on this, it seems that this property is
extremely rare. Let us look more closely at what is known.

A classification for universal Horn classes of reflexive antisymmetric digraphs was
obtained by the second author. She proved in [18, Theorem 1.1] that such a class has
a first-order definable Boolean core iff it is properly contained in the class P of
ordered sets, i.e., its all members are antichains, iff it is standard. She also provided a
classification, though more technical, for universal Horn classes of bipartite digraphs
without cycles. Here again first-order definability of the Boolean core was found to
be equivalent to standardness [16, Theorem 1.1].

An interesting general result, connected to constraint satisfaction problems, was
obtained by Jackson and the second author. Let X be a finite relational structure in a
finite language. The class A(X) consisting of all relational structures, in the language
of X, admitting a homomorphism into X, is the antivariety generated by X. Actu-
ally, A(X) is also a finitely generated universal Horn class (see [7, Theorem 3.1.11],
[10, Lemma 6]). Then the lack of a finite axiomatization for A(X) yields the lack of a
first-order axiomatization for A(X)BC [10, Theorem B]. Note that, as explained in the
introduction of [15], the finite axiomatizability of A(X) is a rare property. Indeed, it is
equivalent to the fact that the finite membership problem for A(X), the so called con-
straint satisfaction problem with the target X, is in the complexity class non-uniform
AC0 [1, Theorem 2]. Note also that the converse of [10, Theorem B] holds provided
X is a bipartite digraph, and such an antivariety is finitely axiomatizable iff it is stan-
dard iff all edges in X are directed from one part to the second part of this digraph
[10, Theorem C].

Unfortunately, we do not have such a general result for simple graphs (treated as
symmetric and anti-reflexive digraphs). However, the second author verified that the
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universal Horn class generated by a clique with at least three elements does not admit
a first-order axiomatization for its Boolean core [17, Theorem 4.7]. The same holds
for the universal Horn class generated by the three-element path [17, Corollary 3.5];
see below for more about this example.

Actually, quite surprisingly, there is no known example of a non-standard universal
Horn class of relational structures with a first-order definable Boolean core.

Problem 2.1 Is there a non-standard universal Horn class of relational structures
with a first-order axiomatizable Boolean core?

In [15] it was shown by the first author that if H is as in Theorem 1.1 then H is
not finitely axiomatizable. This was done by finding, for each n, a structure Xn /∈ H
such that all n-element substructures of Xn are in H . The method used in the present
article to demonstrate non-standardness is Theorem 4.2 taken from [6], which re-
quires that there exist structures Xn having the property just described and, addition-
ally, that these structures can be assembled into an inverse limit satisfying certain
conditions. Thus inverse limits satisfying the conditions of Theorem 4.2 witness both
the non-standardness and the non-finite axiomatizability of a universal Horn class.

However, in general it is not true that either finite axiomatizability yields standard-
ness for universal Horn classes or standardness yields finite axiomatizability. Indeed,
Stralka’s well-known example (which we discuss further in Sect. 5.3) shows that the
class of Priestley spaces (which is the Boolean core PBC of the class of ordered
sets P) is not equal to the class of Boolean topological ordered sets [14]. Thus P
is not standard. Actually, as we already recalled, PBC is not even first-order axiom-
atizable. This fact was first proved by Clark, Davey, Jackson and Pitkethly in [6,
Example 6.2]. Another such example is given by the universal Horn class UH(•−•−•)

generated by the simple graph which is a three-element path. This class consists of
disjoint sums of complete bipartite graphs and isolated vertices. Indeed, from [12,
Theorem 3.2] it follows that UH(•−•−•) is finitely axiomatizable, and in [17, Corol-
lary 3.5] it is shown that UH(•−•−•)BC is not first-order axiomatizable. On the other
hand, there are varieties of semigroups which are not finitely axiomatizable [19] and,
as already mentioned, all of them are standard. (There are no known such finitely
generated universal Horn classes; see [6, Problem 3].)

As we have just noted, standardness does not imply finite axiomatizability. How-
ever, the last result we wish to recall states that this implication does hold for univer-
sal Horn classes generated by a finite number of finite simple graphs. Such a class is
standard iff it is one of ∅, UH(•), UH(• •), UH(•−•) [17, Theorem 2.4], and all of
them are finitely axiomatizable [12, Theorem 3.2].

Actually, there is no known example of a universal Horn class of relational struc-
tures that is standard but not finitely axiomatizable. Let us formulate this as the second
specific problem (in the finitely generated case it is Problem 3 in [6]).

Problem 2.2 Is there a universal Horn class of relational structures which is standard
but not finitely axiomatizable?
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3 Background

Here we briefly review needed concepts. However the reader should consult a seminal
article in the topic [6]. Moreover, in Sects. 4 and 5.1 we heavily use results from [15].
Standard books about universal algebra [2] and quasivarieties [7, 11] may be helpful.

Let us fix an underlying relational language L , i.e., a set of relation symbols with
ascribed arities. By a topological (relational) structure we mean a triple

X
˜

= (
X,

{
RX | R ∈ L

}
,T

)
,

where X = (X, {RX | R ∈ L }) is a relational structure and T is a topology on X

such that every relation RX is closed in X
˜

, meaning that RX is a closed subset of
(X,T )n, where n is the arity of R. In this article we actually consider only Boolean
topologies, i.e., compact, Hausdorff and totally disconnected. Obviously, every finite
structure X becomes a Boolean topological structure X

˜
when equipped with the dis-

crete topology. More notably, this is true for every profinite structure, that is, every
structure that is an inverse limit of finite structures, with the relative product topology.

A topological prevariety is a class of Boolean topological structures that is closed
taking isomorphic images, closed substructures and direct products with a nonempty
indexing set. The smallest topological prevariety containing K , i.e., generated
by K , consists of structures which are isomorphic to closed substructures of prod-
ucts with nonempty indexing sets of topological structures from K . A structure X is
trivial if |X| = 1 and all its relations are full. We have the following useful fact.

Separation Principle 3.1 [3, Corollary 1.3] Let K be a class of Boolean topolog-
ical structures, and let X

˜
be a compact topological structure with a nontrivial non-

topological reduct. Then X
˜

belongs to the topological prevariety generated by K
if and only if for each R, which is a relation symbol in the language of K or the
equality symbol, and for every tuple x̄ ∈ X(arity of R) − RX, there are Y

˜
∈ K and a

continuous homomorphism h : X
˜

→ Y
˜

such that h(x̄) /∈ RY.

A sentence, in L , is universal if it is of the form (∀x̄)ϕ(x̄), where ϕ(x̄) is a
formula without occurrences of quantifiers. The universal theory of a class C of
structures is the set of all universal sentences true in C . A Horn clause is a formula
without occurrences of quantifiers of the form

ψ0 ∧ · · · ∧ ψn−1 → ψ or ¬ψ0 ∨ · · · ∨ ¬ψn−1,

where all ψi,ψ are atomic. An universal Horn sentence is a universal sentence with
the quantifier-free part being a conjunction of Horn clauses. A universal Horn class
of structures is a class definable by a set of universal Horn sentences or, equivalently,
a class closed under taking substructures, ultraproducts and products with nonempty
indexing sets [2, Theorem 2.23].

The Boolean core HBC of a universal Horn class H is the topological prevariety
generated by {X

˜
| X is a finite member of H }. Clearly, every member of HBC has a

Boolean topology. We are interested in when HBC can be axiomatized in a nice way.
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More precisely, by an axiomatization of HBc we mean an axiomatization relative to
the class of all Boolean topological structures in the language of H . In this article by
nice we mean in (a fragment of) first-order logic. A desirable situation happens when
HBC coincides with the class HBT of all Boolean topological structures with non-
topological reducts in H . Then HBC is definable by the universal Horn sentences
true in H , and we say that H is standard. When H is in a relational language this
property is equivalent to the axiomatizability of HBC by any set of universal Horn
sentences. Indeed, this follows from the fact that every subset, and in particular every
finite subset, of a carrier of a relational structure X is the carrier of a substructure
of X, and consequently every universal Horn class is generated by the class of its
finite members.

We already mentioned in the introduction that HBC is the class of profinite struc-
tures built, as inverse limits, from finite members of H . We use only a special case
of the inverse limit construction. Let Xn, n ∈ N, be a family of finite structures in-
dexed by the natural numbers and accompanied by a family of surjective homomor-
phisms ϕn−1 : Xn → Xn−1, n > 0. The surjective inverse limit of the system Xn,
n ∈ N, and ϕn−1, n > 0, is the topological substructure of

∏
n∈N X

˜
n with the carrier

{x ∈ ∏
n∈N X

˜
n | (∀n > 0)ϕn−1(x(n)) = x(n − 1)}.

4 Lack of standardness

Proposition 4.1 Let C be a class of semigroups possessing a nontrivial member with
a neutral element. Then the universal Horn class generated by G(C ) is non-standard.

Let X
˜

= lim←−{Xn | n ∈ N} be a surjective inverse limit of finite structures and H

be a universal Horn class in the same language. We say that X
˜

is pointwise non-
separable with respect to H if there is a k-ary relation symbol R (the equality symbol
is allowed) in the language of X

˜
and an k-tuple (x0, . . . , xk−1) ∈ Xk − RX such that

for every n ∈ N, for every homomorphism h from Xn into a finite member Y of H
we have

(
h
(
x0(n)

)
, . . . , h

(
xk−1(n)

)) ∈ RX.

The importance of this notion comes from the fact that if X
˜

is pointwise non-
separable with respect to H , then X

˜
/∈ HBC [6, Lemma 3.3].

In the proof of Proposition 4.1 we will use the following fact.

Theorem 4.2 [6, Second Inverse Limit Technique 3.9] Assume that the underlying
language is relational and finite. Let X

˜
= lim←−{Xn | n ∈ N} be a surjective inverse limit

of finite structures, and let H be a universal Horn class. Assume that X
˜

is pointwise
non-separable with respect to H and that the following condition holds

(∀n ∈ N)(∀Y � Xn)[|Y | � n yields Y ∈ H ]. (S)

Then X
˜

∈ HBT − HBC and H is non-standard.
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Proof of Proposition 4.1 We construct a surjective inverse limit X
˜

of finite structures
satisfying all conditions from Theorem 4.2 for H .

We build Xn = (X,RXn) from M♦ = (M,R♦) constructed in [15, Sect. 2] for
every natural number n. Let

Xn = M ∪ {c∞}
and

RXn = R♦ ∪ {
(c∞, x, x) | x ∈ Xn

} ∪ {
(x, c∞, x) | x ∈ Xn

}

when ♦ ∈ {>,∨}, and

RXn = R♦ ∪ {
(c∞, x, x) | x ∈ Xn

} ∪ {
(x, c∞, x) | x ∈ Xn

} ∪ {
(x, x, c∞) | x ∈ Xn

}

when ♦ = 2. Here c∞ should be thought of as a neutral element. Clearly M♦ � Xn.
Now let us define the connecting surjective mappings ϕn−1 : Xn → Xn−1 by

ϕn−1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x if x ∈ Xn − {cn, dn, d
′
n};

c∞ if x = cn;
dn−1 if x = dn;
d ′
n−1 if x = d ′

n.

Note that the carrier set of X
˜

, abusing the notation, is

X = {
a0, a1, a

′
0, a

′
1, b, c0, . . . , cn, . . . , c∞,

d0, . . . , dn, . . . , d∞, d ′
0, . . . , d

′
n, . . . , d

′∞, e
}
,

where a0, a1, a
′
0, a

′
1, b, e, c∞ stand for constant mappings taking the value they indi-

cate,

cn(k) =
{

cn if k � n;
c∞ if k < n,

dn(k) =
{

dn if k � n;
dk if k < n,

d ′
n(k) =

{
d ′
n if k � n;

d ′
k if k < n,

d∞(k) = dk, d ′∞(k) = d ′
k for all k.

Now we check the satisfaction of all conditions from Theorem 4.2 one by one.

Claim 4.3 Every ϕn−1 is a homomorphism, and thus indeed X
˜

is a surjective inverse
limit of finite structures.

Proof In [15, Lemma 2] it is shown that there is a structure W (which is there the
graph of an appropriate semigroup) and a mapping εn,k : M −{ck} → Wn+6 (denoted
there εk), which is an embedding of the substructure of M with the carrier M − {ck}
into Wn+6. Let Xn,k be the substructure Xn with the carrier Xn − {ck}. Inspecting
the definition of εn,k given in [15, Table 1], we see that εn,k may be extended to an
embedding of Xn,k into Wn+6 by assigning a value for c∞ to be the tuple of zeros. Let
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us denote this extension also by εn,k . Again by inspecting [15, Table 1], the following
diagram commutes

Xn,k

ϕn−1|Xn,k

εn,k

Wn+6

πn−1

Xn−1,k

εn−1,k

Wn+5,

where πn−1 removes from (n + 6)-tuples the next-to-last entry. As πn−1 is a homo-
morphism, ϕn−1|Xn,k

must also be a homomorphism. Since the arity R is three, this
gives us that ϕn−1 is a homomorphism from Xn onto Xn−1 for n � 4. Actually, this is
all we need, as we could equally well start indexing in the inverse limit from 4. Still,
the claim is true for all n � 1, and the curious reader may verify it. �

Claim 4.4 X
˜

is pointwise non-separable with respect to H .

Proof It follows from the proof of [15, Claim on p. 301] that if h : Xn → Y is a
homomorphism into the graph of a semigroup, then Y |= R(h(a′

0), h(d ′
n), h(e)). Thus

in particular X
˜

is pointwise non-separable with respect to H , which is witnessed by
the triple (a′

0, d
′∞, e). �

Claim 4.5 The condition (S) holds for X
˜

.

Proof Let Y ⊆ Xn, |Y | � n and Z = Y − {c∞}. In [15, Claim on p. 302] it is shown
that the structure Z, with the carrier set Z, is isomorphic to a substructure U of
G(Sn+6), where S is a semigroup from C with a neutral element. Moreover, the
neutral element of Sn+6 is not in U . Hence also Y is isomorphic to a substructure of
G(Sn+6). �

This completes the proof of Proposition 4.1. �

5 Lack of first-order axiomatization

5.1 Non-idempotent case

Proposition 5.1 Let C be a class of semigroups possessing a nontrivial non-
idempotent member with a neutral element. Let H be the universal Horn class gen-
erated by G(C ). Then HBC is not first-order axiomatizable.

Let λ be a positive integer. A λ-compactification of a set X is an idempotent map
γ : X → X with |γ (X)| � λ. A topology on X induced by a λ-compactification
γ : X → X consists of all subsets U of X such that the set γ −1(x) − U is finite for
every x ∈ U ∩ γ (X). A topology induced by a λ-compactification is always Boolean.

In the proof of Proposition 5.1 we will use the following fact.
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Theorem 5.2 [6, Second Ultraproduct Technique 5.3] Let H be a non-standard
universal Horn class, with a witness X

˜
∈ HBT − HBC , in a finite and relational

language. Assume that

(1) there is a λ-compactification γ X : X → X such that the topology of X
˜

is induced

by γ X,
(2) each model (Y, γ Y) of the universal theory of (X, γ X) becomes a Boolean topo-

logical structure when equipped with the topology induced by γ Y.

Then HBC is not first-order axiomatizable.

Let X be a structure. For a relational symbol R in the language of X and an ele-
ment x ∈ X let NbR(x) be the set of tuples from RX in which x occurs. For a finite
number d we say that a structure X is of degree almost d-bounded relative to a map
γ : X → X provided that for every relation symbol R in the language of X and every
element x of X − γ (X) the set NbR(x) has at most d elements.

Lemma 5.3 Let X
˜

be a topological relational structure with a topology induced by

a λ-compactification γ X : X → X. Assume that X is of degree almost d-bounded
relative to γ X for some finite number d . Then in every model (Y, γ Y) of the universal
theory of (X, γ X) the mapping γ Y is a λ-compactification of Y inducing a topology
in which all relations of Y are closed.

Proof Since we may consider each relation separately, we assume that there is just
one, say n-ary, relation symbol R in the language of X

˜
. Let C be a finite subset of

X, D be a new unary relation symbol and XC = (X,RXC ,DXC ), where RXC = RX,
DXC = C. Since C is finite and the topology of X

˜
is Hausdorff, XC when equipped

with the same topology, becomes a Boolean topological structure X
˜

C .
It is sufficient to prove that there is a finite set C ⊆ X such that whenever

(Y,RY,DY, γ Y) models the universal theory of (XC,γ X), then γ Y induces a
Boolean topology in which RY is closed. For let us assume that (Y, γ Y) models
the universal theory of (X, γ X). By [2, Theorem V.2.20], (Y, γ Y) is a substructure
of an ultrapower of (X, γ X), and hence it may be expanded to a substructure of an
ultrapower of (XC,γ X).

Since the set (γ X(X))n − RX is finite and RX is closed in X
˜

, for every element

x ∈ γ X(X) we may define an open neighborhood Ux ⊆ (γ X)−1(x) of x such that,
whenever (x0, . . . , xn−1) ∈ (γ X(X))n − RX, we have

Ux0 × · · · × Uxn−1 ∩ RX = ∅.

Let Z = ⋃
x∈γ X(X) Ux and define C = X − Z. Note that the finiteness of all sets

(γ X)−1(x) − Ux , x ∈ γ X(X), yields the finiteness of C. Moreover, thus chosen Z

and C guarantee that

γ X(x̄) ∈ RX provided x̄ ∈ RX ∩ (
X − DXC

)n
. (H)

Now take a model Y = (Y,RY,DY, γ Y) of the universal theory of (XC,γ X).
Then:
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(i) γ Y is a λ-compactification of Y ,
(ii) Y is almost d-bounded relative to γ Y,

(iii) DY is finite and γ Y(Y ) ∩ DY = ∅,
(iv) γ Y(ȳ) ∈ RY provided ȳ ∈ RX ∩ (Y − DY)n.

Note that (iii) holds because C = DXC is finite and does not intersect with γ X(X).
Also (iv) holds because the property (H) is expressible by a universal sentence.

Let ȳ = (y0, . . . , yn−1) ∈ Yn − RY. The proof will be finished when (relative to
the topology induced by γ Y) we find, for each i < n, an open neighbourhood Oi of
yi such that O0 × · · · × On−1 ∩ RY = ∅. Let J = {i < n | yi /∈ γ Y(Y )}.
Case when J 	= ∅: Let N be the set of elements occurring in the tuples from⋃

i∈J NbR(yi). For i < n define

Oi =
{

{yi} if i ∈ J ;
γ −1(yi) − N ∪ {yi} if i /∈ J.

Note that by (ii), the set N has at most n2d elements. In particular, it is finite and
every Oi is open. Note also that we had to add {yi} in the above formula because it
may happen that yi ∈ N . Now, the definition of Oi yields O0 ×· · ·×On−1 ∩RY = ∅.

Case when J = ∅: For i < n define

Oi = (
γ Y)−1

(yi) − DY.

By (iii), Oi is an open neighborhood of yi . Moreover, by (iv) and the fact that ȳ /∈ RY,
we have O0 × · · · × On−1 ∩ RY = ∅. �

Proof of Proposition 5.1 Let X
˜

be the topological structure constructed in the proof

of Proposition 4.1. Define γ X : X → X by

γ X(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x if x ∈ {a0, a1, a
′
0, a

′
1, b, e};

c∞ if x ∈ {c0, c1, c2, . . . , c∞};
d∞ if x ∈ {d0, d1, d2, . . . , d∞};
d ′∞ if x ∈ {d ′

0, d
′
1, d

′
2, . . . , d

′∞}.

Claim 5.4 The topology of X
˜

is induced by γ X.

Proof First let us verify that for every x ∈ X − {d∞d ′∞, c∞} the singleton {x} is
clopen in X

˜
. For x ∈ {a0, a1, a

′
0, a

′
1, b, e} we have {x} = {x ∈ X | x(0) = x} (here we

again abuse the notation). Moreover

{dn} = {
x ∈ X | x(n + 1) = dn

}
,

{
d ′
n

} = {
x ∈ X | x(n + 1) = d ′

n

}
,

{cn} = {
x ∈ X | x(n) = cn

}
.
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Next, the following sets are open

(
γ X)−1

(c∞) = {c0} ∪
⋃

k∈N

{
x ∈ X | x(k) = c∞

}
,

(
γ X)−1

(d∞) =
⋃

k∈N

{
x ∈ X | x(k) = dk

}
,

(
γ X)−1(

d ′∞
) =

⋃

k∈N

{
x ∈ X | x(k) = d ′

k

}
.

Now we check that for Z ⊆ Y , where γ X(X) ∩ Z 	= ∅ and Y is one of the sets
(γ X)−1(c∞), (γ X)−1(d∞), (γ X)−1(d ′∞), the subset Z is open in X

˜
iff Y − Z is

finite. The “if” direction follows from what we already verified. For the “only if”
direction let us assume that Z is open. From the definition of the product topology
on X

˜
it follows that we may assume that Z = {x ∈ X | x(n) ∈ O} ∩ Y for some

n ∈ N and O ⊆ Xn. Let c∞ ∈ Z. Then c∞ ∈ O . Hence {cn+1, cn+2, . . . , c∞} ⊆
Z and Y − Z = (γ X)−1(c∞) − Z is finite. If d∞ ∈ Z then dn ∈ O , and hence
{dn+1, dn+2, . . . , d∞} ⊆ Z, Y − Z = (γ X)−1(d∞) − Z is finite. For the case when
d ′∞ ∈ Z we argue analogically. �

Now, when ♦ ∈ {2,>}, one may straightforwardly find a finite number d such that
the structure X is of degree almost d-bounded relative to γ X, and apply Lemma 5.3
and Theorem 5.2. Indeed, for ♦ => the maximum of the cardinality of NbR(x) for
x ∈ X − γ X, which is 6, is obtained for dn, d

′
n for n ∈N. For instance

Nb(dn) = {
(cn, dn−1, dn), (dn−1, cn, dn), (c∞, dn, dn), (dn, c∞, dn),

(cn+1, dn, dn+1), (dn, cn+1, dn+1)
}
.

(Here by d−1 we mean a1 and by d ′−1 we mean a′
1.) Similarly for ♦ = 2 the maximum

of the cardinality of NbR(x) for x ∈ X − γ (X), which is 2 · 3! + 3 = 15, is also
obtained for dn, d

′
n for n ∈ N as, e.g., NbR(dn) consists of the tuples (cn, dn−1, dn),

(c∞, dn, dn), (cn+1, dn, dn+1) and all their rearrangements.
For ♦ = ∨ and every finite λ and d the structure X is not almost d-bounded relative

to any λ-compactification. To see this note that for every n ∈ N the set NbR(cn) is
infinite, as (cn, dm, dm) ∈ RX for all m � n. �

5.2 Semilattice case

This subsection may be skipped, with the exception of Lemma 5.8, as the main result
here, Proposition 5.5, is a special case of Proposition 5.13 which will be indepen-
dently proved in the next subsection. However we decided to add this subsection, as
it proposes a different proof technique which, we hope, will be used in the future
elsewhere.

On the set 2 = {0,1} let us define two relational structures: 2� = (2,�2�) with the
usual order, and 2∨ = (2,R2∨) which is the graph of the two element join semilattice
with respect to the order �2� . Recall that we denote the class UH(2�) of ordered
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sets by P . Denote also UH(2∨) by P∨. Note that since P∨ contains all graphs of
semilattices, for every non-trivial semilattice S we have UHG(S) = P∨.

Proposition 5.5 The class (P∨)BC is not first-order axiomatizable.

We start with the formulation of a rather general way for transferring axiomatiza-
tion from one class to another in a different language.

For a formula θ in a language L let Lθ be the relational language consisting
of one relation symbol R with the arity being equal to the number of free variables
in θ . For a topological structure Y

˜
in L in which the interpretation of θ is closed

let Y
˜

θ be the topological structure in Lθ with the same carrier set and topology as

Y
˜

and with the relation RYθ which is the interpretation of θ in Y
˜

. For a class K of
topological structures in L with all members having closed interpretations of θ let
Kθ = {Y

˜
θ | Y

˜
∈ K }. Occasionally we will use the symbol Yθ to denote the structure

obtained in the same manner from a non-topological structure Y.

Proposition 5.6 Let θ be a formula in a language L and let K be a class of topo-
logical structures in L with all members having closed interpretations of θ . Let Σ

be a set of formulas in Lθ . If

(1) Σ defines Kθ and
(2) for every topological structure Y

˜
in L , Y

˜
θ ∈ Kθ yields Y

˜
∈ K ,

then K is defined by the set Σθ of sentences which is obtained from Σ by substituting
θ(x̄) for R(x̄) everywhere in every sentence from Σ .

Proof The satisfaction of Σθ by K follows directly from (1). On the other hand, if
Y
˜

|= Σθ , then Y
˜

θ |= Σ , and by (1) and (2), Y
˜

∈ K . Note that the topology plays no
role in this proof. �

Recall that the class of Priestley spaces PBC equals the topological prevariety
generated by 2

˜
�. In the proof of Proposition 5.5 we use the following fact, already

mentioned in the introduction.

Theorem 5.7 [6, Example 6.2] The class PBC of Priestley spaces is not first-order
definable.

In what follows in this subsection L will be the language of ordered sets, i.e., it
consists of one binary relation symbol �, and θ will be the formula given by

θ(x, y, z) = (x � y ∧ y ≈ z) ∨ (y � x ∧ x ≈ z).

Lemma 5.8 Let Y = (Y,�X) and Y′ = (Y ′,�Y′
) be two relational structures and

h : Y → Y ′ be a mapping. If �Y′
is reflexive, then h is a homomorphism from Y into

Y′ iff it is a homomorphism from Yθ into Y′
θ .
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Proof The forward direction is obvious, and even the reflexivity of �Y′
is not needed

here. For the converse direction assume that h is a homomorphism from Yθ into
Y′

θ and consider elements x, y ∈ Y such that Y |= x � y. Then Y |= θ(x, y, y),
and hence Y′ |= θ(h(x),h(y),h(y)). Thus either Y′ |= h(x) � h(y) or we have
Y′ |= h(y) � h(x) and h(x) = h(y). But, in the latter case, by the reflexivity of �Y′

,
we also have Y′ |= h(x) � h(y). �

Proof of Proposition 5.5 We will use Proposition 5.6 for K = PBC , and L and θ

specified as above. Note that the interpretation of θ in every topological structure in
L is closed. Note also that (2�)θ = 2∨.

Let

ρ = (∀x, y, z)
[
R(x, y, z) → (

R(x, y, y) ∨ R(x, y, x)
)]

.

We will verify that the class (PBC)θ consists of the topological structures from
(P∨)BC satisfying ρ.

Claim 5.9 If Y
˜

∈ PBC , then Y
˜

θ |= ρ and Y
˜

θ ∈ (P∨)BC .

Proof The definition of θ yields the first statement.
For the second statement, from Separation Principle 3.1 it follows that it is enough

to show that for every triple (x, y, z) ∈ Y 3 − RYθ there is a continuous homomor-
phism h : Y

˜
θ → 2

˜
∨ such that (h(x),h(y),h(z)) /∈ R2∨ . Indeed, when it is proved and

x 	= y, then, by the antisymmetry of �2� , either (x, y, y) /∈ RYθ or (x, y, x) /∈ RYθ .
Hence there is a homomorphism h into 2∨ such that either (h(x),h(y),h(y)) /∈ R2∨

or (h(x),h(y),h(x)) /∈ R2∨ . This gives h(x) 	= h(y).
So take a triple (x, y, z) ∈ Y 3 − RYθ . In the following arguments Lemma 5.8 is

used several times.

Case when x �Y y 	= z: Since Y is a Priestley space, there is a continuous ho-
momorphism h : Y

˜
→ 2

˜
� separating y and z. Now (h(x),h(y),h(z)) must be

one of the three tuples (0,0,1), (0,1,0), or (1,1,0), and in each case we have
(h(x),h(y),h(z)) /∈ R2∨ .

Case when y �Y x 	= z: It goes analogically.

Case when x and y are incomparable: Since Y
˜

is a Priestley space, there are con-
tinuous homomorphisms k0, k1 : Y

˜
→ 2

˜
� such that k0(x) = k1(y) = 0 and k0(y) =

k1(x) = 1. Let k = k0 × k1 : Y
˜

→ 2
˜

2
�. If k0(z) = 0 take h = k0. If k(z) = (1,0) take

h = k1. Let e : 22
� → 23

� be the embedding given by

e(a, b) =
{

(a, b,0) if (a, b) 	= (1,1);
(a, b,1) if (a, b) = (1,1).

If k(z) = (1,1) take h = pr2 ◦e ◦ k, where pr2 is the projection on the last coordi-
nate. �

Claim 5.10 If X
˜

∈ (P∨)BC and X
˜

|= ρ, then X
˜

∈ (PBC)θ .
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Proof Assume that X
˜

∈ (P∨)BC and X |= ρ. Since (P∨)BC is the topological preva-

riety generated by 2
˜

∨, we may assume that X
˜

is a closed substructure of 2
˜

I∨ for some

nonempty set I . Notice that the formula R(x, y, y) defines in X a closed order �X

on X, and moreover, (X,�X) equipped with the topology of X
˜

is a closed substruc-

ture of 2
˜

I
�. An easy way to see this is to consider the structure (2,�2� ,R2∨) and

realize that it satisfies the following universal Horn sentence, which is preserved un-
der taking substructures of products: (∀x, y)[x � y ↔ R(x, y, y)]. Now the crucial
point is that X |= ρ yields that θ is interpreted in (X,�X) as RX. This proves that
X
˜

∈ (PBC)θ . �

In order to use Proposition 5.6 we need to verify one more fact.

Claim 5.11 If Y
˜

θ ∈ (PBC)θ , then Y
˜

∈ (PBC).

Proof By assumption, there is a Priestley space Y
˜

′, with the same carrier and topol-

ogy as Y, such that Y
˜

θ = Y
˜

′
θ . Since Y′ is an ordered set, �Y′

is reflexive. Also, since

Yθ |= (∀x)R(x, x, x), the definition of θ yields that �Y is reflexive. Now consider
the identity map on Y . As the topologies of Y

˜
and Y

˜
′ coincide, the above mentioned

reflexiveness and Lemma 5.8 applied to this map twice gives us that Y
˜

= Y
˜

′. �

Now we can finish the proof. So if (P∨)BC were definable in first-order logic
by a set Λ of sentences, then by Claims 5.9 and 5.10, (PBC)θ would be definable
by Λ ∪ {ρ}. Thus Condition (1) in Proposition 5.6 would hold for K = PBC and
Σ = Λ ∪ {ρ}. Since, by Claim 5.11, Condition (2) holds, PBC would be definable
by (Λ ∪ {ρ})θ . But it is not, as Theorem 5.7 states. �

Corollary 5.12 Let S be a semigroup with a neutral element. Then the Boolean core
of UHG(S) is not first-order axiomatizable.

Proof The case when S is a semilattice is covered by Proposition 5.5. Otherwise,
S has a non-idempotent element a. Let X be a substructure of G(S) containing a and
the neutral element of S. Then X isomorphic to the substructure with the carrier {0,1}
of the graph of the semigroup whose operation is addition modulo 2 or modulo 3.
Thus we may apply Proposition 5.1. �

Still, Proposition 5.5 and Corollary 5.12 do not cover all situations from Theo-
rem 1.1. For instance, the universal Horn class generated by the two-element semi-
lattice and the two-element semigroup satisfying (∀x, y)[x · y = x] (i.e., the two-
element left-zero semigroup) does not fall into their scope.

5.3 Idempotent case

Proposition 5.13 Let C be a class of semigroups containing a nontrivial idempotent
member with a neutral element. Let H be the universal Horn class generated by
G(C ). Then HBC is not first-order axiomatizable.



458 M.M. Stronkowski, B. Trotta

In the proof of Proposition 5.13 we will use the following facts.

Theorem 5.14 [6, First Inverse Limit Technique 3.5] Assume that the underlying
language is relational and finite. Let X

˜
= lim←−{Xn | n ∈ N} be a surjective inverse

limit of finite structures, and let H be a universal Horn class. Assume that X
˜

is
pointwise non-separable with respect to H and that the following condition holds.

(∀n � 1)(∀Z � Xn)[ϕn−1|Z is injective yields Z ∈ H ]. (F)

Then X
˜

∈ HBT − HBC and H is non-standard.

A relational substructure Y of X is isolated if Y = X or there is a substructure
Y′ of X such that Y ∩ Y ′ = ∅, Y ∪ Y ′ = X and for every relation symbol R in the
language of X we have RX = RY ∪ RY′

. A connected component of X is an isolated
substructure of X which is minimal with respect to the set inclusion of carriers.

Theorem 5.15 [6, First Ultraproduct Technique 5.2] Assume that the underlying lan-
guage is relational and finite. Let H be a universal Horn class and X

˜
be a Boolean

topological structure. Assume that

(1) H is non-standard with a witness X
˜

∈ HBT − HBC and
(2) up to isomorphism, there are only finitely many connected components of X

˜
and

all them are finite.

Then HBC is not first-order axiomatizable.

Proof of Proposition 5.13 Let St
˜

� = (St,�St�,T St�) be the Stralka space, i.e.,

(St,T St�) is the Cantor space and x �St y iff x = y or y covers x in the order in-
herited from the commonly ordered real line. Recall that St� is a disjoint union of
one and two element chains. Define the relation RSt by the formula θ from Sect. 5.2,
so that RSt is closed in the topology T St� and St

˜
= (St

˜
�)θ . Note that St is a sub-

structure of the graph of the semilattice obtained by adding a top element to St�, and
is therefore in P∨ ≤ H . We claim that St

˜
may be used in Theorem 5.15 in order to

show that HBC is not first-order axiomatizable. Condition (2) in Theorem 5.15 fol-
lows from the fact that each connected component of St is the graph of a one or two
element semilattice. In order to verify condition (1) we will use Theorem 5.14.

Let us recall from [6, Sect. 6] a construction of the Stralka space as a surjective
inverse limit. Let Xn = Yn = {0,1, . . . ,2n − 1},

�Yn= {
(i, j) ∈ Yn | i = j or i + 1 = j

}

and Yn = (Yn,�Yn). The connecting homomorphisms are given by

ϕn−1 : Yn → Yn−1; i �→
⌊

i

2

⌋
.

Then St
˜

� ∼= Y
˜

= lim←−{Yn | n ∈ N}. Let Xn = (Yn)θ , i.e., RXn is the relation defined

by the formula θ from Sect. 5.2. Lemma 5.8 yields that every ϕn−1 is also a homo-
morphism from Xn onto Xn−1. Put X

˜
= lim←−{Xn | n ∈N}.
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Claim 5.16 X
˜

∼= St
˜

.

Proof Actually it is enough to show that RX = RYθ . Let us start with verifying the
easy inclusion RYθ ⊆ RX. Take (x, y, z) ∈ RYθ . Then either Y |= x � y and y = z,
or Y |= y � x and x = z. Let us assume that the first case holds (in the second
case we infer analogically). Then Yn |= x(n) � y(n) and y(n) = z(n), and hence
Xn |= R(x, y, z) for n ∈N. Thus (x, y, z) ∈ RX.

In order to see the inverse inclusion take (x, y, z) ∈ RX. Then Xn |= R(x(n), y(n),

z(n)), and hence Yn |= θ(x(n), y(n), z(n)) for all n ∈ N. We may assume that x 	= y

as otherwise x = y = z, and the reflexivity of the relation �St� guarantees that
(x, x, x) ∈ RYθ . Let k be the least natural number with respect to x(k) 	= y(k). Since
Yk |= θ(x(k), y(k), z(k)), exactly one of the statements x(k) �Yk y(k) and y(k) �Yk

x(k) is true. Let us assume that the first is true (in the second case we infer similarly).
Then, since y(k) �Yk x(k) and all ϕn are homomorphisms, y(n) �Yn x(n) for n � k.
This together with Yn |= θ(x(n), y(n), z(n)) yields x(n) �Yn y(n) and y(n) = z(n)

for n � k. Moreover, for every natural number n < k we have x(n) = y(n) = z(n).
This shows that for every n ∈N

Yn |= x(n) � y(n) ∧ y(n) = z(n),

and hence (x, y, z) ∈ RYθ . �

Claim 5.17 The condition (F) from Theorem 5.14 holds.

Proof Suppose Z is a substructure of Xn such that ϕn−1|Z is injective. Let Z� be the
substructure of Yn having the carrier set Z. We may obtain a semilattice W from Z�
by adding a top element. Then Z is a substructure of G(W), whence Z ∈ P∨ ≤ H . �

Claim 5.18 X
˜

is pointwise non-separable with respect to H .

Proof In every semigroup the universal Horn sentence

(∀v0, . . . , vm−1)[v0v1 ≈ v1 ∧ · · · ∧ vm−2vm−1 ≈ vm−1 → v0vm−1 ≈ vm−1]
holds. Thus in every graph of a semigroup the following sentence

(∀v0, . . . , vm−1)
[
R(v0, v1, v1) ∧ · · · ∧ R(vm−2, vm−1, vm−1) → R(v0, vm−1, vm−1)

]

also holds. Hence, if h is a homomorphism from Xn into the graph Z of a semigroup,
we have (h(0), h(2n − 1), h(2n − 1)) ∈ RZ. Thus X

˜
is pointwise non-separable with

respect to H which is witnessed by the triple (x0, x1, x1), where x0(n) = 0 and
x1(n) = 2n − 1 for n ∈ N. �

This completes the proof of Proposition 5.13. �

Proof of Theorem 1.1 Combine Propositions 5.1 and 5.13. �
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6 Graphs of monoids and groups

Because for monoids the language of graphs has an additional unary relation sym-
bol R1, which is interpreted as the graph of a constant, and for groups one more
binary relation symbol R()−1 , which is interpreted as the graph of the inverse opera-
tion, we need slight modifications of the proof of Theorem 1.1 in order to obtain the
proof of Corollary 1.2.

Modification needed for the proof of Corollary 1.2

Case of monoids: In the non-idempotent case, in the proofs of Propositions 4.1
and 5.1 we expand X and Xn by interpreting R1 in both as {c∞}. In the idempo-
tent case, in the proof of Proposition 5.13 we expand X and Xn by interpreting R1 in
both as ∅. Let us just look closer at Claim 5.17. It holds because UH(C ) contains a
three element monoid with a semilattice reduct, and hence H contains the structure
(2,R2∨ ,∅).

Case of groups: In the proofs of Propositions 4.1 and 5.1 we expand X and Xn by
interpreting R1 in both as {c∞}, and by interpreting R()−1 in both as ∅ when ♦ =>

or as the identity relation when ♦ = 2.
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