
Semigroup Forum (2015) 90:113–125
DOI 10.1007/s00233-014-9573-4

RESEARCH ARTICLE

The relations of semiadjacency and semicompatibility
in ∩-semigroups of transformations

W. A. Dudek · V. S. Trokhimenko

Received: 14 January 2013 / Accepted: 14 January 2014 / Published online: 12 December 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We consider semigroups of transformations (partial mappings defined on
a set A) closed under the set-theoretic intersection of mappings treated as subsets of
A × A. On such semigroups we define two relations: the relation of semicompatibil-
ity which identifies two transformations at the intersection of their domains and the
relation of semiadjacency when the image of one transformation is contained in the
domain of the second. Abstract characterizations of such semigroups are presented.

Keywords Semigroup of transformations · Algebra of functions · Semiadjacency ·
Semicompatibility

1 Introduction

1. Let F (A) be the set of all transformations (i.e., the partial maps) of a non-empty
set A. The domain of f ∈ F (A) is denoted by pr1 f , the image by pr2 f . The symbol
Δ pr1 f is reserved for the identity relation on pr1 f . The composition (superposition)
of maps f, g ∈ F (A) is defined as (g ◦ f )(a) = g( f (a)), where for every a ∈ A
the left and right hand side are defined, or undefined, simultaneously (cf. [1]). If the
set Φ ⊂ F (A) is closed with respect to such composition, then the algebra (Φ, ◦) is
called a semigroup of transformations (cf. [1] or [10]). IfΦ is also closed with respect
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to the set-theoretic intersection of transformations treated as subsets of A × A, then
the algebra (Φ, ◦,∩) is called a ∩-semigroup of transformations.

On such a ∩-semigroup we can consider the so-called semicompatibility relation
ξΦ defined as follows:

( f, g) ∈ ξΦ ←→ f ◦Δ pr1g = g ◦Δ pr1 f . (1)

The algebraic system (Φ, ◦,∩, ξΦ) is called a transformative∩-semigroup of transfor-
mations. The investigation of such semigroups was initiated by Vagner [14] and con-
tinued by Saliı̌ [7,8] and Schein [9]. A first abstract characterization of ∩-semigroups
of transformations was found by Garvatskiı̌ [4].

Some abstract characterizations of transformative∩-semigroups of transformations
can be deduced from results proved in [3] and [13] for Menger ∩-algebras of n-place
functions.

On (Φ, ◦) we can also consider the semiadjacency relation

δΦ = {( f, g) | pr2 f ⊂ pr1g}.

An abstract characterization of semigroups of transformations with this relation was
established in [6]. Later, in [5], an abstract characterization of the algebraic system
(Φ, ◦, ξΦ, δΦ) was given, and in [2] ∩-semigroups of transformations with the semi-
adjacency relation were characterized. The semiadjacency relation on algebras of
multiplace functions was investigated in [11].

In this paper we find an abstract characterization of ∩-semigroups of transforma-
tions equipped with the semicompatibility relation and the relation of semiadjacency.

We start with the following lemma.

Lemma 1 The relation of semiadjacency defined on a transformation semigroup
(Φ, ◦) satisfies the following two conditions:

( f, g) ∈ δΦ ←→ pr1 f ⊂ pr1(g ◦ f ), (2)

( f, g) ∈ δΦ −→ ( f ◦ h, g) ∈ δΦ. (3)

We omit the proof of this lemma since it is a simple consequence of results proved in
[2,5,6].

2. Each homomorphism P of an abstract semigroup (G, ·) into the semigroup
(F (A), ◦) of all transformations of a set A is called a representation of (G, ·) by
transformations. In the case when a representation is an isomorphism we say that it is
faithful.

With each representation P of a semigroup (G, ·) by transformations of A, we
associate three binary relations on G:

ζP = {(g1, g2) | P(g1) ⊂ P(g2)},
ξP = {(g1, g2) | P(g1) ◦Δ pr1 P(g2) = P(g2) ◦Δ pr1 P(g1)},
δP = {(g1, g2) | pr2 P(g1) ⊂ pr1 P(g2)}.
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The relations of semiadjacency and semicompatibility in ∩-semigroups of transformations 115

Let (Pi )i∈I be a family of representations of a semigroup (G, ·) by transformations of
disjoint sets (Ai )i∈I . By the sum of this family we mean the map P : g �→ P(g), where
g ∈ G, and P(g) is the transformation on A = ⋃

i∈I
Ai defined by P(g) = ⋃

i∈I
Pi (g). It

is easy to see that P is a representation of (G, ·). It is denoted by
∑

i∈I
Pi . If P = ∑

i∈I
Pi ,

then obviously

ζP =
⋂

i∈I

ζPi , ξP =
⋂

i∈I

ξPi , δP =
⋂

i∈I

δPi . (4)

3. Following [1] and [10], we call a binary relation ρ on a semigroup (G, ·):
– stable or regular if
(x, y) ∈ ρ ∧ (u, v) ∈ ρ −→ (xu, yv) ∈ ρ for all x, y, u, v ∈ G;

– left regular if (u, v) ∈ ρ −→ (xu, xv) ∈ ρ for all x, u, v ∈ G;
– right regular if (x, y) ∈ ρ −→ (xu, yu) ∈ ρ for all x, y, u ∈ G;
– left ideal if (x, y) ∈ ρ −→ (ux, y) ∈ ρ for all x, y, u ∈ G;
– right negative (x, yu) ∈ ρ −→ (x, y) ∈ ρ if for all x, y, u ∈ G.

A quasi-order ρ, i.e., a reflexive and transitive relation, is stable if and only if it is left
and right regular (cf. [1,10]). Similarly, it is right negative if and only if (xy, x) ∈ ρ
for all x, y ∈ G.

Let (G, ·) be an arbitrary semigroup, (G∗, ·) the semigroup obtained from (G, ·) by
adjoining an identity e /∈ G. By a determining pair of a semigroup (G, ·) we mean an
ordered pair (ε,W ), where ε is a right regular equivalence relation on the semigroup
(G∗, ·), and W is either the empty set or an ε-class which is a right ideal of (G, ·). Let
(Ha)a∈A be the collection of all ε-classes (uniquely indexed by elements of A) such
that Ha �= W . As is well known (cf. [10]), with each determining pair (ε,W ) one
can associate the so-called simplest representation P(ε,W ) of (G, ·) by transformations
defined in the following way:

(a1, a2) ∈ P(ε,W )(g)←→ Ha1 g ⊂ Ha2 , (5)

where g ∈ G, a1, a2 ∈ A.
From results proved in [9] and [10] we can deduce the following properties of

simplest representations.

Proposition 1 Let (ε,W ) be the determining pair of a semigroup (G, ·). Then for all
g1, g2 ∈ G, x ∈ G∗ we have

(g1, g2) ∈ ζP(ε,W )
←→ (∀x)(xg1 /∈ W −→ xg1 ≡ xg2(ε)), (6)

(g1, g2) ∈ ξP(ε,W )
←→ (∀x)(xg1 /∈ W ∧ xg2 /∈ W −→ xg1 ≡ xg2(ε)), (7)

(g1, g2) ∈ δP(ε,W )
←→ (∀x)(xg1 /∈ W −→ xg1g2 /∈ W ). (8)

Proposition 2 Suppose that (G, ·,�) is an algebraic system such that (G, ·) is a
semigroup, (G,�) is a semilattice and the identity

x(y � z) = xy � xz, (9)
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holds. Then the equality

P(ε,W )(g1 � g2) = P(ε,W )(g1) ∩ P(ε,W )(g2) (10)

holds for arbitrary elements g1, g2 ∈ G and a determining pair (ε,W ) of (G, ·) if and
only if

g1 ∈ W −→ g1 � g2 ∈ W, (11)

g1 � g2 /∈ W −→ g1 ≡ g2(ε), (12)

g1 /∈ W ∧ g1 ≡ g2(ε) −→ g1 � g2 ≡ g1(ε). (13)

An analogous result was proved in [12] (see also [3]) for Menger algebras of rank
n. For n = 1 it gives the above proposition.

4. In this section we consider a semilattice algebraic system (G, ·,�, ξ, δ), i.e., an
algebraic system (G, ·,�, ξ, δ) such that (G, ·) is a semigroup, (G,�) is a semilattice,
δ is a left ideal relation on (G, ·), and ξ is a left regular binary relation on (G, ·)
containing the natural order ζ of the semilattice (G,�). (Recall that (x, y) ∈ ζ ←→
x � y = x .) Assume that (G, ·,�, ξ, δ) satisfies (9) as well as the conditions:

(x, y), (u, v) ∈ ζ ∧ (y, v) ∈ ξ −→ (u, x) ∈ ξ, (14)

(x, y) ∈ ξ −→ (x � y)u = xu � yu, (15)

where x, y, z, u, v ∈ G. Moreover, we assume also that in the semigroup (G∗, ·) with
the adjoined identity e we have (e, e) ∈ ζ, (e, e) ∈ δ and (x, e) ∈ δ for all x ∈ G.

Proposition 3 If (G, ·,�, ξ, δ) is a semilattice algebraic system, then the relation ξ
is reflexive and symmetric and the relation ζ is stable on the semigroup (G, ·).
Proof The relation ξ is reflexive since ζ ⊂ ξ and ζ is the natural order on the semi-
lattice (G,�). It also is symmetric because for every (x, y) ∈ ξ we have xζ x, yζ y,
and xξ y, whence, by (14), we obtain (y, x) ∈ ξ .

To prove that ζ is stable on the semigroup (G, ·) assume that (x, y) ∈ ζ for some
x, y ∈ G. Then x � y = x . Hence z(x � y) = zx , which, by (9), gives zx � zy = zx .
Thus (zx, zy) ∈ ζ . So, ζ is left regular. Since ζ ⊂ ξ , from (x, y) ∈ ζ , it follows
(x, y) ∈ ξ , which, by (15), implies (x � y)z = xz � yz. Hence xz = xz � yz,
i.e., (xz, yz) ∈ ζ . This means that ζ is right regular. Consequently, ζ is stable on the
semigroup (G, ·).

In the sequel, the formula xδy ∧ xyζ z will be abbreviated as x � yζ z.

Definition 1 A subset H ⊂ G is fξ -closed if the implication

(u, v) ∈ ξ ∧ (u � v)x � yζ zt ∧ u, vx ∈ H −→ z ∈ H (16)

holds true for all x, y, t ∈ G∗ and z, u, v ∈ G.

Clearly the set of all fξ -closed subsets of G forms a complete lattice under intersection.
Given X ⊂ G, let fξ (X) be the least fξ -closed subset of G containing X .
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The relations of semiadjacency and semicompatibility in ∩-semigroups of transformations 117

Proposition 4 A non-empty subset H of a semilattice algebraic system (G, ·,�, ξ, δ)
is fξ -closed if and only if H satisfies the following conditions:

xy ∈ H −→ x ∈ H, (17)

(g1, g2) ∈ δ ∧ g1 ∈ H −→ g1g2 ∈ H, (18)

g1 � g2 = g1 ∈ H −→ g2 ∈ H, (19)

(g1, g2) ∈ ξ ∧ g1, g2x ∈ H −→ (g1 � g2)x ∈ H, (20)

where x in (20) may be the empty symbol.

Proof Let H be an fξ -closed subset of G. Then

(u, v) ∈ ξ ∧ (u � v)xδy ∧ (u � v)xyζ zt ∧ u, vx ∈ H −→ z ∈ H (21)

for all x, y, t ∈ G∗ and z, u, v ∈ G.
Using (21) we can prove conditions (17)–(20). Indeed, for u = v = xy, x = y =

e, t = y, z = x the implication (21) has the form

(xy, xy) ∈ ξ ∧ (xy � xy)eδe ∧ (xy � xy)eζ xy ∧ xy, xye ∈ H −→ x ∈ H.

Since relations ξ and ζ are reflexive and the operation � is idempotent, the last con-
dition is equivalent to the implication (17).

For u = v = g1, x = e, y = g1, t = e, z = g1g2 the implication (21) gives the
condition

(g1, g1)∈ξ ∧ (g1 � g1)eδg2 ∧ (g1 � g1)eg2ζg1g2e ∧ g1, g1e∈H −→ g1g2 ∈ H,

which is equivalent to (18).
Similarly for u = v = g1, x = y = t = e, z = g2 from (21) we obtain

(g1, g1) ∈ ξ ∧ (g1 � g1)eδe ∧ (g1 � g1)eeζg2e ∧ g1, g1e ∈ H −→ g2 ∈ H,

i.e., (g1, g2) ∈ ζ ∧ g1 ∈ H −→ g2 ∈ H . Thus, (21) implies (19).
Finally, (21) for u = g1, v = g2, y = e, z = (g1 � g2)x, t = e, gives

(g1, g2) ∈ ξ ∧ (g1 � g2)xδe ∧ (g1 � g2)xeζ(g1 � g2)xe ∧ g1, g2x ∈ H

−→ (g1 � g2)x ∈ H,

which implies (20).
To prove the converse, assume that (17)–(20) and the premise of (21) are satisfied.

Then from (u, v) ∈ ξ ∧ u, vx ∈ H , according to (20), we obtain (u � v)x ∈ H . Since
(u � v)xδy, by (18), the last condition implies (u � v)xy ∈ H . But (u � v)xyζ zt , by
(19), gives zt ∈ H , which by (17) gives z ∈ H . Thus, (17)–(20) imply (21).
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For a non-empty subset H of G we define the set

Fξ (H) = {z | (∃u, v, x, y, t) (u, v) ∈ ξ ∧ (u � v)x � yζ zt ∧ u, vx ∈ H)},

where x, y, t ∈ G∗ and z, u, v ∈ G.

Lemma 2 For any subsets H, H1, H2 of G we have

(a) H ⊂ Fξ (H),
(b) Fξ (H1) ⊂ Fξ (H2) for H1 ⊂ H2.
(c) Fξ (H) = H for every fξ -closed subset H of G.

Proof Indeed, if z ∈ H , then

(z, z) ∈ ξ ∧ (z � z)e � eζ ze ∧ z, ze ∈ H,

which means that z ∈ Fξ (H). Hence, H ⊂ Fξ (H).
The second claim is obvious.
To prove the last claim, assume that H is an fξ -closed subset of G. Then for every

z ∈ Fξ (H) and some x, y, t ∈ G∗, u, v ∈ G we have

(u, v) ∈ ξ ∧ (u � v)x � yζ zt ∧ u, vx ∈ H.

Since H is fξ -closed, the above implies z ∈ H . Thus Fξ (H) ⊂ H, which together
with (a) proves Fξ (H) = H .

Given a non-empty subset H ⊂ G, we put
0
Fξ (H) = H and

n
Fξ (H) = Fξ

(n−1
F ξ (H)

)

for every positive integer n. Then, by Lemma 2, we have

H = 0
Fξ (H) ⊂

1
Fξ (H) ⊂

2
Fξ (H) ⊂

3
Fξ (H) ⊂ . . .

Proposition 5 Let (G, ·,�, ξ, δ) be a semilattice algebraic system, H a non-empty
subset of G. Then

fξ (H) =
∞⋃

n=0

n
Fξ(H). (22)

Proof Let H ξ =
∞⋃

n=0

n
Fξ(H) and

(u, v) ∈ ξ ∧ (u � v)xδy ∧ (u � v)xyζ zt ∧ u, vx ∈ H ξ ,

for some x, y, t ∈ G∗ and z, u, v ∈ G. Since u, vx ∈ H ξ , there are natural numbers

n1, n2 such that u ∈ n1
F ξ (H) and vx ∈ n2

F ξ (H). Hence
ni
F ξ (H) ⊂

n
Fξ (H), i = 1, 2,
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for n = max(n1, n2). Therefore

(u, v) ∈ ξ ∧ (u � v)x � yζ zt ∧ u, vx ∈ n
Fξ(H) ,

so, z ∈ n+1
F ξ (H) ⊂ H ξ . This proves that H ξ is a fξ -closed subset of G.

By the definition H ⊂ fξ (H). Hence, by Lemma 2, Fξ (H) ⊂ Fξ ( fξ (H)) =
fξ (H). Similarly,

2
Fξ (H) ⊂ fξ (H), etc. Consequently,

n
Fξ (H) ⊂ fξ (H) for any n,

which implies
∞⋃

n=0

n
Fξ (H) ⊂ fξ (H), i.e., H ξ ⊂ fξ (H). On the other hand, H ⊂

∞⋃
n=0

n
Fξ (H) = H ξ . Therefore fξ (H) ⊂ fξ (H ξ ) = H ξ . Thus H ξ = fξ (H), which

proves (22).

Using a straightforward induction, we can easily prove the following proposition.

Proposition 6 For each subset H of a semilattice algebraic system (G, ·,�, ξ, δ),
every natural number n > 1 and each z ∈ G, we have z ∈ n

Fξ (H) if and only if for
some xi , yi , ti ∈ G∗ and ui , vi ∈ G the following system of conditions holds true:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(u1, v1) ∈ ξ ∧ (u1 � v1)x1 � y1ζ zt1,
2n−1−1∧

i=1

(
(u2i , v2i ) ∈ ξ ∧ (u2i � v2i )x2i � y2iζui t2i ,

(u2i+1, v2i+1) ∈ ξ ∧ (u2i+1 � v2i+1)x2i+1 � y2i+1ζvi xi t2i+1

)

,

2n−1∧

i=2n−1
(ui , vi xi ∈ H).

⎞

⎟
⎟
⎟
⎟
⎟
⎠

In the sequel the system of the above conditions will be denoted by Xn(z, H).
5. Let (Φ, ◦,∩, ξΦ, δΦ) be a transformative ∩-semigroup of transformations with

the relation of semicompatibility ξΦ and the relation of semiadjacency δΦ .

Proposition 7
⋂

ϕi∈HΦ

pr1ϕi ⊂ pr1ϕ for every HΦ ⊂ Φ and ϕ ∈ fξΦ (HΦ).

Proof First we show that the following implication

ϕ ∈ n
FξΦ (HΦ) −→

⋂

ϕi∈HΦ

pr1ϕi ⊂ pr1ϕ (23)

is valid for every integer n. We prove it by induction.

Let A = ⋂

ϕi∈HΦ

pr1ϕi . If n = 0 and ϕ ∈ 0
FξΦ(HΦ), then clearly ϕ ∈ HΦ . Thus

A ⊂ pr1ϕ, which verifies (23) for n = 0.
Assume now that (23) is valid for some n > 0. To prove that it is valid for n + 1,

consider an arbitrary transformation ϕ ∈ n+1
FξΦ (HΦ). Then, for some transformations

x, y, t, u, v ∈ Φ, where x, y, t may be the empty symbols, we have (u, v) ∈ ξΦ, (x ◦
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(u ∩ v), y) ∈ δΦ, y ◦ x ◦ (u ∩ v) ⊂ t ◦ ϕ and u, x ◦ v ∈ n
FξΦ(HΦ). The last condition,

according to the assumption on n, implies A ⊂ pr1u. Similarly, A ⊂ pr1(x◦v) ⊂ pr1v.
Consequently Δ pr1u ◦ΔA = ΔA and Δ pr1v ◦ΔA = ΔA.

From (x ◦ (u ∩ v), y) ∈ ΔΦ it follows pr2(x ◦ (u ∩ v)) ⊂ pr1 y, which, by (2),
gives pr1(x ◦ (u ∩ v)) ⊂ pr1(y ◦ x ◦ (u ∩ v)) ⊂ pr1(t ◦ ϕ). Then, (u, v) ∈ ξΦ
means that u ◦ Δ pr1v = v ◦ Δ pr1u . So, u ◦ Δ pr1v ◦ ΔA = v ◦ Δ pr1u ◦ ΔA, hence
u ◦ΔA = v ◦ΔA = u ◦ΔA∩ v ◦ΔA = (u∩ v)◦ΔA. Since A ⊂ pr1(x ◦ v), we have

A ⊂ pr1(x ◦ v ◦ΔA) = pr1(x ◦ (u ∩ v) ◦ΔA) ⊂ pr1(y ◦ x ◦ (u ∩ v) ◦ΔA)

⊂ pr1(t ◦ ϕ ◦ΔA) ⊂ pr1(ϕ ◦ΔA) = pr1(ϕ ◦Δ pr1ϕ ◦ΔA)

= pr1(ϕ ◦ΔA ◦Δ pr1ϕ) ⊂ pr1ϕ.

Thus, A ⊂ pr1ϕ. This shows that (23) is valid for n + 1. Consequently, (23) is valid
for all integers n.

To complete the proof of this proposition observe now that, according to (22), for

every ϕ ∈ fξΦ (HΦ) there exists n such that ϕ ∈ n
FξΦ(HΦ), which, by (23), gives⋂

ϕi∈HΦ

pr1ϕi ⊂ pr1ϕ.

Theorem 1 An algebraic system (G, ·,�, ξ, δ), where (G, ·) is a semigroup, (G,�)
is a semilattice, ξ, δ are binary relations on G, is isomorphic to some transformative
∩-semigroup of transformations (Φ, ◦,∩, ξΦ, δΦ) if and only if ξ is a left regular
relation containing the semilattice order ζ, δ is a left ideal relation on (G, ·) and
conditions (9), (14), (15), as well as the conditions:

x � y ∈ fξ ({x}) −→ xζ y, (24)

x � y ∈ fξ ({x, y}) −→ xξ y, (25)

xy ∈ fξ ({x}) −→ xδy (26)

are satisfied by all elements of G.

Proof Necessity. Let (Φ, ◦,∩, ξΦ, δΦ) be a transformative ∩-semigroup of trans-
formations of some set. We show that it satisfies all the conditions of our theorem.

The necessity of (9) is a consequence of results proved in [1] and [4]. Since the
order ζΦ of the semilattice (Φ,∩) coincides with the inclusion, ζΦ is contained in ξΦ .
From (3) (Lemma 1) it follows that δΦ is a left ideal relation.

Let ( f, g) ∈ ξΦ , i.e., f ◦Δ pr1g = g ◦Δ pr1 f . Then f ◦Δ pr1g ◦ h = g ◦Δ pr1 f ◦ h.
SinceΔ pr1g ◦h = h◦Δ pr1g◦h andΔ pr1 f ◦h = h◦Δ pr1 f ◦h , we have f ◦h◦Δ pr1g◦h =
g ◦ h ◦Δ pr1 f ◦h , which proves ( f ◦ h, g ◦ h) ∈ ξΦ . Thus, ξΦ is left regular.

If f ⊂ g, h ⊂ p and (g, p) ∈ ξΦ for some f, g, h, p ∈ Φ, then f = g◦Δ pr1 f , h =
p ◦Δ pr1h and g ◦Δ pr1 p = p ◦Δ pr1g . The last equality implies g ◦Δ pr1 p ◦Δ pr1 f ◦
Δ pr1h = p ◦Δ pr1g ◦Δ pr1 f ◦Δ pr1h . Thus, p ◦Δ pr1h ◦Δ pr1g ◦Δ pr1 f = g ◦Δ pr1 f ◦
Δ pr1 p ◦Δ pr1h . Consequently, h ◦Δ pr1g ◦Δ pr1 f = f ◦Δ pr1 p ◦Δ pr1h , which in view
ofΔ pr1g ◦Δ pr1 f = Δ pr1 f andΔ pr1 p ◦Δ pr1h = Δ pr1h gives h ◦Δ pr1 f = f ◦Δ pr1h .
Therefore, (h, f ) ∈ ξΦ . So, (14) is satisfied.
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The relations of semiadjacency and semicompatibility in ∩-semigroups of transformations 121

To prove (15) let ( f, g) ∈ ξΦ , i.e., f ◦Δ pr1g = g ◦Δ pr1 f . Since

f ∩ g = ( f ∩ g) ◦Δ pr1g = f ◦Δ pr1g ∩ g = g ◦Δ pr1 f ∩ g = g ◦Δ pr1 f

= f ◦Δ pr1g,

we have

h ◦ ( f ∩ g) = h ◦ f ◦Δ pr1g ∩ h ◦ g ◦Δ pr1 f = (h ◦ f ∩ h ◦ g) ◦Δ pr1g ◦Δ pr1 f =
h ◦ f ◦Δ pr1 f ∩ h ◦ g ◦Δ pr1g = h ◦ f ∩ h ◦ g.

Thus h ◦ ( f ∩ g) = h ◦ f ∩ h ◦ g, which proves (15).
Now let ϕ ∩ ψ ∈ fξΦ ({ϕ}) for some ϕ,ψ ∈ Φ. Then pr1ϕ ⊂ pr1(ϕ ∩ ψ), by

Proposition 7. Hence pr1(ϕ ∩ ψ) = pr1ϕ since pr1(ϕ ∩ ψ) ⊂ pr1ϕ. Thus ϕ =
ϕ ◦Δ pr1ϕ = ϕ ◦Δ pr1(ϕ∩ψ) = ϕ ∩ψ ⊂ ψ . This proves (24), because the inclusion ⊂
coincides with the order ζΦ of the semilattice (Φ,∩).

If ϕ ∩ψ ∈ fξΦ ({ϕ,ψ}), then, by Proposition 7, pr1ϕ ∩ pr1ψ ⊂ pr1(ϕ ∩ψ), which
together with the obvious inclusion pr1(ϕ ∩ ψ) ⊂ pr1ϕ ∩ pr1ψ gives pr1(ϕ ∩ ψ) =
pr1ϕ ∩ pr1ψ . So,

ϕ ◦Δ pr1ψ = ϕ ◦Δ pr1ϕ ◦Δ pr1ψ = ϕ ◦Δ pr1ϕ∩ pr1ψ = ϕ ◦Δ pr1(ϕ∩ψ) = ϕ ∩ ψ =
ψ ◦Δ pr1(ϕ∩ψ) = ψ ◦Δ pr1ψ∩ pr1ϕ = ψ ◦Δ pr1ψ ◦Δ pr1ϕ = ψ ◦Δ pr1ϕ.

Thus ϕ ◦Δ pr1ψ = ψ ◦Δ pr1ϕ , i.e., (ϕ, ψ) ∈ ξΦ . This proves (25).
To prove the last condition let ψ ◦ ϕ ∈ fξΦ ({ϕ}). Then pr1ϕ ⊂ pr1(ψ ◦ ϕ), which

by (2), gives (ϕ, ψ) ∈ δΦ . This means that (26) also is satisfied.
Sufficiency. Let (G, ·,�, ξ, δ) be an algebraic system satisfying all the conditions

of the theorem. Then, by Proposition 3, ξ is a reflexive and symmetric relation, and ζ
is stable in the semigroup (G, ·). Moreover, the implication

(g1, g2) ∈ ζ ∧ g1 ∈ fξ ({x, y}) −→ g2 ∈ fξ ({x, y}) (27)

holds true for all g1, g2, x, y ∈ G. In fact, the premise of (27) can be rewritten in the
form:

(g1, g1) ∈ ξ ∧ (g1 � g1)e � eζg2e ∧ g1, g1e ∈ fξ ({x, y}).

So, if it is satisfied, then, according to the definition of Fξ (H) and Lemma 2, g2 ∈
Fξ ( fξ ({x, y})) = fξ ({x, y}), which proves (27).

Now we show that for all x, y ∈ G the subset G \ fξ ({x, y}) is a right ideal of the
semigroup (G, ·). Indeed, if gu ∈ fξ ({x, y}), then, by (22), for some natural n we

have gu ∈ n
Fξ ({x, y}). Hence

(gu, gu) ∈ ξ ∧ (gu � gu)e � eζgu ∧ gu, gue ∈ n
Fξ ({x, y}),
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so, g ∈ n+1
F ξ ({x, y}) ⊂ fξ ({x, y}). Thus, g ∈ fξ ({x, y}). In this way we have shown

the implication gu ∈ fξ ({x, y}) −→ g ∈ fξ ({x, y}), which by the contraposition is
equivalent to the implication g /∈ fξ ({x, y}) −→ gu /∈ fξ ({x, y}). The last implica-
tion means that G \ fξ ({x, y}) is a right ideal.

If (u, v) ∈ ξ for u, v ∈ fξ ({x, y}), then, obviously,

(u, v) ∈ ξ ∧ (u � v)eδe ∧ (u � v)eeζ(u � v)e ∧ u, ve ∈ fξ ({x, y}).

Thus u � v ∈ Fξ ( fξ ({x, y})) = fξ ({x, y}), since the set fξ ({x, y}) is fξ -closed. So,
fξ ({x, y}) satisfies the implication

(u, v) ∈ ξ ∧ u, v ∈ fξ ({x, y}) −→ u � v ∈ fξ ({x, y}). (28)

We show now that the relation

ε(g1,g2) = {(x, y) | x � y ∈ fξ ({g1, g2}) ∨ x, y /∈ fξ ({g1, g2})}

defined on the semigroup (G, ·) is a right regular equivalence and G \ fξ ({g1, g2}) is
an equivalence class.

The reflexivity and symmetry of ε(g1,g2) are obvious. To prove the transitivity let
(x, y), (y, z) ∈ ε(g1,g2). If x, y, z /∈ fξ ({g1, g2}), then clearly (x, z) ∈ ε(g1,g2). In the
case x � y ∈ fξ ({g1, g2}) from x � yζ y, by (27), we conclude y ∈ fξ ({g1, g2}).
Therefore x, z ∈ fξ ({g1, g2}). Consequently, x � y, y � z ∈ fξ ({g1, g2}). But (x �
y)ζ y, (y � z)ζ y and yξ y, hence the last, by (14), implies (x � y)ξ(y � z). From this,
applying (28), we deduce x � y � z ∈ fξ ({g1, g2}). On the other hand (x � y �
z)ζ(x � z) for all x, y, z ∈ G. So, x � y � z ∈ fξ ({g1, g2}), according to (27), implies
x � z ∈ fξ ({g1, g2}). Hence (x, z) ∈ ε(g1,g2). This proves the transitivity of ε(g1,g2).
Summarizing ε(g1,g2) is an equivalence relation.

If x, y ∈ G\ fξ ({g1, g2}), then we have (x, y) ∈ ε(g1,g2). This means that the subset
G \ fξ ({g1, g2}) is contained in some ε(g1,g2)-class. Now let x ∈ G \ fξ ({g1, g2}) and
(x, y) ∈ ε(g1,g2). The case x � y ∈ fξ ({g1, g2}) is impossible, because in this case x ∈
fξ ({g1, g2}). So, y /∈ fξ ({g1, g2}), i.e., y ∈ G \ fξ ({g1, g2}). Hence G \ fξ ({g1, g2})
coincides with some ε(g1,g2)-class.

To prove that the relation ε(g1,g2) is right regular, we take a pair (x, y) ∈ ε(g1,g2).
If x, y ∈ G \ fξ ({g1, g2}), then xz, yz ∈ G \ fξ ({g1, g2}) since G \ fξ ({g1, g2}) is a
right ideal. Thus (xz, yz) ∈ fξ ({g1, g2}). Now if x � y, xz ∈ fξ ({g1, g2}), then

(x � y, x) ∈ ξ ∧ (x � y)zδe ∧ (x � y)zeζ(x � y)ze ∧ (x � y), xz ∈ fξ ({g1, g2}),

whence, by (16), we obtain (x � y)z ∈ fξ ({g1, g2}). But (x � y)zζ yz, whence we get
yz ∈ fξ ({g1, g2}). Similarly, from x � y ∈ fξ ({g1, g2}) and yz ∈ fξ ({g1, g2})we get
xz ∈ fξ ({g1, g2}). So, if x � y ∈ fξ ({g1, g2}), then xz, yz belong or do not belong
to fξ ({g1, g2}) simultaneously. If xz, yz /∈ fξ ({g1, g2}), then obviously, (xz, yz) ∈
ε(g1,g2). If xz, yz ∈ fξ ({g1, g2}), then, as was shown above, from x � y ∈ fξ ({g1, g2})
it follows (x � y)z ∈ fξ ({g1, g2}). Since (x � y)zζ xz and (x � y)zζ yz, then obviously
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(x � y)zζ(xz � yz). Hence xz � yz ∈ fξ ({g1, g2}), i.e., (xz, yz) ∈ ε(g1,g2). So, in
any case (x, y) ∈ ε(g1,g2) implies (xz, yz) ∈ ε(g1,g2). This proves that ε(g1,g2) is right
regular.

From what was just shown, it follows that the pair (ε∗(g1,g2)
,W(g1,g2)), where

ε∗(g1,g2)
= ε(g1,g2) ∪ {(e, e)}, W(g1,g2) = G \ fξ ({g1, g2}),

is a determining pair of the semigroup (G, ·).
Let

(
P(ε∗

(g1,g2)
,W(g1,g2))

)
(g1,g2)∈G×G be the family of simplest representations of the

semigroup (G, ·). Their sum

P =
∑

(g1,g2)∈G×G

P(ε∗
(g1,g2)

,W(g1,g2))
(29)

is a representation of (G, ·) by transformations. It is easy to see that the above deter-
mining pairs satisfy (11)–(13). Therefore, by Proposition 2, we have

P(ε∗
(g1,g2)

,W(g1,g2))
(x � y) = P(ε∗

(g1,g2)
,W(g1,g2))

(x) ∩ P(ε∗
(g1,g2)

,W(g1,g2))
(y)

for all g1, g2 ∈ G. Hence P(x � y) = P(x) ∩ P(y) for x, y ∈ G. Thus, P is
a homomorphism of the algebra (G, ·,�) onto the ∩-semigroup (Φ, ◦,∩), where
Φ = P(G).

Now we prove that ξ = ξP and δ = δP . In fact, according to (4) and (7) we have

(x, y) ∈ ξP ←→
⋂

(g1,g2)∈G×G

ξ(ε∗
(g1,g2)

,W(g1,g2))
←→

(∀g1)(∀g2)(∀u ∈ G∗)
(
ux, uy ∈ fξ ({g1, g2}) −→ ux � uy ∈ fξ ({g1, g2})

)
.

The last implication for u = e and g1 = x, g2 = y has the form

x, y ∈ fξ ({x, y}) −→ x � y ∈ fξ ({x, y}).

Thus x � y ∈ fξ ({x, y}). Hence, by (25), we obtain xξ y. This proves ξP ⊂ ξ .
To prove the converse inclusion, let (x, y) ∈ ξ . If ux, uy ∈ fξ ({g1, g2}) for some

u ∈ G∗ and g1, g2 ∈ G, then from (x, y) ∈ ξ , by the left regularity of ξ , we obtain
(ux, uy) ∈ ξ , which by (28) implies ux � uy ∈ fξ ({g1, g2}). Therefore (ux, uy) ∈
ξ(ε∗

(g1,g2)
,W(g1,g2))

. Thus (x, y) ∈ ⋂

(g1,g2)∈G×G
ξ(ε∗

(g1,g2)
,W(g1,g2))

= ξP . So, ξ ⊂ ξP and

ξ = ξP .
Now if (x, y) ∈ δ and ux ∈ fξ ({g1, g2}) for some g1, g2 ∈ G and u ∈ G∗, then

also (ux, y) ∈ δ because δ is a left ideal of (G, ·). Since fξ ({g1, g2}) is fξ -closed,
the condidion (ux, y) ∈ δ together with ux ∈ fξ ({g1, g2}), according to (18), implies
that uxy ∈ fξ ({g1, g2}). Thus (x, y) ∈ δ(ε∗

(g1,g2)
,W(g1,g2))

. Hence we conclude that

(x, y) ∈ ⋂

(g1,g2)∈G×G
δ(ε∗

(g1,g2)
,W(g1,g2))

= δP , and this proves δ ⊂ δP .

123



124 W. A. Dudek, V. S. Trokhimenko

Conversely, let (x, y) ∈ δP . Then, in view of (4) and (8), we have

(∀g1)
(∀g2)(∀u ∈ G∗)(ux ∈ fξ ({g1, g2}) −→ uxy ∈ fξ ({g1, g2})

)
,

which for u = e and g1 = g2 = x has the form

x ∈ fξ ({x}) −→ xy ∈ fξ ({x}).

Thus xy ∈ fξ ({x}). This, by (26), implies (x, y) ∈ δ. So, δP ⊂ δ, and hence δP = δ.
In this way we have shown that P is a homomorphism of (G, ·,�, ξ, δ) onto the

∩-semigroup (Φ, ◦,∩, ξΦ, δΦ), where Φ = P(G).
It is also an isomorphism. To prove this fact observe first that ζP ⊂ ζ . Indeed,

according to (4) and (6), we have:

(x, y) ∈ ζP ←→
⋂

(g1,g2)∈G×G

ζ(ε∗
(g1,g2)

,W(g1,g2))
) ←→

(∀g1)(∀g2)(∀u ∈ G∗)
(
ux ∈ fξ (g1, g2) −→ ux � uy ∈ fξ ({g1, g2})

)
.

Putting u = e and g1 = g2 = x in the last implication, we obtain

x ∈ fξ ({x}) −→ x � y ∈ fξ ({x}).

So, x � y ∈ fξ ({x}). This, by (24), gives xζ y, i.e., (x, y) ∈ ζ. Hence ζP ⊂ ζ .
Now let P(g1) = P(g2). Then P(g1) ⊂ P(g2) and P(g2) ⊂ P(g1). Hence

(g1, g2) ∈ ζP and (g2, g1) ∈ ζP . This implies (g1, g2), (g2, g1) ∈ ζ . Thus g1 = g2
because ζ is a semilattice order. So, P is an isomorphism between (G, ·,�, ξ, δ) and
(Φ, ◦,∩, ξΦ, δΦ).
Now, using (22) and the formula Xn(z, H) from Proposition 6, we can write condi-
tions (24)–(26) in the form of systems of elementary axioms (An)n∈N, (Bn)n∈N and
(Cn)n∈N, respectively, where

An : Xn(x � y, {x}) −→ x � y = x,

Bn : Xn(x � y, {x, y}) −→ (x, y) ∈ ξ,
Cn : Xn(xy, {x}) −→ (x, y) ∈ δ.

Thus, we have proved the following theorem:

Theorem 2 An algebraic system (G, ·,�, ξ, δ), where (G, ·) is a semigroup, (G,�)
is a semilattice, ξ, δ are binary relations on G, is isomorphic to some transformative
∩-semigroup of transformations (Φ, ◦,∩, ξΦ, δΦ) if and only if ξ is a left regular
relation containing the semilattice order ζ, δ is a left ideal relation on (G, ·), and
the conditions (9), (14), (15), as well as the axiom systems (An)n∈N, (Bn)n∈N and
(Cn)n∈N are satisfied by all elements of G.
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The relation of semicompatibility and the relation of semiadjacency in a semigroup
of transformations can be characterized by essentially infinite systems of elemen-
tary axioms (for details see [5,6,9]). Probably the axiom systems (An)n∈N, (Bn)n∈N,
(Cn)n∈N are also essentially infinite, i.e., they are not equivalent to any finite subsys-
tems, but this problem requires further investigation.
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lation from Izv. Vysš. Učebn. Zaved. Matematika 17, 36–48 (1960))

123


	The relations of semiadjacency and semicompatibility in cap-semigroups of transformations
	Abstract
	1 Introduction
	Acknowledgments
	References


