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Abstract We use Kelvin’s method of images (Bobrowski in J. Evol. Equ. 10(3):663–
675, 2010; Semigroup Forum 81(3):435–445, 2010) to show that given two non-
negative integers i �= j there exists a unique cosine family generated by a restric-
tion of the Laplace operator in C[0,1], that preserves the moments of order i and j

about 0, if and only if precisely one of these integers is zero.

Keywords Method of images · Cosine families · Strongly-continuous semigroup ·
Differential operators with integral conditions

1 Introduction

Following the seminal work of J.R. Cannon [6], a semigroup-theoretical study of
diffusion and wave equations associated with one-dimensional Laplace operators
equipped with integral conditions has recently been commenced in [9], where an
abstract framework for studying such problems in Hilbert spaces has been proposed.
Paper [5] presents a different approach, applicable apparently in a broader context:
it shows that the recently developed Lord Kelvin’s method of images [3, 4] provides
natural tools for constructing moments-preserving cosine families. In particular, the
main theorem of [5] states that there is a unique cosine family generated by a Laplace
operator in C[0,1] that preserves the moments of order zero and 1 (about 0).

In this context, a natural question arises of whether and to what extent the main
result of [5], may be generalized to the case of two arbitrary moments of order, say i
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and j , where i < j are two non-negative integers. Our main theorem (Theorem 2.1)
provides the following answer to this question: a necessary and sufficient condition
for existence of a cosine family generated by a Laplace operator in C[0,1] that pre-
serves the moments of order i and j (about 0) is that i = 0. In particular, there are
no Laplace-operator-generated cosine families that preserve two moments of order
larger than 0. Moreover, the cosine family that preserves the moments of order 0 and
j ≥ 1 is uniquely determined, and can be constructed (almost) explicitly by means
of the abstract Kelvin formula (3.1). Extensions to non-integer moments are also dis-
cussed.

2 Preservation of moments about 0

Let C[0,1] be the Banach space of continuous functions on the unit interval, and let
C2[0,1] be its subspace of twice continuously differentiable functions. (In what fol-
lows we think of real-valued functions, but this is merely to fix attention; the same
analysis can be performed in the space of complex functions, as well.) By Lc we
denote the class of restrictions of the Laplace operator Lf = f ′′,D(L) = C2[0,1]
to various domains that generate (strongly continuous) cosine families in C[0,1]. In
other words, a member of Lc is a closed linear operator A that generates a strongly
continuous cosine family in C[0,1] and on its domain coincides with L. The co-
sine family generated by A will be denoted CA = (CA(t))t∈R. We recall (see, e.g.,
[1, Proof of Theorem 3.14.17] or [8, Theorem 8.7]) that A ∈ Lc generates also a
strongly continuous semigroup SA = (SA(t))t≥0; the latter semigroup is given by
the abstract Weierstrass formula

SA(t)f = 1√
πt

∫ ∞

0
e−τ 2/4tCA(τ)f dτ (t > 0, f ∈ C[0,1]), (2.1)

and SA(0) = IdC[0,1] (identity operator in C[0,1]). In particular, Lc is a subclass of
the class Ls of restrictions of the Laplace operator that generate strongly continuous
semigroups in C[0,1].

Let N be the set of non-negative integers, and let Fi denote the moment of order i

about 0, i.e., let it be the linear functional on C[0,1] defined by

Fif :=
∫ 1

0
ki (x)f (x)dx, i ∈N, (2.2)

where

ki (x) := xi.

Given A ∈ Lc we say that the related cosine family CA preserves the ith moment iff
for all t ∈ R and f ∈ C[0,1], we have FiCA(t)f = Fif . Analogously, for A ∈ Ls

we say that the related semigroup preserves the ith moment iff for all t ≥ 0 and
f ∈ C[0,1], we have FiSA(t)f = Fif . Observe that, by the Weierstrass formula, if
CA preserves Fi then so does SA (see Proposition 2.2, later on).
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Theorem 2.1 Let i, j ∈N with i < j be given.

(a) If i = 0, then there is exactly one A ∈ Lc such that the related cosine family
preserves Fi and Fj .

(b) If i > 0, then there is no A ∈ Ls such that the related semigroup preserves Fi

and Fj .

This theorem will be proved in two steps. First, following [5] we will relate preser-
vation of moments with boundary conditions to show that a generator A ∈ Ls of a
semigroup that preserves two moments of order i, j ≥ 1 could not be densely de-
fined (thus establishing (b)). Then, in the next section, we will construct the moments
preserving cosine family of point (a).

Before continuing, we note that in case (a), a generation theorem for moments-
preserving semigroups has been obtained in [9, Theorem 3.4].

Proposition 2.2 Let A be a member of Lc and let i ∈ N. The following statements
are equivalent.

(a) The cosine family CA preserves Fi .
(b) The semigroup SA preserves Fi .
(c) For f ∈ D(A), we have Fi(f

′′) = 0.
(d) For f ∈ D(A), we have:

f ′(0) = f ′(1) if i = 0,

f ′(1) = f (1) − f (0) if i = 1,

if (1) = i(i − 1)Fi−2f + f ′(1) if i ≥ 2.

(2.3)

Proof If we assume that CA preserves Fi , then since Fi is bounded,

FiSA(t)f = 1√
πt

∫ ∞

0
e−τ 2/4tFiCA(τ)f dτ = Fif,

by (2.1) and because
∫ ∞

0 e−τ 2/4t dτ = √
πt . This proves that (a) implies (b).

In order to prove that (b) implies (c) let f ∈ D(A) and consider

ui : [0,∞) � t 	→ Fi(SA(t)f ) ∈ R.

The scalar-valued function ui is differentiable with u′
i (t) = Fi(SA(t)Af ) =

Fi(SA(t)f ′′). If SA preserves Fi the function ui is constant, and hence u′
i (t) = 0

for t ∈ [0,∞). Thus in particular u′
i (0) = Fi(f

′′) = 0.
The equivalence of (c) and (d) is evident since

Fi(f
′) = f (1) − iFi−1f (2.4)

holds for all i ≥ 1 and all f ∈ C1[0,1].
Finally, assume condition (c) holds. We show that the cosine family CA pre-

serves Fi . First observe that if f ∈ D(A) then Fi(
d2

dt2 CA(t)f ) = Fi(ACA(t)f ) = 0,
because CA(t)(D(A)) ⊂ D(A). Then, similarly as in the proof of (b) ⇒ (c),

vi : [0,∞) � t 	→ Fi(CA(t)f ) ∈R
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is a scalar-valued twice differentiable function with v′
i (t) = Fi(

∫ t

0 CA(s)dsf ′′)
and v′′

i (t) = Fi(CA(t)f ′′) = 0. Therefore, since v′
i (0) = 0, vi is constant, i.e.,

Fi(CA(t)f ) = Fi(CA(0)f ) = Fif for f ∈ D(A). This completes the proof because
D(A) is dense in C[0,1]. �

Corollary 2.3 For i, j ≥ 1, i �= j , the set

Di,j = {f ∈ C2[0,1] | Fi(f
′′) = Fj (f

′′) = 0}
is not dense in C[0,1].

Proof Since (c) and (d) in Proposition 2.2 are equivalent,

Di,j ⊂ KerHi,j ,

where Hi,j is a bounded linear functional on C[0,1] given by

Hi,jf = (j − 1)f (1) + f (0) − j (j − 1)Fj−2f

for i = 1, and

Hi,jf = (i − j)f (1) − i(i − 1)Fi−2f + j (j − 1)Fj−2f

for i ≥ 2. We note that Hi,j is non-zero, because

H1,j k2 = j − 1 − j (j − 1)
1

j + 1
= j − 1

j + 1
�= 0,

and for i ≥ 2,

Hi,j k2 = i − j − i(i − 1)

i + 1
+ j (j − 1)

j + 1
= 2(i − j)

(i + 1)(j + 1)
�= 0.

Hence, the corollary follows since KerHi,j is closed and not equal to C[0,1]. �

This corollary clearly implies (b) in Theorem 2.1. For, if the semigroup generated
by A ∈ Ls preserves moments Fi and Fj then, by Proposition 2.2, D(A) ⊂ Di,j

which contradicts the fact that D(A) is dense in C[0,1].

3 Proof of the case i = 0, j ≥ 1

Let C(R) be the Fréchet space of continuous functions on R with topology of almost
uniform convergence, and let (C(t))t∈R be the basic cosine family in C(R) given by
the D’Alembert formula,

C(t)f (x) := 1

2
(f (x + t) + f (x − t)), t, x ∈R.
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Also, let Fj be the linear functional on C(R) defined by

Fjf :=
∫ 1

0
kj (x)f (x)dx, j ∈ N.

The fact that two distinct objects, the functional in C(R) defined here, and the func-
tional on C[0,1] defined in (2.2), are denoted by the same letter, should not lead to
misunderstanding. Clearly, Fi is continuous both on C[0,1] and C(R) for all i ∈ N.

In the theory of semigroups of linear operators and the related theory of cosine
families, Lord Kelvin’s method of images can be thought of as a way of constructing
families of operators generated by an operator with a boundary condition by means
of families generated by the same operator in a larger space, where no boundary
conditions are imposed (cf. [3, 4]). In our particular context, the method boils down
to constructing a cosine family Cmp = (Cmp(t))t∈R in C[0,1] via the formula

Cmp(t)f (x) = C(t)f̃ (x), x ∈ [0,1], t ∈ R, f ∈ C[0,1], (3.1)

where ‘mp’ stands for ‘moments-preserving’ and, more importantly, f̃ ∈ C(R) is a
certain extension of f , chosen in such a way that Cmp preserves both F0 and Fj . To
be more specific: Given f ∈ C[0,1], and j ≥ 1, we are looking for an f̃ : R → R

such that

(A) f̃ ∈ C(R) and f̃ (x) = f (x) for all x ∈ [0,1],
(B) F0C(t)f̃ = F0f for all t ∈R, and
(C) FjC(t)f̃ = Fjf for all t ∈ R.

Existence of such an extension is secured by Proposition 3.2, later on.
Before proceeding, we need to introduce some notations. For a function f defined

on [0,1] let f e be its symmetric reflection about 1
2 , that is f e(x) = f (1 − x) for

x ∈ [0,1]. Moreover, given two functions f,φ ∈ C[0,1], let f ∗ φ ∈ C[0,1] be their
convolution:

(f ∗ φ)(x) =
∫ x

0
f (x − y)φ(y)dy, x ∈ [0,1].

Observe that

‖f ∗ φ‖C[0,1] ≤ ‖f ‖C[0,1]‖φ‖C[0,1].

Finally, if f ∈ C1[0,1], then f ∗ φ ∈ C1[0,1] with

(f ∗ φ)′ = f (0)φ + f ′ ∗ φ.

For the proof of Proposition 3.2, we need the following lemma.

Lemma 3.1 For g,φ ∈ C[0,1], there exists a unique f ∈ C[0,1] such that

f − φ ∗ f = g.

Moreover, if φ ∈ C1[0,1] and g ∈ C2[0,1], then f ∈ C2[0,1].



694 A. Bobrowski, A. Gregosiewicz

Proof Let us define the Bielecki-type norm [2, 7]

‖f ‖λ = sup
x∈[0,1]

|e−λxf (x)|

in C[0,1] with λ > 0. We note that this norm is equivalent to the usual supremum
norm in this space. Consider the operator T : C[0,1] → C[0,1] given by

Tf = g + φ ∗ f.

If f1, f2 ∈ C[0,1], then

‖Tf1 − Tf2‖λ = ‖(f1 − f2) ∗ φ‖λ

≤ sup
x∈[0,1]

∫ x

0
e−λ(x−y)‖f1 − f2‖λ|φ(x − y)|dy

≤
∫ 1

0
e−λx dx ‖φ‖C[0,1]‖f1 − f2‖λ.

Hence, λ can be chosen so large that ‖Tf1 − Tf2‖λ ≤ Cλ‖f1 − f2‖λ for some
Cλ ∈ (0,1), and by the Banach fixed point theorem, there exists a unique f ∈ C[0,1]
such that Tf = f .

In order to prove the second part of the lemma recall that the unique f ∈ C[0,1]
constructed above satisfies f = limn→∞ fn in C[0,1], where

fn = T ng = g +
n∑

k=1

φk ∗ g,

and φ1 := φ, φk+1 := φk ∗ φ, k ≥ 1. Observe that for φ ∈ C1[0,1] we have φk ∈
C1[0,1],k ≥ 1, by induction. Hence, if we assume that g is twice continuously dif-
ferentiable, then so is fn, n ≥ 1. Moreover, since φ′

k+1 = φ(0)φk +φ′ ∗φk , k ≥ 1, we
have

Lfn = f ′′
n = g′′ + g′(0)

n∑
k=1

φk + g(0)

n∑
k=1

φ′
k + g′′ ∗

n∑
k=1

φk

= g′′ + g(0)φ′ + g′(0)φn + g′′ ∗ φn

+ (
g′(0) + g(0)φ(0)

) n−1∑
k=1

φk

+ (
g(0)φ′ + g′′) ∗

n−1∑
k=1

φk.

Therefore, (f ′′
n )n≥1 converges in C[0,1], for

‖φk‖C[0,1] ≤ ‖φ‖k
C[0,1]

(k − 1)! , k ≥ 1.
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Since L is closed, f = limn→∞ fn is twice continuously differentiable, which com-
pletes the proof. �

Proposition 3.2 For f ∈ C[0,1], an extension f̃ that fulfills conditions (A)–(C),
listed above, exists and is uniquely determined.

Proof It suffices to find for all n ∈ N, functions gn,hn ∈ C[0,1] related to f̃ as
follows:

gn(x) = f̃ (x + n), hn(x) = f̃ (1 − x − n), x ∈ [0,1]. (3.2)

Since we want f̃ to be well-defined and continuous, these functions must satisfy
compatibility conditions:

hn+1(0) = hn(1), gn+1(0) = gn(1), n ∈N. (3.3)

The proof of [5, Proposition 2.2] shows that condition (B) is satisfied if and only
if

gn+1 + hn+1 = gn + hn, n ∈N. (3.4)

On the other hand, condition (C) holds if and only if

∫ 1+t

t

kj (y − t)f̃ (y)dy +
∫ 1−t

−t

kj (y + t)f̃ (y)dy = 2
∫ 1

0
kj (x)f (x)dx,

for t ≥ 0. Differentiating with respect to t and then writing t = n + x, x ∈ [0,1], we
see that this is equivalent to

gn+1(x) − j

∫ 1+n+x

n+x

kj−1(y − n − x)f̃ (y)dy

− hn(x) + j

∫ 1−n−x

−n−x

kj−1(y + n + x)f̃ (y)dy = 0,

which is satisfied if and only if

gn+1(x) − j

[∫ 1

x

kj−1(y − x)gn(y)dy +
∫ x

0
ke
j−1(x − y)gn+1(y)dy

]

− hn(x) + j

[∫ x

0
kj−1(x − y)hn+1(y)dy +

∫ 1

x

ke
j−1(y − x)hn(y)dy

]
= 0,

for x ∈ [0,1] and n ∈N. Finally, since hn+1 = gn +hn −gn+1 by (3.4), condition (C)
holds if and only if

gn+1 − j (kj−1 + ke
j−1) ∗ gn+1

= j (ge
n ∗ kj−1)

e − jkj−1 ∗ (gn + hn) − j (he
n ∗ ke

j−1)
e + hn, n ∈N. (3.5)
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By Lemma 3.1, gn+1 is uniquely determined by the pair (gn,hn), and by (3.4) so
is hn+1.

It remains to prove that for gn and hn defined recursively by h0 = f e, g0 = f ,
(3.4) and (3.5), conditions (3.3) are satisfied. To this end, let

dn := jFj−1(h
e
n − gn), n ∈ N.

Then, by (3.5),

gn+1(0) = hn(0) − dn and gn+1(1) = hn(1) − dn+1. (3.6)

By (3.4) this yields

hn+1(0) = gn(0) + dn and hn+1(1) = gn(1) + dn+1. (3.7)

By induction argument, it follows that for all n ∈N,

hn(1) − gn(0) = hn(0) − gn(1) = dn. (3.8)

For, the formula is evidently true for n = 0 since d0 = jFj−10 = 0, h0(0) = f (1) =
g0(1), and h0(1) = f (0) = g0(0), and relations (3.6) and (3.7) allow proving the
induction step.

Equalities (3.8) in turn show

gn+1(0) = hn(0) − dn = gn(1) + dn − dn = gn(1),

and

hn+1(0) = gn(0) + dn = hn(1) − dn + dn = hn(1),

establishing (3.3) and completing the proof. �

Definition 3.3 Let f ∈ C[0,1]. The function f̃ : R → R defined in accordance with
the rules (3.2), (3.4) and (3.5) is called the integral extension of f .

We note that the extension operator

E : C[0,1] � f 	→ Ef := f̃ ∈ C(R)

is continuous. Let

Dj = {f ∈ C2[0,1] : F0(f
′′) = Fj (f

′′) = 0}.

Lemma 3.4 Let f ∈ Dj . Then its integral extension Ef is twice continuously differ-
entiable on (−1,2).

Proof The case j = 1 is proved in [5, Lemma 2.4], hence we restrict ourselves to
j ≥ 2. By (3.4), (3.5), and Lemma 3.1, restrictions of Ef to the intervals [−1,0],
[0,1], and [1,2] are twice continuously differentiable. We need to show that

g′
1(0) = f ′(1), g′′

1 (0) = f ′′(1), h′
1(0) = −f ′(0), and h′′

1(0) = f ′′(0).
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Differentiating (3.5) with n = 0 we obtain

g′
1(0) = 2jf (1) − 2j (j − 1)Fj−2f − f ′(1).

Since f ∈ Dj , by the equivalence of conditions (c) and (d) in Proposition 2.2, we see
that

f ′(1) = jf (1) − j (j − 1)Fj−2f,

which proves g′
1(0) = f ′(1), the first of the desired equalities. The third equality now

follows by F0(f
′′) = f ′(1) − f ′(0) = 0 and (3.4) with n = 0:

h′
1(0) = f ′(0) − f ′(1) − g′

1(0) = −f ′(1).

Turning to the second equality we consider the cases j = 2 and j > 2 separately.
If j = 2, then (3.5) gives

g′′
1 (0) = jf ′(0) + j (j − 1)f (0) − j (j − 1)(f (0) + f (1))

− jf ′(1) + j (j − 1)f (1) + f ′′(1)

= f ′′(1).

Similarly, if j > 2, then

g′′
1 (0) − jf ′(1) + j (j − 1)f (1)

= j (j − 1)(j − 2)Fj−3f − jf ′(1) + j (j − 1)f (1)

− j (j − 1)(j − 2)Fj−3f + f ′′(1),

hence g′′
1 (0) = f ′′(1). Finally, by (3.4) with n = 0, it follows that

h′′
1(0) = f ′′(0) + f ′′(1) − g′′

1 (0) = f ′′(0),

which completes the proof. �

Theorem 3.5 The abstract Kelvin formula (3.1) defines a strongly continuous cosine
family (Cmp(t))t∈R on C[0,1]. This family preserves both functionals F0 and Fj .
Moreover, the generator A of (Cmp(t))t∈R is a member of Lc and its domain is Dj .

Proof Let R : C(R) → C[0,1] map a member of C(R) to its restriction to [0,1].
Then (3.1) takes the form

Cmp(t) = RC(t)E, t ∈R. (3.9)

By (3.4) and (3.5), a pair (gn+1, hn+1) is obtained from (gn,hn) by means
of a bounded linear operator mapping C[0,1] × C[0,1] into itself. Since for any
t,RC(t)Ef depends merely on the finite number of such pairs, it follows that Cmp(t)

is a bounded linear operator in C[0,1]. That the operators Cmp(t) preserve function-
als F0 and Fj is clear by Proposition 3.2.
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Fix f ∈ C[0,1] and s ∈R. Clearly, C(s)Ef extends RC(s)Ef and, by the cosine
equation for C and the definition of Ef , we have

FiC(t)C(s)Ef = Fif = FiRC(s)Ef, i = 0, j, t ∈R.

By uniqueness of integral extensions, this shows that C(s)Ef is the integral extension
of RC(s)Ef :

ERC(s)Ef = C(s)Ef, s ∈R.

Using this and the cosine equation for C, we check that

2Cmp(t)Cmp(s)f = Cmp(t + s)f + Cmp(t − s)f, t, s ∈ R,

i.e., that Cmp is a cosine family. This family is strongly continuous, i.e., we have
limt→0 RC(t)Ef = f for all f ∈ C[0,1], since Ef , as restricted to any compact
interval, is a uniformly continuous function, and on [0,1] it coincides with f .

Turning to the characterization of the generator: Lemma 3.4 and the Taylor for-
mula imply that for f ∈ Dj ,

lim
t→0

2

t2
(C(t)f̃ (x) − f̃ (x)) = f̃ ′′(x), x ∈ (−1,2);

the limit is uniform in x ∈ [0,1] since f̃ ′′ is uniformly continuous in any compact
subinterval of (−1,2). By (3.9) this proves that f belongs to D(A) and we have
Af = f ′′.

Finally, we observe that Proposition 2.2 implies D(A) ⊂ Dj , which shows that
D(A) = Dj , and completes the proof. �

When combined with Proposition 2.2, Theorem 3.5 proves not only existence of
the cosine family that preserves moments of order 0 and j ≥ 1, but also its uniqueness
(in the class of cosine families generated by members of Lc). For, by Proposition 2.2,
the domain of the generator of a cosine family preserving these moments is contained
in Dj . Since no member of Lc is a proper extension of another member, this generator
must coincide with the generator described in Theorem 3.5. In particular, we have
completed the proof of Theorem 2.1.

We conclude this section with a remark on symmetries in the moments-preserving
cosine families. We say that a function f ∈ C[0,1] is symmetric about 1

2 if f = f e

and similarly, we say that f is asymmetric about 1
2 if f = −f e. By Ceven[0,1] and

Codd[0,1] we denote the spaces of symmetric and asymmetric functions, respectively.
In [5, Proposition 3.2] it is proved that in the case i = 0, j = 1, the moments-

preserving cosine family Cmp leaves the spaces Ceven[0,1] and Codd[0,1] invariant.
This allows decomposition of Cmp into ‘smaller’ pieces which are easier to handle.
(For example, one of the pieces is the cosine family related to the Neumann boundary
conditions.) As we shall see now, such a decomposition is not possible in general.
More specifically, for j ≥ 2 the space Codd[0,1] is invariant for Cmp (the reason for
that is formula (3.4) showing that integral extensions of asymmetric functions are
asymmetric) but the space Ceven[0,1] does not possess this property.
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Indeed, suppose that, contrary to our claim, CmpCeven[0,1] ⊂ Ceven[0,1]. If A is
the generator of Cmp, then the generator of Cmp restricted to Ceven[0,1] is Ap , the
part of A in Ceven[0,1]. Hence, for f ∈ D(Ap) the first and the third conditions in
(2.3) hold and, f being even, f ′(1) = f ′(0) = 0. Therefore D(Ap) ⊂ KerHj , where
Hj is the bounded linear functional on Ceven[0,1] given by

Hjf = j (j − 1)Fj−2f − jf (1).

Since D(Ap) is dense in Ceven[0,1] and KerHj is closed, KerHj = Ceven[0,1].
This contradicts the fact that for f ∈ Ceven[0,1] given by f (x) = (x − 1

2 )2, Hjf =
− j−1

j+1 �= 0, j ≥ 2, completing the proof of the claim.
In this context it is natural to ask whether there is a subspace of C[0,1] that is com-

plementary to Codd[0,1] and invariant for Cmp. However, at present an answer to this
question eludes us. In fact, as we have noted above, the requirement of preservation
of the first moment forces the cosine family to leave the space Codd[0,1] invariant,
yet in general it is unclear how to relate a moment to be preserved with an invariant
subspace for the cosine family.

4 Extensions

The article focuses on non-negative integer moments. However, the main theorem
(Theorem 2.1) may be extended to the case of non-negative real moments, as follows.

Because ki is integrable over [0,1] for real i > −1, formula (2.2) defines a
bounded linear functional on C[0,1] for all such i. Hence, relation (2.4) remains
true for i > 0 and Proposition 2.2 may be extended to real i ≥ 0 by writing (2.3) in
the form:

f ′(0) = f ′(1) if i = 0,

f ′(1) = iFi−1f
′ if i ∈ (0,1),

f ′(1) = f (1) − f (0) if i = 1,

if (1) = i(i − 1)Fi−2f + f ′(1) if i > 1.

Next, for real i, j ≥ 1, Corollary 2.3 remains valid, but for i or j in (−1,1), it does
not (see below). Finally, for real positive j , unless j = 1 or j = 2, the argument used
in Lemma 3.4 requires existence of Fj−3f , and does not work for j ∈ (0,1) ∪ (1,2).
To recapitulate, we have the following theorem.

Theorem 4.1 Let i, j ≥ 0 be two real numbers with i < j .

(a) If i = 0, and j = 1 or j ≥ 2, then there is exactly one A ∈ Lc such that the related
cosine family preserves Fi and Fj .

(b) If i ≥ 1, then there is no A ∈ Ls such that the related semigroup preserves Fi

and Fj .

If C[0,1] is the space of complex functions, similar extensions are possible for
moments of complex order i with �i ≥ 0.
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Except for the claim that Di,j of Corollary 2.3 is dense for i or j in (−1,1), all
the statements presented above are proved precisely as in the case where i and j are
integers. Hence, we restrict ourselves to showing the former.

First, let −1 < i < j < 1. Given C > 0 let α,β ∈ [−C,C]. Observe that there is
a constant K = K(i, j) > 0 and a function fα,β,C ∈ C[0,1], such that Fifα,β,C = α,
Fjfα,β,C = β and ‖fα,β,C‖C[0,1] ≤ CK . Indeed, let fα,β,C(x) = (x − 1)(ax + b),
where real numbers a and b are chosen so that

{
Fifα,β,C = α,

Fjfα,β,C = β,
i.e.,

{
(i + 1)a + (i + 3)b = −αP (i),

(j + 1)a + (j + 3)b = −βP (j),

where P(x) = (x + 1)(x + 2)(x + 3). Precisely, we have

a = (j + 3)P (i)α − (i + 3)P (j)β

2(j − i)
, b = (i + 1)P (j)β − (j + 1)P (i)α

2(j − i)
.

Then, for gα,β,C defined by gα,β,C(x) = ∫ x

1

∫ y

1 fα,β,C(z)dzdy, x ∈ [0,1], we ob-
tain gα,β,C(1) = g′

α,β,C(1) = g′′
α,β,C(1) = 0, Fig

′′
α,β,C = α, Fjg

′′
α,β,C = β , and

‖gα,β,C‖C[0,1] < CK .
Given f ∈ C2[0,1], let c > 0 be chosen so that c + j − 1 < 0. For k > 1 we define

fk(x) = f (x) − 1

kc
hk(kx), x ∈ [0,1] (4.1)

where

hk(x) =
{

gα,β,C(x), x ∈ [0,1],
0, x ≥ 1,

for C := max(|Fif
′′|, |Fjf

′′|), α := kc+i−1Fif
′′, and β := kc+j−1Fjf

′′. Then

Fif
′′
k = Fif

′′ − 1

kc

∫ 1

0
k2h′′

k(kx)xi dx = Fif
′′ − 1

kc+i−1

∫ 1

0
h′′

k(y)yi dy = 0,

and similarly Fjf
′′
k = 0, that is fk ∈ Di,j . Furthermore ‖f −fk‖C[0,1] = 1

kc ‖hk‖C[0,1]
< 1

kc CK , where C depends merely on f , and K depends on i and j . Since k > 1 is
arbitrary, this shows that Di,j is dense in C2[0,1], and the claim follows in this case.

For the proof of the other case, where i ∈ (−1,1) and j ≥ 1, we claim first
that for f ∈ C[0,1] and k > 1, there is fj ∈ C2[0,1] such that Fjf

′′
j = 0 and

‖f − fj‖C[0,1] < 1
k

. Since C2[0,1] is dense in C[0,1], it suffices to show this for
f ∈ C2[0,1]. Given k > 1 let ga ∈ C2[0,1], a ≥ 1, be defined by ga(x) = 1

k
xa .

Then ‖ga‖C[0,1] < 1
k

and Fjg
′′
a = 1

k
a(a−1)
a−1+j

. Hence, a 	→ Fjg
′′
a ∈ R

+ is a contin-
uous function satisfying Fjg

′′
1 = 0 and lima→∞ Fjg

′′
a = +∞. Thus, by the inter-

mediate value theorem there exists a0 ≥ 1 such that Fjg
′′
a0

= |Fjf
′′|. Finally, let

fj = f − sgn(Fjf
′′) ga0 . Then fj ∈ C2[0,1], ‖f − fj‖C[0,1] ≤ 1

k
and Fjf

′′
j = 0, as

desired.
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To complete the proof, we fix k > 1. Defining fk via (4.1) with c > 0, c+i−1 < 0,
C := |Fif

′′
j |, α = kc+i−1Fif

′′
j , and β = 0, and with f replaced by fj , we obtain

fk ∈ C2[0,1] and Fif
′′
k = 0 as before, and

Fjf
′′
k = Fjf

′′
j − k1−i−c

∫ k

0
h′′

k(y)yj dy = Fjf
′′
j = 0,

since β = 0. Thus fk ∈ Di,j , and ‖f − fk‖C[0,1] < 1
k
CK , where K is defined as

before. This completes the proof of the claim.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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