
Semigroup Forum (2013) 87:120–128
DOI 10.1007/s00233-012-9426-y

R E S E A R C H A RT I C L E

Rectangular group congruences on a semigroup

Roman S. Gigoń
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Abstract We study rectangular group congruences on an arbitrary semigroup. Some
of our results are an extension of the results obtained by Masat (Proc. Am. Math. Soc.
50:107–114, 1975). We show that each rectangular group congruence on a semigroup
S is the intersection of a group congruence and a matrix congruence and vice versa,
and this expression is unique, when S is E-inversive. Finally, we prove that every
rectangular group congruence on an E-inversive semigroup is uniquely determined
by its kernel and trace.

Keywords Rectangular group congruence · Group congruence · Matrix congruence

1 Introduction and preliminaries

A groupoid S is called a left [right] zero semigroup if it satisfies the identity xy = x

[xy = y]. Further, by a rectangular band we shall mean the direct product of a left
zero and a right zero semigroup. Moreover, a semigroup S is said to be a rectangular
group if it is isomorphic to the direct product G × M of a group G and a rectangular
band M .

Let C be a class of semigroups. We say that a congruence ρ on a semigroup S is a
C -congruence if S/ρ ∈ C . For example, if C is the class of groups, then ρ is called a
group congruence on S if S/ρ is a group. In way of an exception, a congruence ρ on
a semigroup S is said to be a matrix congruence if S/ρ is a rectangular band. Note
that every left [right] zero semigroup is a rectangular band, so every left [right] zero
congruence on S is a matrix congruence. Also, clearly the least matrix congruence
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on any semigroup S exists. Denote it by ψ . Furthermore, every group congruence
and every matrix congruence is a rectangular group congruence. Hence we say that a
rectangular group congruence is proper if it is neither a group nor a matrix congru-
ence. We first give necessary and sufficient conditions on a semigroup S in order that
it will have a proper rectangular group congruence. Furthermore, we show that every
rectangular group congruence on S is the intersection of a group congruence and a
matrix congruence. In addition, if S is E-inversive, then this expression is unique.
Moreover, we prove that each rectangular group congruence on an E-inversive semi-
group is uniquely determined by its kernel and trace. Before we start our study, we
recall some definitions.

Let S be a semigroup and a ∈ S. The set W(a) = {x ∈ S : x = xax} is called the
set of all weak inverses of a and so the elements of W(a) will be called weak inverse
elements of a. A semigroup S is said to be E-inversive if for every a ∈ S there exists
x ∈ S such that ax ∈ ES , where ES (or briefly E) is the set of idempotents of S (more
generally, if A ⊆ S, then EA denotes the set of idempotents of A). It is easy to see that
a semigroup S is E-inversive if and only if W(a) is nonempty for all a ∈ S. Hence
if S is E-inversive, then for every a ∈ S there is x ∈ S such that ax, xa ∈ ES [7, 8].
Further, by Reg(S) we shall mean the set of regular elements of S (an element a of
S is called regular if a ∈ aSa) and by V (a) = {x ∈ S : a = axa, x = xax} the set of
all inverse elements of a. It is well known that an element a of S is regular if and
only if V (a) �= ∅, so a semigroup S is regular if and only if V (a) �= ∅ for every a ∈ S.
Finally, a regular semigroup S is said to be orthodox if ES forms a subsemigroup
of S.

The following result seems to belong to folklore.

Result 1.1 The following conditions concerning a semigroup S are equivalent:

(i) S is a rectangular band;
(ii) S is nonwhere commutative, i.e., ∀a, b ∈ S [ab = ba �⇒ a = b];

(iii) ∀a, b ∈ S [aba = a];
(iv) ∀a, b, c ∈ S [a2 = a, abc = ac].

Recall from [9] that a nonempty subset A of a semigroup S is called left [right]
dense if the condition ab ∈ A implies that a ∈ A [b ∈ A] for all a, b ∈ S. Further, A is
said to be quasi dense if the following two conditions hold:

(i) ∀a ∈ S [a ∈ A ⇐⇒ a2 ∈ A];
(ii) ∀a, b ∈ S [ab ∈ A ⇐⇒ aSb ⊆ A].

Finally, we say that A is a quasi ideal of S if AS ∩ SA ⊆ A. For the connections
between left [right] zero, matrix congruences on a semigroup S and left dense right
[right dense left] ideals, quasi dense subsemigroups of S (respectively), the reader is
referred to [9]. We note only some results of [9]. Firstly, denote by X the set of all left
dense right ideals of a semigroup S and all right dense left ideals of a semigroup S

with the empty set included and S excluded. Let 2X be a family of all subsets of X and
M C(S) be the set of all matrix congruences on S. Define the map φ : 2X → M C(S)

by X φ = ρX (X ∈ 2X), where

ρX = {
(a, b) ∈ S × S : ∀A ∈ X [a, b ∈ A or a, b /∈ A]}.
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Result 1.2 (Theorem 5 [9]) The map φ is antitone (i.e., X ⊆ Y �⇒ ρY ⊆ ρX ) and
maps 2X onto M C(S).

Result 1.3 (Corollary to Theorem 5 [9]) The relation ρX is the least matrix congru-
ence on a semigroup S. Moreover, we may replace (in the present result) the set X by
the set Y of all quasi dense subsemigroups of S.

Result 1.4 (A part of Proposition 4, Theorem 9 [9]) The following conditions con-
cerning a congruence ρ on a semigroup S are equivalent:

(i) ρ is a matrix congruence on S;
(ii) every ρ-class of S is a quasi dense subsemigroup of S;

(iii) every ρ-class of S is a quasi ideal of S.

Conversely, a subsemigroup A of S is quasi dense, when A is a matrix of some
ψ -classes of S. Thus A is quasi dense if and only if A is a ρ-class of some matrix
congruence ρ on S.

Result 1.5 (Theorem 14 [9]) Let S be a matrix of semigroups Sıλ, where ı ∈ I ,
λ ∈ Λ, such that every Sıλ has an identity element eıλ and the set M (say) of ele-
ments eıλ (ı ∈ I , λ ∈ Λ) forms a subsemigroup of S. Then M is a rectangular band.
Further, Sıλ

∼= Sjμ for all ı, j ∈ I, λ,μ ∈ Λ and if we suppose that 1 ∈ I,Λ, then
S is isomorphic to the direct product M × S11 of a rectangular band M and a
semigroup S11. Moreover, the semigroups Sıλ are precisely the ψ -classes of S and
Sıλ = eıλSıλeıλ = eıλSeıλ for all ı ∈ I, λ ∈ Λ.

Notice that if S is a rectangular group (that is, S ∼= M × G, where M is a rectan-
gular band and G is a group), then we shall write rather S = M ×G than S ∼= M ×G.
The following theorem is known but for example: Masat considered in [5, 6] a regular
semigroup S such that ES forms a rectangular band, and he did not know that S is
a rectangular group, and so we include a simple proof for the completeness. Green’s
relations on a semigroup S are denoted by LS , RS , HS , DS and J S . For undefined
terms the reader is referred to the books [3, 4].

Theorem 1.6 The following conditions concerning a semigroup S are equivalent:

(i) S is a rectangular group;
(ii) S is completely simple and orthodox;

(iii) S is completely regular and satisfies the identity: x−1yy−1x = x−1x;
(iv) S is regular and ES forms a rectangular band.

Consequently, if S is a rectangular group, then S ∼= ES × He = ES ×eSe for some
(all) e ∈ ES .

Proof (ii) �⇒ (i). If S is completely simple, then S is a matrix of groups He

(e ∈ ES ), since Lemma III.2.4 [4] implies that H is a matrix congruence on S, so
H = ψ . Clearly, every He has an identity element e. Also, (ef e, e) ∈ H for all
e, f ∈ ES , that is, e = ef e for all e, f ∈ ES (since ef e ∈ ES ). Hence ES is a rectan-
gular band. Thus S ∼= ES × He for some (all) e ∈ ES (by Result 1.5).
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(i) �⇒ (iii). Let S = M × G, where M is a rectangular band and G is a group
(with an identity 1). Define the mapping −1 : S → S by (a, g)−1 = (a, g−1) for
all (a, g) ∈ S. One can easily verify that (S, ·,−1 ) is completely regular, that is,
(x−1)−1 = x, xx−1 = x−1x and xx−1x = x for every x ∈ S. Further, suppose that
x = (a, g), y = (b,h) ∈ S. Then

x−1yy−1x = (
ab2a,1

) = (
a2,1

) = (
a,g−1)(a, g) = x−1x.

(iii) �⇒ (iv). Let e ∈ ES . Since ee−1 = e−1e, (e−1)−1 = e, then

e = ee−1e = e−1e = (
e−1e

)2 = (
e−1e

)(
ee−1) = e−1ee−1 = e−1.

Hence e−1ff −1e = e−1e, i.e., ef e = e for all e, f ∈ ES . Thus ES is a rectangular
band. Consequently, the condition (iv) holds.

(iv) �⇒ (ii). Clearly, each idempotent of S is primitive and DES = ES × ES .
Since S is regular, then every element of S is D-related with some of its idempotent.
It follows that DS = J S = S × S. Thus S is completely simple and orthodox. �

By the trace trρ of a relation ρ on a semigroup S we shall mean the restriction of
ρ to the set ES .

The following result will be useful in the proof of Theorems 2.2(iii), 2.5, 2.6.

Result 1.7 (Corollary 2.7 [1]) If ρ is a matrix congruence on an E-inversive semi-
group S, then every ρ-class of S is E-inversive. Also, every matrix congruence on an
E-inversive semigroup is uniquely determined by its trace.

Further, some preliminaries about group congruences on a semigroup S are
needed. A subset A of S is called (respectively) full; reflexive and dense if ES ⊆ A;
∀a, b ∈ S [ab ∈ A �⇒ ba ∈ A] and ∀s ∈ S ∃x, y ∈ S [sx, ys ∈ A]. Also, define the
closure operator ω on S by Aω = {s ∈ S : ∃a ∈ A [as ∈ A]} (A ⊆ S). We shall say
that A ⊆ S is closed (in S) if Aω = A. Finally, a subsemigroup N of a semigroup S

is said to be normal if it is full, dense, reflexive and closed (if N is normal, then we
shall write N �S). Moreover, if a subsemigroup of S is full, dense and reflexive, then
it is called seminormal.

By the kernel kerρ of a congruence ρ on a semigroup S we shall mean the set
{x ∈ S : (x, x2) ∈ ρ}.

The following two results follow directly from the definition of the group.

Lemma 1.8 Let ρ be a group congruence on a semigroup S. Then kerρ � S.

Lemma 1.9 Let ρ1, ρ2 be group congruences on a semigroup S. Then ρ1 ⊂ ρ2 if and
only if kerρ1 ⊂ kerρ2.

Let B be a nonempty subset of a semigroup S. Consider four relations on S:

ρ1,B = {
(a, b) ∈ S × S : ∃x ∈ S [ax, bx ∈ B]};

ρ2,B = {
(a, b) ∈ S × S : ∃x, y ∈ B [ax = yb]};

ρ3,B = {
(a, b) ∈ S × S : ∃x ∈ S [xa, xb ∈ B]};

ρ4,B = {
(a, b) ∈ S × S : ∃x, y ∈ B [xa = by]}.
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Lemma 1.10 [2] Let a subsemigroup B of a semigroup S be dense and reflexive.
Then ρ1,B = ρ2,B = ρ3,B = ρ4,B .

If B is a seminormal subsemigroup of S, then we denote the above four relations
by ρB .

The following theorem says that there exists an inclusion-preserving bijection be-
tween the set of all normal subsemigroups of a semigroup S and the set of all group
congruences on S.

Theorem 1.11 [2] Let B be a seminormal subsemigroup of a semigroup S. Then the
relation ρB is a group congruence on S. Moreover, B ⊆ Bω = kerρB . If B is normal,
then B = kerρB .

Conversely, if ρ is a group congruence on S, then there exists a normal subsemi-
group N of S such that ρ = ρN (in fact, N = kerρ). Thus there exists an inclusion-
preserving bijection between the set of all normal subsemigroups of S and the set of
all group congruences on S.

Finally, the following remark will be useful.

Remark 1 Denote by σ the least group congruence on a semigroup (if it exists). One
can easily seen that if S is an E-inversive semigroup (and so ES is dense), then there
exists the least normal subsemigroup of S. In the light of the above theorem, every
E-inversive semigroup possesses a least group congruence.

2 Rectangular group congruences

The following theorem gives necessary and sufficient conditions on a semigroup S

in order that it has a proper rectangular group congruence. (Notice that a normal
subsemigroup N of S is called proper if N �= S.)

Theorem 2.1 Let S be a semigroup. The following conditions are equivalent:

(i) there exists a proper rectangular group congruence on S;
(ii) S is a disjoint union of two or more quasi dense subsemigroups of S and contains

a proper normal subsemigroup of S;
(iii) there exists a non-universal group and a non-universal matrix congruence on S.

Proof (i) �⇒ (ii). Let ρ be a proper rectangular group congruence on S, say S/ρ is
equal M ×G, where M is a rectangular band, G is a group (with identity 1). Note that
M ∼= EM×G = {(m,1) : m ∈ M}. Further, for all m ∈ M , define Qm to be the preim-
age of {m} × G by the canonical epimorphism ρ
 from S onto S/ρ. It follows easily
from Result 1.1(iv) that {m} × G is a quasi dense subsemigroup of M × G. Thus the
preimage of {m}×G by ρ
 is also such a subsemigroup of S (by M ∼= EM×G). Since
ρ is not a group congruence, then |M| > 1, and so S has a proper matrix congruence
(Result 1.3). Hence S is a disjoint union of two or more quasi dense subsemigroups
of S, see Result 1.4 (notice that S = ⋃{Qm : m ∈ M}, where the union is disjoint, and
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this decomposition of S induced, by the first part of Result 1.4, a matrix congruence
on S). Let N = kerρ. Then a ∈ N if and only if aρ ∈ EM×G, that is, if and only if
aρ ∈ M × {1}. Clearly, N is a full subsemigroup of S. Also, M × {1} is reflexive in
M × G, so N is reflexive in S. Furthermore, N is dense, since S/ρ is E-inversive.
Finally, N is closed in S, since M × {1} is closed in M × G. Consequently, N is a
normal subsemigroup of S and since S/ρ is not a rectangular band, then N is proper.

(ii) �⇒ (iii). This follows from Result 1.4 and Theorem 1.11.
(iii) �⇒ (i). Let ρ1 be a non-universal matrix congruence on S and ρ2 be a non-

universal group congruence on S. We show that ρ = ρ1 ∩ ρ2 is a proper rectan-
gular group congruence on a semigroup S. Indeed, let a ∈ S. Since S/ρ2 is regu-
lar, then (axa, a) ∈ ρ2 for some x ∈ S, so (axa, a) ∈ ρ. Therefore S/ρ is regular.
Clearly, xρ2, where x ∈ kerρ2 is an identity of the group S/ρ2 and so (xyx, x) ∈ ρ2
for all x, y ∈ kerρ2. Hence (xyx, x) ∈ ρ for all x, y ∈ kerρ2. On the other hand, if
xρ ∈ ES/ρ , then x ∈ kerρ2. It follows that ES/ρ forms a rectangular band, therefore,
S/ρ is a rectangular group (Theorem 1.6(iv)). Finally, suppose by way of contradic-
tion that ρ is a matrix congruence on S, that is, (aba, a) ∈ ρ for all a, b ∈ S. Then
(aba, a) ∈ ρ2 for all a, b ∈ S. Hence S/ρ2 must be a trivial group. Thus ρ2 = S × S,
a contradiction from the assumption that ρ2 is a non-universal congruence on S. Sim-
ilarly, if ρ is a group congruence, then ρ1 is a group congruence (since ρ ⊆ ρ1),
so S/ρ1 must be trivial. Hence ρ1 is the universal relation, but this is impossible.
Consequently, ρ is a proper rectangular group congruence on S. �

We have just seen that the intersection of a group congruence on a semigroup S

and a matrix congruence on S is a rectangular group congruence on S. Conversely,
the part (i) of the following theorem (together with Theorem 2.1) implies that any
rectangular group congruence on S can be expressed in this way.

Theorem 2.2 Let ρ be a rectangular group congruence on a semigroup S (and so
S/ρ = M ×G, where M is a rectangular band, G is a group). Also, let Qm (m ∈ M)
be the preimage of {m} × G by the canonical epimorphism ρ
 from S onto S/ρ,
and put N = {s ∈ S : sρ ∈ EM×G}. Moreover, denote by υ the matrix congruence
on S, induced by the partition {Qm : m ∈ M} of S (see the proof of “(i) �⇒ (ii)” in
Theorem 2.1). Then:

(i) ρ = υ ∩ ρN ;
(ii) S/ρ ∼= S/υ × S/ρN .

If in addition S is E-inversive, then:

(iii) ∀m ∈ M [N ∩ Qm � Qm];
(iv) ∀m ∈ M [S/ρN

∼= Qm/ρ(N ∩ Qm)].

Proof Firstly, notice that N is the preimage of M × {1G} by ρ
. Secondly, every Qm

is a quasi dense subsemigroup of S (see Result 1.4). Also, if S is E-inversive, then
each Qm is an E-inversive subsemigroup of S (Result 1.7).

(i). Let (a, b) ∈ ρ and aρ = (m,g), where (m,g) ∈ M × G. Take x = (m,g−1),
where g−1 is a group inverse of g in G. Then clearly xa, xb ∈ N and so (a, b) ∈ ρN

(see Remark 1). Also, aρ = (m,g) = bρ ∈ {m} × G. Hence a, b ∈ Qm, so (a, b) ∈ υ .
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Thus (a, b) ∈ υ ∩ ρN . Consequently, ρ ⊂ υ ∩ ρN . Conversely, let (a, b) ∈ υ ∩ ρN .
Then aρ,bρ ∈ {m} × G (aρ = (m,g1), bρ = (m,g2)), xa, xb ∈ N for some m ∈ M

and x ∈ Qn, where n ∈ M (say xρ = (n, g)), and so (xa)ρ = (nm,gg1). On the other
hand, (xa)ρ ∈ M ×{1G}. Hence g1 = g−1. We may equally well show that g2 = g−1.
Thus (a, b) ∈ ρ. Consequently, ρ = υ ∩ ρN , as exactly required.

(ii). Indeed, ρ = υ ∩ ρN by (i). Define the mapping φ : S/ρ → S/υ × S/ρN by
(aρ)φ = (aυ, aρN) (a ∈ S). Clearly, φ is a monomorphism. We show that φ is surjec-
tive. Let (aυ, bρN) ∈ S/υ × S/ρN . Then a ∈ Qm, where m ∈ M . Take any element
n ∈ N ∩ Qm. Then

(
(nbn)ρ

)
φ = (

(nbn)υ, (nbn)ρN

) = (nυ, bρN) = (aυ, bρN).

(iii). Let m ∈ M . Put Nm = N ∩ Qm. Evidently, Nm is a full, reflexive and closed
subsemigroup of Qm (even if S is an arbitrary semigroup). By Result 1.7, Nm is dense
in Qm. Thus Nm � Qm.

(iv). Let m ∈ M . Define the map φ : Qm/ρNm → S/ρN by (aρNm)φ = aρN

(a ∈ Qm). Clearly, φ is a well-defined homomorphism. Furthermore, if a ∈ S and
n ∈ Nm ⊆ N , then nan ∈ Qm and ((nan)ρNm)φ = (nan)ρN = aρN . Thus φ is sur-
jective. Finally, we show that φ is injective. Let a, b ∈ Qm, (aρNm)φ = (bρNm)φ.
Then (a, b) ∈ ρN , so ax, bx ∈ N for some x ∈ S. Hence for every n ∈ Nm ⊆ N ,
anx, bnx ∈ N . Thus n(anx)n ∈ N ∩ (QmNQm) ⊆ N ∩ Qm = Nm and similarly:
n(bnx)n ∈ Nm. Since na, nb, nxn ∈ Qm, then (na,nb) ∈ ρNm , and so (a, b) ∈ ρNm ,
because n ∈ Nm = kerρNm . �

Corollary 2.3 If the least group congruence exists on a semigroup S, then the re-
lation ψ ∩ σ is the least rectangular group congruence on S. In particular, in any
E-inversive semigroup, ψ ∩ σ is the least rectangular group congruence.

Remark 2 If S is not E-inversive, then the least rectangular group congruence on a
semigroup S may not exist. Indeed, consider the additive semigroup of non-negative
integers N. It is well known that every group congruence on N is of the following
form: ρn = {(k, l) ∈ N × N : n|(k − l)} (n > 0). Further, since N has identity, then
the least matrix congruence on N is the universal relation, so any rectangular group
congruence on N is a group congruence (Theorem 2.2(i)). Consequently, N has no
least rectangular group congruence.

Let C be a class of semigroups which is closed under homomorphic images. Note
that if the least C -congruence ρC on a semigroup S exists, then the interval [ρC , S×S]
consists of all C -congruences on S and it is a complete sublattice of the complete lat-
tice C(S) of congruences on S. Evidently, the class of all groups [rectangular bands]
is closed under homomorphic images. Using Theorem 1.6(iv) one can prove without
difficulty that the class of all rectangular groups has this property. Denote by θ the
least rectangular group congruence on an E-inversive semigroup. In particular, the
intervals [ψ , S × S], [σ , S × S], [θ , S × S] consist of all matrix, group, rectangular
group congruences on an E-inversive semigroup S, respectively, and they are com-
plete sublattices of C(S). Denote them by M C(S), G C(S), RG C(S), respectively.
Clearly, the direct product M C(S) × G C(S) is a complete sublattice of C(S) × C(S)

(see [3, p. 37]).
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For terminology and elementary facts about lattices the reader is referred to the
book [10, Sect. I.2]. The following simple result will be useful (see Lemma I.2.8 and
Exercise I.2.15(iii) in [10]).

Result 2.4 If φ is an order isomorphism of a lattice L onto a lattice M , then φ is
a lattice isomorphism. Moreover, every lattice isomorphism of complete lattices is a
complete lattice isomorphism.

We show that each rectangular group congruence on an E-inversive semigroup
can be expressed as the unique intersection of a group and a matrix congruence.

Theorem 2.5 Every rectangular group congruence on an E-inversive semigroup S is
of the form υ ∩ρN , where υ is a matrix congruence on S, N �S, and this expression
is unique.

Moreover, there exists an inclusion-preserving bijection φ between the complete
lattice M C(S) × G C(S) and the complete lattice RG C(S). In fact, φ is defined by:

(υ,ρN)φ = υ ∩ ρN

for every (υ,ρN) ∈ M C(S) × G C(S). Furthermore, φ −1 is an inclusion-preserving
bijection (by the proof of Theorem 2.2(i)), so φ is an order isomorphism of the com-
plete lattice M C(S) × G C(S) onto the complete lattice RG C(S). Consequently, φ is
a complete lattice isomorphism between the lattices M C(S) × G C(S) and RG C(S),
respectively.

Proof Let ρ be a rectangular group congruence on S. Then ρ is the intersection of
some matrix and some group congruence on S (Theorem 2.2(i)). Next, suppose that
ρ = υ1 ∩ρN1 = υ2 ∩ρN2 , where υi is a matrix congruence on S, Ni �S (i = 1,2). Let
(a, b) ∈ υ1. Since υ1 ∩ υ2 is a matrix congruence on S, then there are idempotents
e, f of S such that (a, e) ∈ υ1 ∩ υ2, (e, f ) ∈ ρN1, (f, b) ∈ υ1 ∩ υ2 (Result 1.7), so
(e, f ) ∈ υ1 ∩ ρN1 = υ2 ∩ ρN2 ⊆ υ2. Hence (a, b) ∈ υ2, i.e., υ1 ⊂ υ2. We may equally
well show the opposite inclusion. Put υ1 = υ2 = υ , so that ρ = υ ∩ ρN1 = υ ∩ ρN2 .
If (a, b) ∈ ρN1 , then (aab, abb) ∈ υ ∩ ρN1 ⊂ ρN2 , so (a, b) ∈ ρN2 (by cancellation).
Hence ρN1 ⊂ ρN2 . By symmetry, ρN2 ⊂ ρN1 . Thus ρN1 = ρN2 , as exactly required.

The second part of the theorem follows directly from the above considerations and
Result 2.4. �

Finally, from Result 1.7 we obtain the following theorem.

Theorem 2.6 Every rectangular group congruence on an E-inversive semigroup S

is uniquely determined by its kernel and trace.

Proof Let ρ1, ρ2 ∈ G C(S),υ1, υ2 ∈ M C(S) be such that ker(υ1 ∩ρ1) ⊂ ker(υ2 ∩ρ2)

and tr(υ1 ∩ ρ1) ⊂ tr(υ2 ∩ ρ2). Then

ker(υ1 ∩ ρ1) = kerυ1 ∩ kerρ1 = S ∩ kerρ1 = kerρ1 ⊂ kerρ2.

In the light of Lemma 1.9, ρ1 ⊂ ρ2. Similarly, we obtain that trυ1 ⊂ trυ2. Hence
υ1 ⊂ υ2 (this follows from the proof of Result 1.7, see [1]). Thus υ1 ∩ ρ1 ⊂ υ2 ∩ ρ2.
This implies the thesis of the theorem. �
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