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Abstract The Ramsey theorem says that for any countably infinite undirected clique
whose edges are colored by a finite number of colors, there is an infinite subclique
whose edges are colored by a single color. In this note, we generalize the theorem to
a situation where the colors form a compact metric space.
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By [A]2 we denote the family of size two subsets of A, interpreted as edges in the
undirected graph with nodes A. If K is a metric space and A is a set, we say that
k ∈ K is the limit of a function f : [A]2 → K if for any ε > 0, there is some finite
subset C ⊆ A such that the image of f , when restricted to [A − C]2, is contained in
the ball of radius ε and center k.

Theorem 1 Let K be a metric compact space, B a countably infinite set, and f :
[B]2 → K . Then there exists a k ∈ K and an infinite subset A ⊆ B such that the
restriction of f to [A]2 has limit k.

Ramsey’s theorem is a special case of the above theorem, when K is equipped
with a discrete metric. The proof is a simple adaptation of the proof of Ramsey’s
theorem.
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Proof Without loss of generality we assume that B = ω. By induction, we will con-
struct a sequence of sequences a0, a1, a2, . . . ∈ Bω, such that an is a subsequence of
an−1. We write an

m for the m-the element of the n-th sequence an.
Let a0

m = m. For n > 0, let an be a subsequence of an−1 such that an
m = an−1

m for
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is convergent to some kn. This subsequence exists because K is compact. Moreover,
we can choose the sequence an so that for all m > n the distance from f ({an

n, an
m})

to kn is at most 1/n.
Let (qn) be a sequence of numbers such that kqn is convergent to some k and

moreover, δ(kqn, k) ≤ 1/n. Define A as {aqn
qn

: n ∈ ω}.
Let n < m. Since aqm is a subsequence of aqn , we have that a
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≤ 1/n + 1/n = 2/n

Since δ(f ({aqn
qn

, a
qm
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}), k) < 2/n, the set A satisfies our claim. �

The theorem assumes that the space K is metric. We show a space K which is
compact but not metric, and where the statement of the theorem fails. Let K be any
compact space where not every sequence has a convergent subsequence. For instance,
K can be an uncountable product of unit intervals. Take some sequence a1, a2, . . . in
K which does not have any convergent subsequence, and define f : [ω]2 → K by
f ({i, j}) = ai . The theorem, when applied to this function f , would imply that there
is a converging subsequence of a1, a2, . . . .

By induction on k, one can generalize the theorem to functions f defined on
k-element subsets.

In the following corollary, we see what happens when K has a semigroup struc-
ture. If x ∈ Kω is a sequence of elements from a semigroup K , we write x[i..j ) for
the multiplication of xi · · ·xj−1.

Corollary 1 If in Theorem 1, the space K has a semigroup structure with contin-
uous multiplication, B = ω, and f is obtained from a sequence x ∈ Kω by setting
f ({i, j}) = x[i..j ), then the limit k is idempotent, i.e. k = k · k.

Proof Apply Theorem 1, yielding a set A = {u1 < u2 < . . .} ⊆ ω. If the action is
continuous, then k is idempotent, since

k · k = lim
n→∞x
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In some papers, e.g. [1], a compact semigroup is a semigroup S with compact
topology such that the mapping t �→ s · t is required to be continuous for each s ∈ S.
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This assumption is weaker than our assumption from Corollary 1 that the action in S

is continuous.
However, the weaker assumption is not sufficient for idempotence of s in Corol-

lary 1. Indeed, consider the semigroup S = {0,1,2, . . . ,ω,ω + 1}, with the ac-
tion a ⊕ b = min(a + b,ω + 1), and the distance δ(a, b) = |f (a) − f (b)|, where
f (n) = 1/(n + 1), f (ω) = 0, f (ω + 1) = −1. This semigroup is a compact semi-
group in the meaning from [1]. Now, let xn = n. If we apply Corollary 1 to x, s has
to be ω, but ω is not idempotent: ω ⊕ ω = ω + 1.
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