ERRATUM

Erratum to: Almost automorphic mild solutions to some classes of nonautonomous higher-order differential equations

Toka Diagana

Received: 3 September 2011 / Accepted: 4 April 2012 / Published online: 4 June 2013 © Springer Science+Business Media New York 2013

Erratum to: Semigroup Forum (2011) 82:455–477 DOI 10.1007/s00233-010-9261-y

In this Note we correct some errors that occurred in our paper [T. Diagana, Almost automorphic mild solutions to some classes of nonautonomous higher-order differential equations. *Semigroup Forum.* **82**(3) (2011), 455–477].

I. It was recently found that Lemma 3.7 in Diagana [1], which is taken from the paper by Goldstein and N'Guérékata [2], contained an error. Indeed, the injection $BC^{1-\beta}(\mathbf{R}, \mathbf{X}_{\alpha}) \hookrightarrow BC(\mathbf{R}, \mathbf{X})$ as stated in both [1] and [2], is in fact not compact and that is crucial for the use of the Schauder fixed point to prove the existence of an almost automorphic solution to Eq. (3.1) appearing in [1]. The above-mentioned issue has been fixed in a recent Note by Goldstein and N'Guérékata [3]. The main objective of this paper is to correct Lemma 3.7 and slightly modify assumptions (H.4)–(H.5) to adapt Theorem 3.8 of [1] to this new setting.

A function $f \in BC(\mathbb{R}, \mathbb{X})$ is said to belong to $AA(\mathbb{X})$ [resp., $AA_u(\mathbb{X})$] if for every sequence of real numbers $(s'_n)_{n \in \mathbb{N}}$ there exists a subsequence $(s_n)_{n \in \mathbb{N}}$ such that

$$\lim_{n \to \infty} f(t + s_n) = g(t), \qquad \lim_{n \to \infty} g(t - s_n) = f(t)$$

pointwise on \mathbb{R} [resp., uniformly on compacts of \mathbb{R}].

Communicated by Jerome A. Goldstein.

The online version of the original article can be found under doi:10.1007/s00233-010-9261-y.

T. Diagana (🖂)

Department of Mathematics, Howard University, Washington, DC 20059, USA e-mail: tdiagana@howard.edu

In contrast with [1], here the space $BC^{\gamma}(\mathbf{R}, \mathbf{X}_{\alpha})$ will be viewed as a locally convex Fréchet space equipped with the following metric (see [3])

$$\Delta(f,g) = \sum_{n=1}^{\infty} 2^{-n} \frac{\rho_n(f,g)}{1 + \rho_n(f,g)}$$

where, for h = f - g,

$$\Delta_n(f,g) = \Delta_n(h,0) = \|h\|_{C[-n,n]} + \gamma \cdot \sup\left\{\frac{\|h(t) - h(s)\|_{\alpha}}{|t-s|^{\gamma}} : t, s \in [-n,n], t \neq s\right\}.$$

Let $GN_{\gamma}(\mathbb{R}, \mathbb{X}_{\alpha})$ be the locally convex Fréchet space $(BC^{\gamma}(\mathbb{R}, \mathbb{X}_{\alpha}), \Delta)$. Lemma 3.7 in [1] should be replaced with

Lemma 0.1 The set $GN_{1-\beta}(\mathbb{R}, \mathbb{X}_{\alpha})$ is compactly contained in $GN_0(\mathbb{R}, \mathbb{X}_{\alpha})$, that is, the canonical injection $id : GN_{1-\beta}(\mathbb{R}, \mathbb{X}_{\alpha}) \hookrightarrow GN_0(\mathbb{R}, \mathbb{X}_{\alpha})$ is compact, which yields

$$id: \mathrm{GN}_{1-\beta}(\mathbb{R}, \mathbb{X}_{\alpha}) \cap AA_u(\mathbb{X}_{\alpha}) \hookrightarrow AA_u(\mathbb{X}_{\alpha})$$

is compact, too.

II. For the matrix $A_l(t)$ in Eq. (4.1) to be decomposed as $A_l(t) = K_l^{-1} J_l(t) K_l(t)$ as stated in [1], one has to suppose that each root ρ_k^l (k = 1, 2, ..., n) of the polynomial $Q_l^l(\cdot)$ in page 457 is of multiplicity one.

III. Consider the following assumptions:

- (h.4) $R(\omega, A(\cdot)) \in AA_u(B(\mathbb{X}_{\alpha})).$
- (h.5) The function $F : \mathbb{R} \times \mathbb{X}_{\alpha} \mapsto \mathbb{X}$ is such that $t \mapsto F(t, u)$ belongs to $AA_u(\mathbb{X})$ for all $u \in \mathbb{X}_{\alpha}$. The function $u \mapsto F(t, u)$ is uniformly continuous on any bounded subset *K* of \mathbb{X} for each $t \in \mathbb{R}$. Finally,

$$||F(t,u)||_{\infty} \leq \mathcal{M}(||u||_{\alpha,\infty}),$$

where $\mathcal{M}: \mathbb{R}^+ \mapsto \mathbb{R}^+$ is a continuous, monotone increasing function satisfying

$$\lim_{r \to \infty} \frac{\mathcal{M}(r)}{r} = 0$$

In view of the above, Theorem 3.8 in [1] should be replaced with

Theorem 0.2 Suppose assumptions (H.1)–(H.2)–(H.3)–(h.4)–(h.5) hold, then the nonautonomous differential equation (3.1) has a mild solution which belongs to $AA_u(\mathbb{X}_{\alpha})$.

References

- Diagana, T.: Almost automorphic mild solutions to some classes of nonautonomous higher-order differential equations. Semigroup Forum 82(3), 455–477 (2011)
- Goldstein, J.A., N'Guérékata, G.M.: Almost automorphic solutions of semilinear evolution equations. Proc. Am. Math. Soc. 133(8), 2401–2408 (2005)
- Goldstein, J.A., N'Guérékata, G.M.: Corrigendum on "Almost automorphic solutions of semilinear evolution equations". Proc. Am. Math. Soc. 140, 1111–1112 (2012)