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Abstract

Let A be the infinitesimal generator of an exponentially stable, strongly
continuous semigroup on the Hilbert space H . Since A−1 is a bounded operator,
it is the infinitesimal generator of a strongly continuous semigroup. In this paper
we show that the growth of this semigroup is bounded by a constant time log(t) .

1. Introduction

Over the last five years there is a growing interest in the behavior of the semi-
group generated by A−1 , where A is the infinitesimal generator of a bounded
semigroup. Note that throughout the paper we assume that A−1 exists as a
closed, densely defined operator. This interest was raised by three questions.
The first one is coming from systems theory, see Curtain [2].

Within infinite-dimensional systems theory one studies the following set
of equations:

ẋ(t) = Ax(t) +Bu(t) x(0) = x0

y(t) = Cx(t) +Du(t), (1)

where A: D(A) ⊂ H → H is the infinitesimal generator of a C0 -semigroup on
the Hilbert space H , B is a bounded linear operator from the Hilbert space
U to the dual of the domain of A∗ , i.e., B ∈ L(U,D(A∗)′), C ∈ L(D(A), Y ),
where Y is a third Hilbert space, and D ∈ L(U, Y ). In [2] the following related
system was introduced:

ẋ1(t) = A−1x1(t) +A−1Bu1(t)

y1(t) = −CA−1x1(t) + (D − CA−1B)u1(t). (2)

This system has the nice property that A−1B ∈ L(U,H), CA−1 ∈ L(H,Y ).
Hence this system is a bounded linear system as studied in the text book
by Curtain and Zwart [3]. Furthermore, the systems (1) and (2) share many
properties. For instance, (1) is input-state stable if and only if (2) is. Here
input-state stability means that for all inputs u ∈ L2((0,∞);U) the solution of
(1) exists and is (uniformly) bounded on [0,∞).
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The only stability property which is not known is the state-state stability,
i.e., if the semigroup generated by A is (strongly) stable if and only if the
semigroup generated by A−1 (strongly) stable.

The second motivation for our problem comes from numerical analysis.
Consider the (abstract) differential equation

ẋ(t) = Ax(t), x(0) = x0. (3)

A standard method for solving this differential equation is by using the Crank-
Nicolson method. In this method the differential equation (3) is replaced by the
difference equation

xd(n+ 1) = (I + ∆A/2)(I −∆A/2)−1xd(n), xd(0) = x(0), (4)

where ∆ is the time step.

If H is finite-dimensional, and thus A is a matrix, then it is easy to
show that the solutions of (3) are bounded if and only if the solutions of (4)
are bounded. In Azizov, Barsukov, and Dijksma [1], Gomilko [4], and in Guo
and Zwart [6], it is shown that the solutions of (4) are bounded if both A
and A−1 generate a uniformly bounded semigroup. The question whether the
uniform boundedness of the semigroup generated by A is sufficient is still open.
The answer to this question will be positive, if the uniform boundedness of the
semigroup generated by A implies the uniform boundedness of the semigroup
generated by A−1 .

The problem whether the inverse of the generator of a bounded semigroup
is again a generator of a bounded semigroup was posed as an open problem by
deLaubenfels in [7]. This serves as our third motivation.

In the above, we assumed that A generates a uniformly bounded semi-
group on a Hilbert space. In Zwart [8] it was shown that if A generates a uni-
formly bounded semigroup on a Banach space, then the growth of exp(A−1t) is
bounded by a constant times 4

√
t . It is even shown that this estimate is sharp,

i.e., there exists a Banach space and a generator of a nilpotent semigroup, such
that ‖ exp(A−1t)‖ = m 4

√
t for some m . In this paper we show that for Hilbert

spaces the situation is less dramatic. In Section 2 we prove that the growth is
always bounded by a constant time log(t). However, before we can prove this,
we need the following result on Lyapunov equations. For the proof we refer to
Curtain and Zwart [3, section 4.1 and 5.1].

Lemma 1.1. Let A , with domain D(A) , generate a strongly continuous
semigroup (exp(At))t≥0 on a Hilbert space H , and let C be a bounded operator
from H to a Hilbert space Y . Then the following are equivalent:

1. There exists an m ≥ 0 such that for all x ∈ D(A) there holds

∫ ∞
0

‖C exp(At)x‖2 dt ≤ m‖x‖2.
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2. There exists a self-adjoint, non-negative Q ∈ L(H) such that

〈Ax,Qz〉H + 〈Qx,Ay〉H = −〈Cx,Cz〉Y , x, z ∈ D(A). (5)

3. There exists a self-adjoint, non-negative Q ∈ L(H) such that QD(A) ⊂
D(A∗)

A∗Q+QA = −C∗C on D(A). (6)

Furthermore, the following additional results hold:

1. If item 2. or 3. holds, then 〈x,Qy〉 ≥
∫∞

0
〈C exp(At)x,C exp(At)y〉 dt for

all x, y ∈ H , where equality holds if exp(At) is strongly stable, i.e. when
limt→0 exp(At)x = 0 for all x ∈ H .

2. If item 1. holds, then one can choose Q as

〈x,Qy〉 =

∫ ∞
0

〈C exp(At)x,C exp(At)y〉 dt, x, y ∈ H.

2. New results on bounded semigroups

We begin with a lemma which is based on Lemma 1.1.

Lemma 2.1. Let A generate a bounded C0 -semigroup exp(At) on a Hilbert
space H , and let M equal supt≥0 ‖ exp(At)‖ . Then for all ε > 0 , γ > 0 , and
all x ∈ H , we have that

∫ ∞
0

‖(γA− εI)−1 exp((γA− εI)−1t)x‖2 dt ≤M2‖x‖2 1

2ε
.

The same estimate holds for the adjoint.

Proof. Since ‖ exp(At)‖ is bounded by M , we have that for γ, ε > 0

∫ ∞
0

‖ exp((γA− εI)t)x0‖2 dt ≤
M2

2ε
‖x0‖2.

Hence by Lemma 1.1, there exists a non-negative bounded operator Qγ,ε satis-
fying Qγ,εD(A) ⊂ D(A∗),

(γA− εI)∗Qγ,ε +Qγ,ε(γA− εI) = −I on D(A), (7)

and ‖Qγ,ε‖ ≤ M2

2ε .

Multiplying this equation from the right by (γA − εI)−1 and from the
left by

(
(γA− εI)−1

)∗
= (γA∗ − εI)−1 , we obtain

(γA∗ − εI)−1Qγ,ε +Qγ,ε(γA− εI)−1 = −(γA∗ − εI)−1(γA− εI)−1. (8)
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By Lemma 1.1 this implies that

∫ ∞
0

‖(γA− εI)−1 exp((γA− εI)−1t)x‖2 dt ≤ 〈x,Qγ,εx〉 ≤
M2

2ε
‖x‖2

which proves the result.

Using this lemma, we obtain a growth estimate for the semigroup gener-
ated by (γA− I)−1 .

Theorem 2.2. Let A be the infinitesimal generator of the bounded semi-
group (exp(At))t≥0 on the Hilbert space H , and let M = supt≥0 ‖ exp(At)‖ .
Then for all γ > 0 ,

‖ exp((γA− I)−1t)‖ ≤




1 + M√
2

√
e+ M2(e−1)

2
√
e

log(t) t ≥ e
1 + M√

2

√
t t ∈ [0, e].

(9)

Proof. The proof consists out of several steps. The estimate on [0, e] is
proved in Step 1. In the second step we compare the semigroups exp((γA −
ε1I)

−1t1) and exp((γA− ε2I)−1t1). This is used in the third step to compare
exp((γA − I)−1t1) and exp((γA − e−NI)−1t1), for N ∈ N . In the last step,
we combine step 3 with step 1, and derive the estimates in (9) on [e,∞).

Step 1. For t ∈ R we have that

exp((γA− I)−1t)x = x+

∫ t

0

(γA− I)−1 exp((γA− I)−1s)x ds.

Using Cauchy-Schwarz, and Lemma 2.1 we find

‖ exp((γA− I)−1t)x‖ ≤ ‖x‖+
√
t
M√

2
‖x‖.

Thus we have proved the estimate on [0, e] .

Step 2. Let t1 > 0 be fixed, then by the variation of constant formula, we find

exp((γA− ε1I)−1t1)x− exp((γA− ε2I)−1t1)x

=

∫ t1

0

exp((γA− ε1I)−1(t1 − s))
[
(γA− ε1I)−1 − (γA− ε2I)−1

]

× exp((γA− ε2I)−1s)x ds. (10)

Since

(γA− ε1I)−1 − (γA− ε2I)−1 = (γA− ε1I)−1 [ε1 − ε2] (γA− ε2I)−1,
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we can use Lemma 2.1, to find that

〈y, exp((γA− ε1I)−1t1)x− exp((γA− ε2I)−1t1)x〉

=

∫ t1

0

〈y, exp((γA− ε1I)−1(t1 − s))(γA− ε1I)−1 ·

[ε1 − ε2] exp((γA− ε2I)−1s)(γA− ε2I)−1x〉 ds

= [ε1 − ε2]

∫ t1

0

〈exp((γA∗ − ε1I)−1(t1 − s))(γA∗ − ε1I)−1y,

exp((γA− ε2I)−1s)(γA− ε2I)−1x〉 ds

≤ |ε2 − ε1|
M2

2
√
ε2 · ε1

‖x‖‖y‖,

where we have used the Cauchy-Schwarz inequality. Since the norm of an

operator S equals supx,y �=0
|〈y,Sx〉|
‖x‖‖y‖ , we find that

‖ exp((γA− ε1I)−1t1)− exp((γA− ε2I)−1t1)‖ ≤ |ε2 − ε1|
M2

2
√
ε2 · ε1

. (11)

Step 3. Let N ∈ N be given and choose εn = e−n, n ∈ {0, 1, 2, . . . , N} . Then

‖ exp((γA− e−NI)−1t1)− exp((γA− I)−1t1)‖

= ‖
N∑
n=1

exp((γA− e−nI)−1t1)− exp((γA− e−n+1I)−1t1)‖

≤
N∑
n=1

e− 1

2
√
e
M2, (12)

where we have used (11). Hence we have that

‖ exp((γA− e−NI)−1t1)− exp((γA− I)−1t1)‖ ≤ M
2(e− 1)

2
√
e

N. (13)

Step 4. Let t ∈ [e,∞) and choose N ∈ N such that eN ≤ t < eN+1 .
Furthermore, define t1 as t ∗ e−N . By the definition of N , we see that 1 ≤
t1 < e .

Since exp((γA − I)−1t) = exp((e−NγA − e−NI)−1t1) we have that, see
(13),

‖ exp((γA− I)−1t)− exp((e−NγA− I)−1t1)‖ ≤ M2(e− 1)

2
√
e

N

≤ M2(e− 1)

2
√
e

log(t). (14)
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Now since t1 ∈ [1, e) we may use step 1. to majorize exp((e−NγA − I)−1t1).
Doing so, we find

∥∥exp((e−NγA− I)−1t1)
∥∥ ≤ 1 +

√
t1
M√

2
≤
[
1 +M

√
e√
2

]
.

Combining this with (14), proves (9).

From this theorem we derive two corollaries. Since the inverse generator
of an exponentially stable semigroup is a bounded operator, it is clear that this
inverse is the infinitesimal generator of a strongly continuous semigroup. In the
first corollary we show that this semigroup can grow at most like the logarithm
of t .

If A generates a bounded semigroup, then it is not a priori clear whether
A−1 generates a strongly continuous semigroup, even when A−1 exists as a
closed and densely defined operator. A natural approach to this problem, would
be to consider A− εI , and letting ε approach zero. In the second corollary, we
show that we only have the estimate ‖ exp((A−εI)−1)‖ = O(| log(ε)|) for ε ↓ 0.
Hence we cannot conclude that A−1 is the generator of a strongly continuous
semigroup.

Corollary 2.3. Let A generate a strongly continuous semigroup (exp(At))t≥0

on a Hilbert space H . Assume further that this semigroup is exponentially stable
and satisfies ‖ exp(At)‖ ≤Me−ωt with M ≥ 1 and ω > 0 . Then

‖ exp(A−1t)‖ ≤




1 + M√
2

√
e+ M2(e−1)

2
√
e

log(t/ω) t ≥ eω

1 + M√
2

√
t
ω t ∈ [0, eω].

(15)

Proof. We define A0 as A0 = A + ωI . By the assumptions it is clear that
A0 generates a semigroup on H which is uniformly bounded by M . Simple
manipulation gives

exp(A−1t) = exp((A0 − ωI)−1t) = exp((ω−1A0 − I)−1tω−1). (16)

Using Theorem 2.2 gives the desired result.

Hence if A generates an exponentially stable semigroup, then exp(A−1t)
can grow at most like log(t). We remark that similar result holds for the powers
of Ad = (A+ I)(A− I)−1 , see Gomilko [4].

Corollary 2.4. Let A be the infinitesimal generator of a strongly continuous
semigroup on the Hilbert space H . Assume that the semigroup is uniformly
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bounded by M . For ε ∈ (0, e−1) we have that

‖ exp((A− εI)−1)‖ ≤ 1 +
M√

2

√
e+

M2(e− 1)

2
√
e
| log(ε)| (17)

Proof. We have that

exp((A− εI)−1) = exp((ε−1A− I)−1ε−1)

Applying Theorem 2.2 proves the assertion.

From the above result, we conclude that the problem whether A−1 gen-
erates a strongly continuous semigroup is still open. In [5] Gomilko shows that
by putting some additional conditions on the resolvent of A the operator A−1

generates a uniformly bounded, strongly continuous semigroup.

Acknowledgments

The author would like to express his thanks to Alexander Gomilko and Yuri
Tomilov for the useful discussions we had regarding this paper.

References

[1] Azizov, T. Ya., A. I. Barsukov and A. Dijksma, Decompositions of a
Krein space in regular subspaces invariant under a uniformly bounded C0 -
semigroup of bi-contractions, Journal of Functional Analysis 211 (2004),
324–354.

[2] Curtain, R. F., Regular linear systems and their reciprocals: applications to
Riccati equations, Systems and Control Letters 49 (2003), 81–89.

[3] Curtain, R. F., and H. J. Zwart, “An introduction to Infinite-Dimensional
Linear Systems Theory”, Springer-Verlag, New York, 1995.

[4] Gomilko, A. M., The Cayley transform of the generator associated with
a uniformly bounded C0 -semigroup of operators, Ukrainian Mathematical
Journal 56(8) (2004), 1018–1029 (in Russian); English translation, pp. 1212–
1226.

[5] Gomilko, A. M., On the inverse of the generator of a bounded C0 -semigroup,
Funktional’nyi Analiz i Ego Prilozheniya 38(4) (2004), 6–12 (in Russian);
English translation, Functional Analysis and its Applications 38(4) (2004),
243–248.

[6] Guo, B. Z., and H. Zwart, On the relation between stability of continuous-
and discrete-time evolution equations via the Cayley transform, IEOT 54
(2006), 349–383.



494 Zwart

[7] deLaubenfels, R., Inverses of generators, Proc. AMS 104(2) (1988), 443–
448.

[8] H. Zwart, Is A−1 an infinitesimal generator?, Banach Center Publications
(to appear).

Department of Applied Mathematics
University of Twente
P.O. Box 217
7500 AE Enschede
The Netherlands
h.j.zwart@math.utwente.nl

Received April 26, 2006
and in final form December 10, 2006
Online publication May 2, 2007


