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Abstract

Let A be the infinitesimal generator of an exponentially stable, strongly
continuous semigroup on the Hilbert space H. Since A~! is a bounded operator,
it is the infinitesimal generator of a strongly continuous semigroup. In this paper
we show that the growth of this semigroup is bounded by a constant time log(¢) .

1. Introduction

Over the last five years there is a growing interest in the behavior of the semi-
group generated by A~!, where A is the infinitesimal generator of a bounded
semigroup. Note that throughout the paper we assume that A~! exists as a
closed, densely defined operator. This interest was raised by three questions.
The first one is coming from systems theory, see Curtain [2].

Within infinite-dimensional systems theory one studies the following set
of equations:

(t) = Axz(t)+ Bu(t) x(0) =z
y(t) = Cxz(t) + Du(t), (1)

where A: D(A) C H — H is the infinitesimal generator of a Cj-semigroup on
the Hilbert space H, B is a bounded linear operator from the Hilbert space
U to the dual of the domain of A*, ie., B € L(U, D(A*)), C € L(D(A),Y),
where Y is a third Hilbert space, and D € £(U,Y). In [2] the following related
system was introduced:

i‘l(t) Ailxl(t) + AilBul(t)
yl(t) = —CAflxl(t) + (D - CAle)ul(t) (2)

This system has the nice property that A='B € L(U,H),CA~! € L(H,Y).
Hence this system is a bounded linear system as studied in the text book
by Curtain and Zwart [3]. Furthermore, the systems (1) and (2) share many
properties. For instance, (1) is input-state stable if and only if (2) is. Here
input-state stability means that for all inputs u € L?((0,00);U) the solution of
(1) exists and is (uniformly) bounded on [0, c0).
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The only stability property which is not known is the state-state stability,
i.e., if the semigroup generated by A is (strongly) stable if and only if the
semigroup generated by A~! (strongly) stable.

The second motivation for our problem comes from numerical analysis.
Consider the (abstract) differential equation

#(t) = Ax(t),  2(0) = o. (3)

A standard method for solving this differential equation is by using the Crank-
Nicolson method. In this method the differential equation (3) is replaced by the
difference equation

zq(n+1) = (I +AA/2)(I — AA/2)  aq(n), xq(0) = z(0), (4)

where A is the time step.

If H is finite-dimensional, and thus A is a matrix, then it is easy to
show that the solutions of (3) are bounded if and only if the solutions of (4)
are bounded. In Azizov, Barsukov, and Dijksma [1], Gomilko [4], and in Guo
and Zwart [6], it is shown that the solutions of (4) are bounded if both A
and A~! generate a uniformly bounded semigroup. The question whether the
uniform boundedness of the semigroup generated by A is sufficient is still open.
The answer to this question will be positive, if the uniform boundedness of the
semigroup generated by A implies the uniform boundedness of the semigroup
generated by A~!.

The problem whether the inverse of the generator of a bounded semigroup
is again a generator of a bounded semigroup was posed as an open problem by
deLaubenfels in [7]. This serves as our third motivation.

In the above, we assumed that A generates a uniformly bounded semi-
group on a Hilbert space. In Zwart [8] it was shown that if A generates a uni-
formly bounded semigroup on a Banach space, then the growth of exp(A~1t) is
bounded by a constant times v/t. It is even shown that this estimate is sharp,
i.e., there exists a Banach space and a generator of a nilpotent semigroup, such
that || exp(A~'t)|| = m+/t for some m. In this paper we show that for Hilbert
spaces the situation is less dramatic. In Section 2 we prove that the growth is
always bounded by a constant time log(t). However, before we can prove this,
we need the following result on Lyapunov equations. For the proof we refer to
Curtain and Zwart [3, section 4.1 and 5.1].

Lemma 1.1.  Let A, with domain D(A), generate a strongly continuous
semigroup (exp(At)),~, on a Hilbert space H , and let C' be a bounded operator
from H to a Hilbert space Y . Then the following are equivalent:

1. There exists an m > 0 such that for all x € D(A) there holds

/|mwmmmwﬁgmmm
0
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2. There exists a self-adjoint, non-negative Q € L(H) such that

(Az,Qz)g + (Qx, Ayyy = —(Cx,C2)y, x,z € D(A). (5)

3. There ezists a self-adjoint, non-negative Q@ € L(H) such that QD(A) C
D(A*)
A'Q+ QA =-C*C on D(A). (6)

Furthermore, the following additional results hold:

1. Ifitem 2. or 3. holds, then (x,Qy) > fOOO<C’ exp(At)zx, C exp(At)y) dt for
all z,y € H, where equality holds if exp(At) is strongly stable, i.e. when
lim; g exp(At)x =0 for all x € H.

2. If item 1. holds, then one can choose Q as
@) = | (Com(ane, Coxplag) i, wyeH.
0

2. New results on bounded semigroups
We begin with a lemma which is based on Lemma 1.1.

Lemma 2.1.  Let A generate a bounded Cy-semigroup exp(At) on a Hilbert
space H, and let M equal sup,>, || exp(At)||. Then for all ¢ >0, v >0, and
all x € H, we have that

> 1
/ I(yA = eI)™  exp((yA — eI)"'t)z | dt < M2||96||22—5~
0

The same estimate holds for the adjoint.

Proof.  Since || exp(At)| is bounded by M, we have that for v,e >0

* 2 M2 2
| lesp(tra = enpialP it < G-

Hence by Lemma 1.1, there exists a non-negative bounded operator Q) . satis-
fying Q,.D(A) C D(A"),

(YA—el)* Qe+ Qye(vA—cl)=—I on D(A), (7)
2
and [|Qy.c] < &
Multiplying thig equation from the right by (yA —eI)~! and from the
left by ((yA—el)™!)" = (yA* —el)™!, we obtain

(VA" — SI)ilQ'y,a + Qye(vA - el)t=—(yA" —el) Tt (yA —el) (8)
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By Lemma 1.1 this implies that

2

> M
| 1A= D) expl(ra = 1) egal e < (0,Qs.c0) < Gl
0

which proves the result. ]

Using this lemma, we obtain a growth estimate for the semigroup gener-
ated by (yA — 1)1,

Theorem 2.2.  Let A be the infinitesimal generator of the bounded semi-
group (exp(At)),s, on the Hilbert space H, and let M = sup,s || exp(A?)].
Then for all v >0,

X 1+ e+ Mt og(t) t>e
[exp((vA = 1) 1) < ’ ‘ (9)
1+ 5Vt te0,¢].

Proof.  The proof consists out of several steps. The estimate on [0, €] is
proved in Step 1. In the second step we compare the semigroups exp((vA —
e11)71t1) and exp((yA — eal)~1;). This is used in the third step to compare
exp((yA — I)7't;) and exp((yA — e NI)~';), for N € N. In the last step,
we combine step 3 with step 1, and derive the estimates in (9) on [e, c0).

Step 1. For t € R we have that

exp((’yA—I)*lt)x::ch/o (YA —T)"texp((yA — I)"'s)z ds.

Using Cauchy-Schwarz, and Lemma 2.1 we find
M

lexp((vA = I) "' )z || < ||| + \/i\/i

[]]-

Thus we have proved the estimate on [0, €].
Step 2. Let t1 > 0 be fixed, then by the variation of constant formula, we find
exp((YA — e1]) " 't1)x — exp((yA — e2]) "'ty
_ /Otl exp((vA — 1) (t1 — ) [(7A — 1) — (A — exD) 7]
x exp((yA — e2I) " !s)x ds. (10)
Since

(YA—eil) ™t = (A —eaD) ' = (yA —er) o1 —ea] (WA — e2D) 7,



ZWART 491

we can use Lemma 2.1, to find that
(y,exp((vA — e1d) M)z — exp((yA — e2l) " H)z)
= /Ot1 (y,exp((vA —er]) " (t1 — 5))(vA —er]) ™!
[e1 — 2] exp((yA — eol) " 1s) (YA — exI) ) ds
=l —aal [ (A" — ey - A" )y
exp((’yA — o) Tls) (YA — e2I) " ta) ds

11yl

< leg —

|2¢_

where we have used the Cauchy-Schwarz inequality. Since the norm of an
operator S equals sup, , o %, we find that

M2
2‘/82 €1 ’

Step 3. Let N € N be given and choose ¢, =e ", n € {0,1,2,...,N}. Then

| exp((vA — e1I) ™ t1) — exp((YA — e21) ') || < |e2 — &1 (11)

lexp((yA — e NI)7't1) — exp((yA — 1)~ 't1) |

N
=Y exp((vA — e 1)~ ty) — exp((yA — e ") M)

N
e—1
< M? 12
S (12
where we have used (11). Hence we have that
M?%*(e—1
Jexp((rd - e ) ) —exp((vd = 1))l < SN 9

Step 4. Let t € [e,00) and choose N € N such that eV < ¢t < eN*tL
Furthermore, define t; as t* e~ . By the definition of N, we see that 1 <
t1 <e.

Since exp((yA — I)7't) = exp((e " VvA — e~ N1)~'t;) we have that, see

(13),
2(p _
lesp((rd = 710 - expl(e ¥0A = )| < HE N
M?(e—1)

< NG log(t). (14)
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Now since t; € [1,e) we may use step 1. to majorize exp((e"NyA — I)71t).
Doing so, we find

1 M e
Hexp((e_NvA—I)_ t1)H < 1+\/Eﬁ < [1 +M%} .

Combining this with (14), proves (9). n

From this theorem we derive two corollaries. Since the inverse generator
of an exponentially stable semigroup is a bounded operator, it is clear that this
inverse is the infinitesimal generator of a strongly continuous semigroup. In the
first corollary we show that this semigroup can grow at most like the logarithm
of t.

If A generates a bounded semigroup, then it is not a priori clear whether
A~ generates a strongly continuous semigroup, even when A~! exists as a
closed and densely defined operator. A natural approach to this problem, would
be to consider A — eI, and letting £ approach zero. In the second corollary, we
show that we only have the estimate || exp((A—el)~1)|| = O(]log(e)|) for £ | 0.
Hence we cannot conclude that A~! is the generator of a strongly continuous
semigroup.

Corollary 2.3. Let A generate a strongly continuous semigroup (exp(At)),,
on a Hilbert space H . Assume further that this semigroup is exponentially stable
and satisfies || exp(At)|| < Me " with M > 1 and w > 0. Then

1+ e+ MM log(t/w)  t> ew

1+%¢§ te [0, ew.

Proof. We define Ag as Ag = A + wl. By the assumptions it is clear that
Ag generates a semigroup on H which is uniformly bounded by M. Simple
manipulation gives

lexp(A~"H)] < (15)

exp(A™') = exp((Ag — wl)7't) = exp((w™ ' 4g — ) Htw ™). (16)

Using Theorem 2.2 gives the desired result. ]

Hence if A generates an exponentially stable semigroup, then exp(A~'t)
can grow at most like log(¢). We remark that similar result holds for the powers
of Ag=(A+1I)(A—1I)"1, see Gomilko [4].

Corollary 2.4.  Let A be the infinitesimal generator of a strongly continuous
semigroup on the Hilbert space H. Assume that the semigroup is uniformly
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bounded by M. For ¢ € (0,e™') we have that

M?(e—1)

lesp((A—eD) ) <1+ 2 Vet NG

NG | log(e)] (17)

Proof. We have that
exp((A—el)™H) =exp((etA - 1)t

Applying Theorem 2.2 proves the assertion. ]

From the above result, we conclude that the problem whether A~! gen-
erates a strongly continuous semigroup is still open. In [5] Gomilko shows that
by putting some additional conditions on the resolvent of A the operator A~!
generates a uniformly bounded, strongly continuous semigroup.
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