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demand and decrease pollution. This thermal energy can be 
stored and delivered back when needed.

Latent heat thermal energy storage (LHTES) has 
become interesting to store thermal energy with a high 
storage density in a small temperature range. However, the 
low charging and discharging power of these units is due 
to the poor thermal conductivity of the phase change mate-
rial (PCM) [2]. Macro-encapsulation of PCM may enhance 
the thermal distribution in thermal storage units by increas-
ing the heat transfer area between the heat transfer fluid 
(HTF) and PCM. Macro-encapsulated PCM are already 
installed in different applications like ventilated façade 
[3], thermal storage units [4] etc. But different experi-
mental set-ups are required to investigate and improve the 
efficiency of a thermal storage system. Therefore numeri-
cal modelling and simulation is employed to improve the 
efficiency and to reduce experimental efforts. Different 
simplified approaches exist to analyse macro-encapsulated 
PCM but they are limited to specific applications and are 
also less accurate in predicting the performance of thermal 
storage units. Computational fluid dynamics (CFD) simu-
lations allow a more detailed view on the melting within 
macro-capsules. Therefore, Asako et al. [5], Assis et al. [6] 
and Rösler [7] developed different CFD models to study 
the melting of a PCM with settling in a capsule. In gen-
eral, modelling the moving inter-facial boundary in melting 
and solidification has been of greater importance in many 
industrial and research applications. The Eulerian fixed 
grid approach is most common to model moving boundary 
interfaces for a solid–liquid phase change. Crank [8] deliv-
ered an initial idea of modelling moving boundary prob-
lems by considering just the diffusion in a phase change 
problem. Later different researchers have developed effi-
cient methods of computing phase change problems includ-
ing the convection in the liquid phase [9–11]. Solid–liquid 
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are contemporary due to better efficiency during charging 
and discharging. This article focuses on numerical model-
ling of the melting process in a macro-encapsulated PCM. 
Accounting the non-linear enthalpy–temperature relation 
and ramping down the velocity in solid phase is therefore 
fundamental. In the present article the variable viscosity 
method is implemented to ramp down the solid velocity 
and allow settling of the solid phase. This complete numer-
ical model of melting and settling of PCM in a capsule is 
implemented in OpenFOAM. The numerical results for dif-
ferent solid viscosities are validated with experiments and 
show good agreement. The influence of the solid viscosity 
value and the pressure–velocity convergence is studied. It 
is observed that the pressure–velocity convergence only 
plays a greater role in the case where the computation of 
the exact solid velocity is required.

1  Introduction

Statistics reveal that the global energy demand is set to 
grow by 37% until 2040 [1]. This increasing requirement 
and the decrease in production of fossil fuels challenge 
industries and scientists to produce clean renewable energy 
to meet this deficit. Reusing waste heat released as a bi-
product during an industrial process may help to meet the 
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phase change phenomena contain three phases namely 
solid, liquid and mushy i.e. the interface where both liquid 
and solid coexist. Therefore taking the non-linear enthalpy 
and temperature relation into account is a challenging task. 
A few iterative approaches have been employed to solve 
the temperature–enthalpy coupling [10, 12, 13]. Apart from 
modelling the non-linear enthalpy and temperature rela-
tionship ramping down velocity in the solid phase is also 
required. Methods used to ramp down solid velocities are 
generally called velocity switch-off techniques.

The velocity overwrite approach proposed by Mor-
gan [9] overwrites the computed velocity in the cell with 
solid PCM [14]. Abrupt change in the phase change at a 
very small temperature range can produce instabilities in 
this approach. In the porosity approach, the discharge flux 
from Darcy law is implemented in the momentum equation 
as a source term [12]. The source term takes a very large 
value in cells with full solid phase and zero in cells with 
full liquid phase and thereby ramps down the velocity in 
the solid phase. Gartling [11] proposed the variable viscos-
ity method (VVM) on considering viscosity, µ as a func-
tion of temperature. Viscosity is generally associated with 
fluids but in this method the solid phase is proposed to have 
higher viscosity values. The finite volumes with only solid 
phase show a very high resistance to the inertial forces due 
to the consideration of a large viscosity. The suitable equa-
tion proposed by Voller et al. [14] is

where B is a large constant, µl is the viscosity of the liquid 
phase, L is the latent heat value and Hl is the enthalpy of the 
fluid phase in a finite volume. In contrast to the most appli-
cations the solid PCM is not fixed within macro-capsules 
and settles down during melting, resulting in close con-
tact melting. To take account of the settling Assis et al. [6] 
implemented a low Darcy term value. Therefore, the veloc-
ity in the solid PCM is not suppressed completely resulting 
in a slow settling solid. Due to the low Darcy constant the 
melting front of the PCM in the capsule is affected, as it 
influences the melting rate. Later Rösler [7] implemented 
a Darcy term value with a settling velocity as an additional 
source term. Whereby, the settling velocity is calculated 
by an equilibrium force balance of the gravitational force 
and the pressure on the solid surface earlier proposed by 
Asako et  al. [5] to reduce the computational effort. Later 
Ghasemi and Molki [15] have studied the influence of the 
dimensionless numbers influencing the solid settling. But, 
instabilities can occur due to the forced settling model dur-
ing a dynamic melting rate influenced by solid settling. 
Therefore, this article does not only discuss the implemen-
tation of VVM with solid settling but also its convergence 
and influence on the melting rate.

(1)µ = µl + B[L − Hl].

2 � Numerical model

The governing Navier–Stokes equations to solve incom-
pressible flow considering the Bousinessq approximation 
are [16]

Conservation of mass:

Conservation of momentum:

Conservation of energy:

The source term SB which is equal to ρgβ(T − Tref ) rep-
resents the change in density ρ causing natural convection 
is implemented through the Bousinessq approximation 
[17]. Whereas u is the velocity, p is the pressure, t is the 
time, Si is an additional source term used to represent any 
added forces in a physical phenomenon and β is the expan-
sion coefficient of liquid relevant to a reference tempera-
ture Tref  . In the energy equation, T is the temperature, κ the 
thermal conductivity and H the total enthalpy.

2.1 � Enthalpy–temperature

The non-linear relation between the total enthalpy and tem-
perature is approximated by a piecewise linear function as 
depicted in Fig. 1.

The total enthalpy in Eq. 4 can be segregated as sensible 
and latent heat, Voller and Prakash [10] proposed rearranging 
them as

where c is the specific heat capacity of the PCM, which is 
equal to cs · αs + cl · αl. Here, cs and cl are the specific heat 
capacities of solid and liquid PCM respectively. Within the 
source based fictitious method discussed in this article, see 
Voller and Prakash [10] the latent heat is expressed as

Here αl is the volume fraction of liquid PCM and the solid 
volume fraction αs is equal to 1− αl. The lower and upper 
limits of the melting temperature are Ts and Tl respectively. 
The rearranged energy equation reads [10]

(2)∇ · u = 0

(3)ρ

[

∂u

∂t
+ u · ∇u

]

+∇p = µ�u+ SB + Si

(4)ρ

[

∂H

∂t
+∇ · (uH)

]

= ∇ · (κ∇T)

(5)H = cT + Hl

(6)Hl =







L, T > Tl
L · αl, Tl ≥ T ≥ Ts
0, T < Ts.







(7)ρ

[

∂cT

∂t
+∇ · (ucT)

]

= ∇ · (κ∇T)−

[

∂ρHl

∂t
+∇ · (ρuHl)

]

.
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In the source based method, the term 

[

∂ρHl

∂t
+∇ · (ρuHl)

]

 

is the latent heat source term computed and corrected using 
an iterative approach [13]. The discretized form of Eq.  7 
considering Eq. 5 is

In this discretized equation, P is the node of the control vol-
ume calculated, NB represents the neighbouring cells of the 
node P, ψNB is equal to 

∑

aNBT
n+1
NB  which is the product 

of aNB, the coefficients in the discretized energy equation 
at neighbouring nodes to node P and Tn+1

NB , the temperature 
neighbour to the node P, aP is the coefficients in the discre-
tized energy equation at node P, n+ 1 is the present time 
step, n is the old time step and V is the volume of the com-
puting cell. After every iteration the liquid volume fraction is 
updated through the calculated temperature [13, 18]. The liq-
uid fraction of the fluid is updated by

In the Eq. 9, URF is the under relaxation factor to relax the 
iteration steps. It should be noted here that the choice of the 
URF influences the stability and accuracy of the solution and 
its value lie between 0 and 1. Equations 8 and 9 are iterated in 
a loop till convergence [18]. The correction bounds the vol-
ume fraction of the liquid between 0 and 1 [13]. In this way 
the total enthalpy is conserved between its latent and sensible 
parts maintaining the non-linearity with temperature.

2.2 � Modelling solid settling

Modelling solid–liquid phase change also demands ramp-
ing down solid velocity i.e., the velocity in the solid phase. 

(8)[aP + (ρcV)P]T
n+1

P
= (ρcV)PT

n

P
+ (ρLV)(αn+1

− αn)+ ψNB.

(9)(αl)
n+1
p = (αl)

n
p + URF ·

c

L
· (Tn+1

p − Tn
p ).

In general, viscosity is defined as the ability of a fluid to 
resist the inertial forces due to gradual deformation by 
shear and tensile stresses [19]. In the VVM, the ability of 
the solid to resist the inertial forces is defined as a very 
large value i.e., a very high viscosity. The cell volumes 
containing a solid phase with very high viscosity values 
will resist all possible inertial forces in the cell volume due 
to which the solid movement is obstructed. This method 
is a stable approach due to its mean value implicitly com-
puted from the cell faces [20]. The discretized form of the 
viscous term in the transport equation is as below [20] and 
pictorially represented in Fig. 2:

where φ is a conserved quantity, S is the surface area of the 
finite volume cell, f are cell faces i.e., the surfaces enclos-
ing the control volume and also the surfaces in contact with 
the neighbouring cells and Γ  the diffusive scalar quantity. 
The relevant discretization scheme can be used in order to 
discretize the viscous term in the equation. A more appro-
priate form to compute the viscosity would be the harmonic 
mean of the values in cells [14]. However, the stability is 
also due to the interpolation schemes of the viscous term 
and cannot be generalized. The stability of the process is 
also influenced by the mean viscosity which is computed 
from each neighbouring cell and face in contact with the 
P as shown in Eq.  10 where Γ  is µ in the momentum 
equation:

where P is the computing cell and NB and the computing 
cell P.

The relation between temperature and viscosity can 
be represented using various functions. The fluxes on the 
phase change interface i.e., the mushy zone, influence the 
nature of the melting. The piecewise linear approach con-
sidered in this article defines the total viscosity as fractions 
of solid and liquid viscosity. The viscosity µ in the momen-
tum Eq. 3 reads

(10)

∫

V

∇ · (Γ∇φ)dV =

∫

S

dS · (Γ∇φ) ≈
∑

f

Γf (S · ∇f φ)

(11)
µP =

∑

f

µf

Fig. 1   Total enthalpy versus temperature of PCM over a phase 
change domain

Fig. 2   Finite volume discretization and approximation of viscous 
term in a finite volume cell [21]
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In Eq. 12, viscosity is considered as a very large value in 
the full solid phase and experience a linear declination in 
the fluid phase as shown in Fig. 3.

In the VVM the shear velocity in the flow is restricted by 
a large viscosity value in the mushy zone and solid phase. 
The shear velocity is ramped down due to the viscous term 
of the momentum equation,

The source term Fi in Eq. 13 is a source term implemented 
to enhance the natural convection and settling of solid due 
to the density difference:

with

and

where ρs and ρl are the densities of the solid and liquid 
PCM respectively. Total density in a cell ρi in Eq.  14 is 
variable whereas ρ in Eq. 13 is constant. The source term 
Fi is implemented in the pressure–velocity loop implicitly. 
Settling of solid in a melting process can be accounted by 
correcting and iterating the pressure–velocity loop [5, 22]. 
Asako et al. [5] defined the settling force of the solid in a 
melting phenomena with an equilibrium equation which is 
the sum of inertia, gravity, pressure and shear forces. In this 
article implementation of the settling force from equilib-
rium equation see [5], is refrained. But the settling of the 
solid is enhanced by iterating the pressure–velocity loop in 
the momentum equation.

(12)µ = αl · µl + αs · µs.

(13)ρ

[

∂u

∂t
+ u · ∇u

]

+∇p = µ�u+ Fi.

(14)Fi = ρi ·
−→g

ρi = αl · ρl · (1− β�T)+ αs · ρs

�T = max[(T − Tl), 0]

The complete numerical model is implemented in an 
open source C++ finite volume library OpenFOAM-2.2.2. 
A combination of semi-implicit method for pressure linked 
equations (SIMPLE) [16] and pressure implicit with split-
ting of operator (PISO) [23] namely PIMPLE algorithm 
is used to solve the segregated pressure and velocity 
equations.

3 � Numerical setup and problem definition

A relevant computational grid of the geometry is neces-
sary to simulate the developed model. Different computa-
tional grids have been tested to achieve a grid independent 
solution. The cubical cavity 40  mm ×  40  mm ×  40  mm 
with a geometrical grid consisting of 10,000 cell volumes 
assigned 100 ×  100 ×  1 cells is selected for the present 
work. In the simulations the front and back boundaries of 
the cubical cavity are considered symmetric. Due to the 
symmetric front and back boundaries the geometry is a 
virtual 2D geometry contributing 1 cell in z-direction. The 
PCM RT35HC from Rubitherm [24] is considered in both, 
numerical simulations and experiments. The measurement 
of the material properties as seen in Table  1, as well the 
experiments were performed in a previous work, for more 
details see Rösler [7].

Two different thermo-fluidic cases have been simulated 
using the numerical model and the results are compared 
with the experimental results. The melting rate of the PCM 
depends on the heat flow into the material. Therefore a 
more exact mixed heat transfer boundary condition or Dir-
ichlet-Neumann boundary condition is implemented i.e., 
the heat transfer around the boundary using

where n is the normal direction to the heat transfer, HTC 
is the heat transfer coefficient equalling to 2500 W/(m2 K) 
represents the heat transfer through the copper plates in 
the experiments. Ti the boundary element temperature, T∞ 
the ambient temperature at the boundary and κ the thermal 
conductivity of the PCM.

(15)
dT

dn
=

HTC

κ
· (Ti − T∞).

Fig. 3   Viscosity change over temperature in a phase change process 
using linear co-relation of viscosities

Table 1   Material properties of the PCM RT35HC

Material properties Units Solid Liquid

Density (ρ) kg/m3 830.9 778.2

Viscosity (µ) Pa s 103−105 0.0044

Specific heat capacity (c) J/kg K 5000 2100

Latent heat (L) J/kg 0 220,000

Thermal conductivity (κ) W/m K 0.65 0.166

Melting temperature range K 307.65 309.15
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3.1 � Heated left boundary

The idea of validating the melt front by heating a wall is 
empirical in the field of moving boundary problems. The 
melt front and melting rate obtained through numerical 
simulations are validated with experimental results. In the 
heated left boundary case the left wall boundary of the 
geometry is heated with a temperature of Th = 315.15K 
whereas the right wall is heated with temperature of 
Tc = 303.15K. The top and bottom boundaries have been 
defined with an adiabatic temperature Ta in Table  2. On 
these boundaries, a zero heat flux, Neumann boundary con-
dition is implemented where the temperature gradient on 
the boundaries is zero (Fig. 4). 

The solid viscosity is concluded in this case by vali-
dating the different melt fronts obtained through different 
solid viscosities with experimental results.

3.2 � Close contact melting

Close contact melting refers to the detachment of the solid 
from the boundary surface and the movement of solid into 
the liquid phase resulting in a small melting column [25]. 
Close contact melting enhances the melting rate of the 
PCM in the geometry. The considered case in this article 
represents the realistic melting and settling of PCM in a 
capsule when all boundaries except for the front and the 
back are heated with a constant temperature (Fig. 5).

All boundaries are heated with an equal temperature of 
Th = 315.15K, as shown above in Table 3. In this section, the 
melting front and also the settling form of the solid PCM in a 
capsule is analysed and validated with experimental results.

3.3 � Experiments

The melt front in the capsule is captured using a single lens 
reflex camera. The solid–liquid interface has been marked 

and the melted volume has been calculated with time. The 
direction of lighting in the capsule is parallel to the grav-
ity in the case discussed in Sect. 3.1 and perpendicular to 
the gravity in the case discussed in Sect. 3.2. In the experi-
ments performed for the Sect. 3.1, a rubber foam insulation 
with a low thermal conductivity of 0.04 W/m K has been 
placed on the top and bottom boundaries to support the no 
heat flux condition in the simulations [7]. This insulation 
with a thickness of 40 mm has been placed on the top and 
bottom boundaries resulting in a neglectable low heat trans-
fer. Here, the liquid fraction of PCM portion at different 
times is calculated by marking the phase front between liq-
uid and solid PCM on the captured pictures obtained from 
the experimental set-up (Fig. 6).

4 � Results and discussion

The computational grid is generated to simulate the melt-
ing phenomena with the developed numerical model. 
It has been observed that the melt front and melting rate 
of the PCM are largely influenced by the solid viscosity 
value and are compared with the experimental results. 
Melt fronts obtained from different solid viscosities are 
evaluated with experiments for test case in Sect. 3.1. The 
numerical model is validated with experiments by com-
paring the melt fronts as well as melt rates, which enables 
the comparison the amount of melted substance (PCM) at 
every point of time.

Fig. 4   Figure showing the PCM capsule geometry for problem defi-
nition in Sect. 3.1 with heated left boundary

Table 2   Boundary conditions implemented on the capsule geometry 
in this problem definition

Physical property Left Right Top Bottom

Temperature (K) 315.15 303.15 Ta Ta

Fig. 5   Figure showing the capsule geometry for problem definition 
in Sect. 3.2 with all walls heated with temperature Th
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4.1 � Heated left boundary

Solid viscosities ranging from 103 to 106 Pa s are consid-
ered for the set-up described in Sect.  3.1. It is observed 
that the interface curvature between the solid and liquid 
phase depends on the solid viscosity value which is also 
relatively proportional to the melting rate of the PCM. The 
solid–liquid interfaces obtained through different viscosi-
ties are compared with the melt interface from experiments 
as shown in Fig. 7.

The results for a solid viscosity of µs = 105 Pa s have 
shown satisfactory results. The melting rate of the PCM 
using this solid viscosity is quantitatively validated against 
experimental results in Fig. 8. The numerical results show a 
good agreement with the experiments.

4.2 � Close contact melting

The close contact melting case introduced in Sect.  3.2 is 
simulated considering the defined boundary conditions. 
Two cases, one with a large viscosity value obtained from 
the validated melt front in Fig. 7 and another with a lower 
viscosity to enhance the melt rate have been simulated in 
this section.

4.2.1 � Larger solid viscosity

The solid viscosity µs = 105 Pa s, obtained by validating 
the melt fronts from Sect. 4.1 is implemented in this sec-
tion to simulate the melting of PCM and settling of solid 
(Figs. 9, 10).

The qualitative validation of the results has shown some 
decent agreement with the experiments. A small devia-
tion from the experiments could be due to the lack of the 
exact viscosity selection in the mushy zone. Modelling the 
right viscosity in the mushy zone using a linear correlation 
of total viscosity is difficult. Therefore this article refrains 
from discussing the influence of mushy viscosity on the 

Table 3   Boundary conditions implemented on the capsule geometry 
in this problem definition

Physical property Left Right Top Bottom

Temperature (K) 315.15 315.15 315.15 315.15

Fig. 6   Experimental set-up showing PCM capsule placed at 800 mm 
away from camera during capturing the melting phenomena [7]
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Fig. 7   Validating different melt fronts of different solid viscosities µs 
with experimental results at time t = 7200 s
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melting rate. The movement of the solid is restricted by 
obstructing the shear velocity but the settling velocity is not 
restricted as shown in the Fig. 11.

The settling velocity of solid during melting is vari-
able and changes with the melting rate of the PCM. 
Due to the implementation of a large solid viscosity 
value tracking the solid–liquid interface during settling 
demands a large number of iterations. The iteration 
count depends upon the velocity differences between 
the solid and liquid phases. Pressure-velocity loop iter-
ations between 25 and 100 are found to be optimal to 
introduce the right settling of solid PCM as shown in 
Fig. 12. The change in results after 25 pressure–velocity 
iterations is found to be very small and can be neglected 
here.

The melting rate of the simulations show some good 
agreement with experiments after t = 10min as shown in 
Fig.  13. In the first 10  min the different settling form in 
the experiments is due to the fixed solid at the beginning 
which starts to settle after about 4  min. Therefore, the 

simulation results diverge from experiments in this time 
duration. An asymmetrical melting and settling of solid in 
the experiments in Figs. 9 and 10 is due to the liquid drag 
force affecting the free degree of motion of solid PCM. 
These liquid drag effects on solid PCM are neglected in 
the simulations. A much larger value of solid viscosity of 
PCM may resist non-physical deformation during settling 
of solid PCM. However, the choice of a larger solid viscos-
ity demands a large computational power due to iterations 
required to converge the pressure–velocity in tracking the 
interface between solid and liquid PCM. Therefore, a small 
viscosity value of µs = 5× 103 Pa s has been chosen in the 
next section to influence the convergence rate. Low solid 
viscosity also proportionally decreases the value of viscos-
ity in the mushy zone.

Fig. 9   Qualitative validation of PCM melting after 6  min with 
µs = 105 Pa s for case in Sect. 3.2

Fig. 10   Qualitative validation of PCM melting after 12  min with 
µs = 105 Pa s for case in Sect. 3.2

Fig. 11   Velocity vectors of the settling solid in y-direction and the 
magnitude of the vectors shown in the scale
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loops used to model the natural settling of solid PCM with a solid 
viscosity value µs = 105 Pa s
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4.2.2 � Reduced solid viscosity

The implementation of a low solid viscosity value influ-
ences the melting rate and melting form due to the low 
friction offered by the solid. The choice of a low solid vis-
cosity is not in agreement with the validated solid viscosity 
obtained in Fig. 7 but due to the implementation of reduced 
solid viscosity, only a very few pressure–velocity iterations 
are required for a converged solution (Fig. 14).

The results from the numerical model using a low viscos-
ity value show a good acceptance with the qualitative exper-
imental results until t = 6min. It has been observed from 
the simulations that the solid PCM settles at the bottom of 
the capsule geometry at this time. Afterwards the solid PCM 
experiences a deformation due to its own weight and imple-
mentation of the low solid viscosity value. In this article, the 
effective viscosity is defined as piecewise linear as seen in 
Fig. 3. In this case, the reduction of the viscosity value in 
the solid phase also proportionally decreases the viscosity 
value in the mushy zone. Due to which that the material in 
mushy zone close to the melting temperature tends to flow 
resulting in the deformation observed in Fig. 15.

Quantitative validation of the results using the low solid vis-
cosity produce satisfactory results as seen in Fig. 16 apart from 
the deformation observed in the solid in Fig. 15. This material 
flow deformation of the solid PCM occurred post contact of the 
solid at the bottom of capsule due to its own weight.

5 � Conclusions

This article focuses on the implementation of a variable 
viscosity to model solid–liquid phase change problems 
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Fig. 13   Quantitative validation of PCM melting with µs = 105 Pa s 
against experimental, for case in Sect. 3.2 using 100 pressure–velocity 
iterations

Fig. 14   Qualitative validation of PCM melting after 6  min with 
µs = 5× 103 Pa s, for case in Sect. 3.2

Fig. 15   Qualitative validation of PCM melting after 12  min with 
µs = 5× 103 Pa s, for case in Sect.  3.2 with non-physicality high-
lighted
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including the settling of the solid phase. Different test cases 
were simulated to validate the numerical model and also to 
investigate the influence of the solid viscosity value on the 
melting process. As the choice of these solid viscosities was 
random and a generalization could not be made, the devel-
oped numerical model has shown a decent agreement with 
the experimental results. Validating the numerical model by 
comparing melt fronts and the melting rate is empirical, see 
Voller and Prakash [10]. The choice of solid viscosity in the 
present article is also concluded in the same way. The influ-
ence of the solid viscosity value on the melting phenomena 
is found to be different based on the application. A higher 
solid viscosity value has shown a good agreement with 
experiments in Sects. 4.1 and 4.2, whereas lower solid vis-
cosity has only shown a good agreement with experiments 
in Sect. 4.2. Within the developed model compromise has 
to be made between the computational time and the accu-
racy of the results as the large viscosity value demands a 
large computational time to model settling. Whereas, the 
low viscosity value requires a low computational time, but 
the solid PCM tends to deform due to small viscosity influ-
encing the outflow of solid as shown in Fig. 15.

Concerning this numerical model, it can be further 
extended to different geometrical applications, viscosity 
relations and force implementations. It can be strongly con-
cluded that a variable viscosity method (VVM) is a stable 
approach but the error made due to the linear relationship 
of the viscosities could be optimized by choosing a relevant 
function depending on the problem definition. So, there is a 
strong demand for a detailed investigation on the nature of 
these ramp down techniques.
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