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railway and the Qinghai–Tibet highway, which are con-
structed on the Tibetan Plateau, are the longest permafrost 
railway and highway at the highest elevations in the world. 
The alternating transitions between positive and negative 
temperatures in permafrost areas during the winter and 
summer seasons induces a freeze–thaw cycle in the soil of 
the active layers of the railway and highway embankments, 
which damages the roadbed in the permafrost areas. The 
structural stability of the embankment is directly related to 
the change in the embankment temperature, especially dur-
ing the phase transition of the pore water in the embank-
ment soil (i.e., to the homogeneity of moisture migration 
through the embankment).

Calculating the temperature of a road embankment in 
permafrost areas involves solving a non-linear thermal 
conduction problem with a phase transition, which is a 
strongly non-linear computational problem with free-
moving boundaries. The primary difficulties encountered 
in solving such problems are as follows: the non-linearity 
introduced by the discontinuous heat flux over the phase 
transition interface, the computational difficulties asso-
ciated with the non-stationary phase interface, irregular 
boundaries, and non-uniform material properties. The vast 
majority of these problems do not have exact analytical 
solutions, and numerical and approximate analytical solu-
tions are the only available options. For a thermal conduc-
tion problem with a phase transition, which involves non-
linear physical equations and irregular geometric shapes, 
we can apply an analytical perturbation method to derive 
an approximate formula for the temperature, as Caldwell 
and Kwan have shown [1]. However, non-linear problems 
with complicated geometric shapes are extremely diffi-
cult to solve. There are two primary difficulties: first, the 
non-linearity of the partial differential equations makes 
them hard to solve, and second, the analytical boundary 

Abstract  In this study, we applied conformal mapping 
and irregular perturbation methods to develop an ana-
lytic method to calculate the temperature field for a phase 
transition in the irregular domain of an embankment in a 
permafrost region. We then used this method to derive an 
approximate formula for the unstable temperature field of 
the phase transition in a homogeneous embankment over 
an irregular domain. First, we used conformal mapping to 
project a two-dimensional homogeneous embankment with 
irregular boundaries onto a one-dimensional semi-infinite 
area to derive the thermal conduction equations for unsta-
ble phase transitions and a continuity equation for the inter-
facial heat flux in the mapping coordinates. The irregularity 
of the boundary of the solution domain meant that only the 
mapping in the spatial domain could be used to inexpen-
sively impose the boundary conditions analytically onto 
the regular boundary, thereby enabling the formulation of 
an analytical solution for the temperature field for a phase 
transition over an irregular domain. A small parameter per-
turbation and the orthogonal polynomial approximation 
were then used to analytically compute the thermal conduc-
tion equation for a phase transition in the mapping coordi-
nate system.

1  Introduction

The Tibetan Plateau in China is the largest (in terms of area) 
mid-low latitude permafrost region in the world, with an 
area of approximately 1.47 × 106 km2. The Qinghai–Tibet 
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condition cannot be easily applied to boundaries with arbi-
trary shapes. A variety of solution options have been used 
to address the first difficulty in the literature. Recently, 
Myers and Mitchell [2] developed a combined integral 
method (CIM) to solve the Stefan problem: the one-dimen-
sional Stefan problem was solved in the infinite domain by 
directly integrating the thermal balance equation over the 
phase interface. Goto and Suzuki [3] combined a latent 
heat model with a boundary integral equation to develop 
a semi-analytical method to solve problems of tran-
sient consolidation and heat conduction during melting. 
Căruntu and Bota [4] introduced an approximate analytical 
method called the squared remainder minimization method 
(SRMM), which uses an increment polynomial to approxi-
mate an n-th non-linear thermal conduction differential 
equation and the corresponding thermal boundary condi-
tions. The perturbation method is an approximate method, 
which being conceptually clear and intuitive and inex-
pensive to apply has been widely used to solve non-linear 
thermal conduction problems with phase transitions. We 
review the relevant literature over recent years here. Yigit 
[5] used a linear perturbation method to analyze a two-
dimensional phase transition problem for liquid consolida-
tion on a planar mold surface from the heat flux of cold 
sources. Aziz and Benzies [6] used regular perturbation 
theory to derive an approximate solution for thermal con-
duction problems of temperature-dependent materials. Vil-
latoro et al. [7] used a perturbation analysis based on the 
Laplace transform, in which the thermal conductivity was 
the small perturbation parameter, to derive an approximate 
analytical solution for a one-dimensional thermal conduc-
tion problem between an inert gas and a porous medium. 
Sadat and Prax [8] used perturbation theory to develop an 
explicit and simple analytical method to solve the thermal 
conduction problem for a solid affected by periodic heat 
sources. This method produced fairly accurate approxi-
mate solutions, i.e., first- and second-order perturbation 
solutions, for low-frequency cases. Even earlier (i.e., pre-
1980’s), perturbation methods were used to solve thermal 
conduction problems [9–12] mostly for regularly shaped 
boundaries and relatively simple working conditions. 
Chung et al. [13] used conformal mapping to map regions 
with buried pipelines from the semi-infinite domain to a 
rectangular region and derived a singular Fredholm inte-
gral equation of the second kind to solve a linear stable 
thermal conduction problem for the soil near the buried 
pipelines.

A solution domain with a complicated irregular bound-
ary poses substantial challenges in the solution of ther-
mal conduction problems. The boundary conditions for 
boundaries with complicated shapes are not “analytical”, 
i.e., the values on these types of boundaries cannot be ana-
lytically introduced into the equation at one time. Thus, the 

analytical solution is not as feasible as a numerical com-
putation for exerting the boundary conditions. The analyti-
cal computation is carried out continuously over the whole 
region, and the boundary conditions can only be easily 
applied to regular boundaries, whereas the numerical cal-
culation is carried out on limited discrete points, such that 
the boundary conditions can easily be applied from one 
point to the next. Regional regularization is one of the most 
effective ways of obtaining an analytical solution over 
a complex domain. In this method, an irregular bound-
ary is mapped into a regular boundary with regular shapes 
through a mapping (transformation) method. Conformal 
mapping [14] is an effective and convenient approach for 
region conversion, which converts a problem over relatively 
complicated regions into a problem over simpler regions. 
Moreover, conformal mapping is rotationally invariant, 
which is critical for solving thermal conduction problems. 
This requirement is significant because the calculations in 
this paper are based on the fundamental assumption that 
the orthogonality between the heat flux and the isotherms 
in the coordinate systems does not change before and after 
mapping in the thermal conduction problem.

The main contribution of this paper is the development 
of a fundamental thermal conduction equation for a phase 
transition using a mapping coordinate system based on the 
transformation relationship between a differential operator 
vector and the physical quantities in the conformal map-
ping. We also implement an approximate analytical calcu-
lation for the temperature field of the phase transition in 
an embankment by using a perturbation in a small param-
eter to solve a thermal conduction equation with function 
coefficients in the mapping coordinates. The asymptotic 
approximation is based on orthogonal basis functions, and 
the derived formulas are inversely applied to the original 
configuration of the embankment. To preserve the angles in 
the conformal mapping and the orthogonality between the 
isotherms and heat flux lines, we assume in the derivation 
that the front of the phase transition is slow in the mapping 
coordinates (i.e., the difference between the isothermal sur-
face of the phase transition temperature and the horizontal 
surface is small) to simplify the calculation. Although we 
only use the lowest order term in the perturbation parame-
ter in this paper, the expansion of the approximate perturba-
tion converges very fast because the order of magnitude of 
the selected perturbation parameter is very small, resulting 
in a very highly accurate asymptotic approximate solution.

2 � Computational model for the temperature field  
of a phase transition in an embankment

Road construction in permafrost areas is often based on 
the principle of permafrost protection, and the roadbed is 
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usually filled. The roadbed cross section is trapezoidal, 
and the embankment can be approximated as layers of uni-
formly distributed filling material [15]; the embankment 
cross section is shown in Fig. 1.

The temperature field in the embankment in a perma-
frost region is controlled by the heat exchange between 
the land surface and atmosphere and between the underly-
ing soil layer and the interior of the stratum. The climatic 
environment determines the depths of the maximum active 
layer and the stable temperature layer in the embankment. 
In addition, the embankment has a limited effect on the 
internal temperature field of the soil layer; thus, in calcu-
lating the embankment temperature field, the lower bound-
ary EH is modeled as a horizontal plane below a certain 
depth, and the temperature at the boundary is considered 
to be constant at TG. To obtain analytical solutions, the 
roadbed discussed in this paper is oriented in the south-
north direction, and the shadier northern and sunny south-
facing slope effect is neglected, along with the tempera-
ture differences between the side slope, the shoulder of the 
embankment and the pavement surface. The variation in 
the surface temperature is modeled by a cosine function in 
time. The layered structure of the material in the embank-
ment cross section is neglected for the same reason, i.e., 
the embankment is considered to consist of homogeneous 
materials.

In this paper, we use a partial differential equation to 
model the isothermal phase transition temperature along 
with a front tracking method for the phase transition [16, 
17]. Therefore, the two-dimensional unstable thermal con-
duction problem for the ice-water phase transition in the 
soil is formulated as follows:

(2.1)Cj

∂Tj

∂t
= ∇ ·

(

kj∇Tj
)

, j = s, l

(2.2)kj =
{

ks T > Tf
kl T ≤ Tf

The notation and units of the physical quantities in the afore-
mentioned and following equations are given in “Appendix 1”.

3 � Conformal mapping

The boundary of the temperature field of the phase tran-
sition in the road embankment is an irregularly shaped 
polygon. An analytical solution cannot be formulated and 
solved using a unified coordinate system; thus, the bound-
ary must be regularized before solving the problem with 
analytical methods. We used the Schwarz–Christoffel inte-
gral in the conformal mapping process [14, 18] process, 
i.e., we used the integral transform

to transform the polygonal region in (u, v) coordinates to 
the semi-infinite domain in the mapping coordinates (x, y).

Figure 2 shows the embankment cross section, Fig. 3 the 
semi-infinite system after mapping. The mapping relations 
of the coordinates are shown in Figs. 2 and 3.

(2.3)Cj =
{

Cs T > Tf
Cl T ≤ Tf

(2.4)(�q)n = ρL
∂S

∂t

(3.1)w = f (z) = C

z
∫

z0

n
∏

k=1

(z − ak)
αk−1dz + C1

Fig. 1   Schematic of embankment cross section
Fig. 2   Cross section of embankment and coordinate system before 
mapping

Fig. 3   Mapping coordinate system and semi-infinite domain
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The conformal mapping function (which is derived in 
“Appendix 2”) is

The original Cartesian coordinate system (u, v) is 
mapped to a new orthogonal coordinate system (x, y) 
through the conformal mapping relationship in Eq.  (3.2), 
which is used to derive the relationship between the gener-
alized differential operators and the Jacobi determinant in 
orthogonal coordinates.

4 � Thermal conduction equation for a phase transition 
in mapping coordinates

The conformal mapping function is the univalent analytic 
function

which represents a coordinate transformation from the (u, 
v) plane to the (x, y) plane. Therefore, both the thermal con-
duction equation and the spatial measurement of the physi-
cal quantities vary with the spatial coordinates in the new 
coordinate plane. In the plane of the mapping coordinates, 
Fourier’s law in the direction of the mapping coordinate 
axis can be written as follows [19]:

where hm is the metric coefficient of the mth mapping coor-
dinate [20] (The functional form of the metric coefficient is 
derived in “Appendix 3”).

The coordinate mapping deforms the space, thereby 
changing the material density. The relationship between the 
densities before and after the mapping is determined by the 
spatial mapping relationship. The unit cell dudv in (u, v) 
coordinates before the mapping corresponds to the unit cell 
dxdy in the mapping (x, y) coordinates after the conformal 
mapping. Mass conservation requires that the two unit cells 
have equal masses before and after the transformation, i.e.,

where J(x, y) is the Jacobi matrix, an expression for which 
is given in “Appendix 3”. The conformal mapping con-
verts the thermal conduction problem in the original (u, v) 

(3.2)

w = (1.000005+ 18.854i)

[

2.7071z − 0.1412

(

0.32465

+ ln

∣

∣

∣

√
2+ z

∣

∣

∣
−

1

2
ln

∣

∣

∣
z
2 − 2

∣

∣

∣

)

+ 0.5074
z

z2 − 2

−0.3382
z

(

z2 − 2
)2

+ 0.9947
z

(

z2 − 2
)3

]

− (0.04584− ih)

(4.1)w = f (z) = u(x, y)+ iv(x, y)z = x + iy

(4.2)qm = −
kj

hm
∇T

(4.3)ρdudv = ρ′dxdyρ′ = ρ|J(x, y)|

coordinates to a thermal conduction problem in the map-
ping (x, y) coordinates, which changes the form of the ther-
mal conduction equation. The conformal transformation 
relationship w = f (z) = u(x, y)+ i v(x, y) is used to derive 
the thermal conduction equation and the interface condi-
tions in (x, y) coordinates [21–23]:

The metric coefficient hx(y) appears in Eq. (4.4). The met-
ric coefficient hn appears in the left-hand side of the inter-
face Eq. (4.5), and the coefficient on the right-hand side of 
the equation is the function |J(x, y)|. Although the thermal 
conduction equation has a more complex form in the map-
ping coordinates than in the original coordinates, the con-
formal mapping enables us to regularize the boundary such 
that the analytical boundary conditions can be applied, and 
the thermal conduction equation can be solved analytically.

After the mapping, the system satisfies the following ini-
tial, boundary, and interface conditions:

In Eq.  (4.7), Re denotes taking the real part of a complex 
number. In the mapping coordinate plane (x, y) (see Fig. 3), 
the initial and lower boundary 

(

y = X̄
)

 temperatures for the 
embankment and the roadbed are set to the local multi-year 
average temperature TG. In the permafrost region, the lower 
boundary temperature TG is lower than the melting temper-
ature Tf of the frozen soil.

5 � An approximate analytical solution for the unstable 
temperature field of the phase transition

The conformal mapping transforms the solution domain for 
the irregular embankment to a one-dimensional semi-infi-
nite space, resulting in a non-linear partial differential equa-
tion with variable coefficients for the thermal conduction 
problem with a phase transition. Currently, there no accu-
rate analytical solutions exist for such complex non-linear 
partial differential equations; thus, obtaining an asymp-
totic analytical solution using a perturbation parameter is 

(4.4)

∂Tj

∂t
= αj

{

1

hx

∂

∂x

[

1

hx

∂Tj(x, y; t)

∂x

]

+
1

hy

∂

∂y

[

1

hy

∂Tj(x, y; t)

∂y

]}

(4.5)

1

hn

[

ks
∂Ts(x, y; t)

∂n
− kl

∂Tl(x, y; t)
∂n

]

= ρL|J(x, y)|
∂s(x; t)

∂t

(4.6)Tl(x, y; t = 0) = TG

(4.7)Ts(x, 0; t) = Tf +
(

Tf − TG
)

Re{A exp [i(ωt + ϕ)]}

(4.8)Tl
(

x, y = X̄; t
)

= TG

(4.9)Ts = Tl = Tf on s(x; t)
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an alternative option [11, 12, 24]. In perturbation analysis, 
we first non-dimensionalize the physical quantities in the 
partial differential equation and the boundary, initial, and 
interface conditions. Thus, we define the following dimen-
sionless quantities:

Substituting the equations above into the partial differ-
ential Eq. (4.4), the interface condition (4.5) and the bound-
ary and initial conditions yields

Note that ∂
∂n

 in Eq. (5.4) represents the derivative in the 
normal direction relative to the interface of the phase tran-
sition in the transformed coordinates. The interface and 
initial conditions in the temperature at the phase transition 
front δ(ξ ; τ ) are as follows:

Equation  (5.9) shows that the phase transition starts to 
develop at time τ = τ0 (i.e., when the upper boundary con-
dition first becomes positive), moving from the embank-
ment surface to the deep part of the permafrost, which is 
the horizontal plane for the initial phase transition front of 
η = 0 in the mapping coordinates.

The upper boundary condition is a periodic cosine func-
tion in the time variable τ, i.e., Eq. (5.7); thus, it is reason-
able to assume that the soil and boundary temperatures 

(5.1)

ξ =
x

X̄
η =

y

X̄
τ =

αst

X̄2
γ =

αs

αl
κ =

kl

ks

ς =
αs

ωX̄2
U(ξ , η; τ) =

Ts − Tf

Tf − TG
V(ξ , η; τ) = κ

Tl − Tf

Tf − TG

vSte =
Cs

(

Tf − TG
)

L
δ =

X̄ − s

X̄

(5.2)

∂U(ξ , η; τ )

∂τ
=

1

hξ

∂

∂ξ

[

1

hξ

∂U(ξ , η; τ)

∂ξ

]

+
1

hη

∂

∂η

[

1

hη

∂U(ξ , η; τ )

∂η

]

(5.3)

γ
∂V(ξ , η; τ)

∂τ
=

1

hξ

∂

∂ξ

[

1

hξ

∂V(ξ , η; τ)

∂ξ

]

+
1

hη

∂

∂η

[

1

hη

∂V(ξ , η; τ )

∂η

]

(5.4)

vSte

hn

{

∂U[ξ , (1− δ); τ ]
∂n

−
∂V [ξ , (1− δ); τ ]

∂n

}

= −|J|
∂δ

∂τ

(5.5)V(ξ , η; τ = 0) = −κ

(5.6)V(ξ , η = 1; τ) = −κ

(5.7)U(ξ , η = 0; τ) = Re

{

A exp

[

i

(

τ

ς
+ ϕ

)]}

(5.8)U(ξ , 1− δ; τ) = V(ξ , 1− δ; τ) = 0

(5.9)δ(ξ ; τ = τ0) = 1

changing with time variable τ has the same frequency, so 
formulating the temperature and interface conditions by the 
variable separation method in the following form:

In the equations above, initial phase angle ϕ′ can be 
determined by respective initial conditions, or are inte-
grated into the solving procedure of undetermined func-
tions V ′(ξ , η), U ′(ξ , η), δ′(ξ) and they can also be com-
plex; thus, the real parts of these functions are used in the 
final solution. The equations above are substituted into 
Eqs. (5.2)–(5.4) to yield the following equations:

where ε = vSte ∗ ς is the perturbation parameter. In deriv-
ing the interface Eq. (5.15), we make the following approx-
imation: the upper boundary (η = 0) and the lower bound-
ary (η = 1) in the one-dimensional mapping coordinates are 
at (or close to) the horizontal isothermal surfaces at a given 
time τ, whereas the heat flux line remains perpendicular to 
the isothermal surfaces in the mapping coordinates; there-
fore, we assume that the derivative in the calculation direc-
tion, ∂

∂n
, at the isothermal phase transition interface can be 

approximated by ∂
∂η

.
To solve for approximate solutions to the equation 

above, we used the small parameter perturbation method 
[25] to expand U ′(ξ , η), V ′(ξ , η), and δ′(ξ) in a power 
series in the parameter ε:

(5.10)V(ξ , η; τ ) = V ′(ξ , η)

{

A exp

[

i

(

τ

ς
+ ϕ′

)]}

(5.11)U(ξ , η; τ ) = U ′(ξ , η)

{

A exp

[

i

(

τ

ς
+ ϕ′

)]}

(5.12)δ(ξ ; τ ) = 1+ δ′(ξ)

{

A exp

[

i

(

τ

ς
+ ϕ′

)]}

(5.13)

i

ς
U
′(ξ , η) =

1

hξ

∂

∂ξ

[

1

hξ

∂U ′(ξ , η)
∂ξ

]

+
1

hη

∂

∂η

[

1

hη

∂U ′(ξ , η)
∂η

]

(5.14)

i
γ

ς
V
′(ξ , η) =

1

hξ

∂

∂ξ

[

1

hξ

∂V ′(ξ , η)
∂ξ

]

+
1

hη

∂

∂η

[

1

hη

∂V ′(ξ , η)
∂η

]

(5.15)

ε

hη

{

∂U ′[ξ ,
(

1− δ′
)]

∂η
−

∂V ′[ξ ,
(

1− δ′
)]

∂η

}

= −i|J|δ′(ξ)

(5.16)U ′(ξ , η; ε) =
∞
∑

n=0

εnUn(ξ , η)

(5.17)
V ′(ξ , η; ε) =

∞
∑

n=0

εnVn(ξ , η)
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The perturbation coefficient ε used in the equations 
above is ≪1 for a natural soil medium. Thus, we can retain 
only the lower order terms in the expanding Eqs.  (5.16)–
(5.18) to obtain an approximate solution to the problem.

We substitute Eqs. (5.16)–(5.18) into the interface con-
dition Eq.  (5.15) and then expand the unknown functions 
in a Taylor series. Terms with the same power of ε are com-
pared to derive a low order equation for the interface posi-
tion function δn(ξ):

The front solution given by Eq. (5.19) for a phase tran-
sition is a null solution, and the first-order solution to 
Eq. (5.20) is not null only for j = 0, indicating that a regu-
lar perturbation method cannot produce a physically mean-
ingful solution for a phase transition front. To overcome 
this difficulty, we use the following transformation for the 
active layers of the embankment (0 ≤ η ≤ δ):

Substituting the equation above into Eqs.  (5.13), (5.15) 
and the boundary conditions yields

In Eq. (5.23), hJ(ξ , η) = hη(ξ , η) · |J(ξ , η)|.
Expanding Ū(ξ ,X), δ̄(ξ ,X) in a power series in the per-

turbation parameter ε yields

(5.18)δ′(ξ ; ε) =
∞
∑

n=0

εnδn(ξ)

(5.19)δ0(ξ) = 0

(5.20)

∞
∑

j=0

(−δ0)
j

j!

[

∂ j+1U0(ξ , 1)

∂ηj+1
−

∂ j+1V0(ξ , 1)

∂ηj+1

]

= −i|J|δ1(ξ)

(5.21)X =
η
√
ε

δ̄ = −
δ′(ξ)
√
ε

Ū(ξ ,X; ε) = U ′(ξ ,X)

(5.22)

i

ς
Ū(ξ ,X) =

1

hξ

∂

∂ξ

[

1

hξ

∂Ū(ξ ,X)

∂ξ

]

+
1

εhη

∂

∂X

[

1

hη

∂Ū(ξ ,X)

∂X

]

(5.23)

∂Ū

(

ξ , 1√
ε
+ δ̄

)

∂X
−

∂V ′[ξ ,
(

1+
√
εδ̄
)]

∂X
= iδ̄ · hJ

[

ξ ,
(

1+
√
εδ̄
)]

(5.24)V ′[ξ ,
(

1+
√
εδ̄
)]

= 0

(5.25)Ū

(

ξ ,
1
√
ε
+ δ̄

)

= 0

(5.26)Ū(ξ , 0) = 1

(5.27)
Ū(ξ ,X; ε) =

∞
∑

n=0

εnŪn(ξ ,X)

Equations (5.23), (5.24), and (5.25) are all implicit equa-
tions in ε, which can be written as explicit functions of ε 
using a Taylor series expansion:

The perturbation solutions (5.27) and (5.28) are substi-
tuted into Eqs. (5.14), (5.22), (5.23) and the corresponding 
equations for the different conditions; the coefficients of 
the terms in the perturbation parameters (ε−1 and ε0) of the 
same order on both sides of the equation are then equated 
to each other. The following equations are obtained for ε−1 
and ε0:

Equation  (5.32) is then combined with the boundary 
conditions in Eqs.  (5.35) and (5.36) and ∂hη(ξ ,X)

∂X
→ 0. 

(5.28)δ̄(ε) =
∞
∑

n=0

εnδ̄n

(5.29)Ū

(

ξ ,
1
√
ε
+ δ̄

)

=
∞
∑

j=0

(

1√
ε
+ δ̄

)j

j!
∂ jŪ(ξ , 0)

∂Xj
= 0

(5.30)V ′[ξ ,
(

1+
√
εδ̄
)]

=
∞
∑

j=0

(√
εδ̄
)j

j!
∂ jV ′(ξ , 1)

∂Xj
= 0

(5.31)

∞
∑

j=0

(

1√
ε
+ δ̄

)j

j!
∂ j+1Ū(ξ , 0)

∂Xj+1
−

∞
∑

j=0

(√
εδ̄
)j

j!
∂ j+1V ′(ξ , 1)

∂Xj+1

= iδ̄

∞
∑

j=0

(√
εδ̄
)j

j!
∂ jhJ(ξ , 1)

∂Xj

(5.32)
∂

∂X

[

1

hη

∂Ū0(ξ ,X)

∂X

]

= 0

(5.33)

i
γ

ς
V0(ξ , η) =

1

hξ

∂

∂ξ

[

1

hξ

∂V0(ξ , η)

∂ξ

]

+
1

hη

∂

∂η

[

1

hη

∂V0(ξ , η)

∂η

]

(5.34)

∞
∑

j=0

(

δ̄0
)j

j!
∂ j+1Ū0(ξ , 0)

∂Xj+1
−

∂V0(ξ , 1)

∂X
= ihJ(ξ , 1)δ̄0

(5.35)Ū0(ξ , 0) = 1

(5.36)

∂Ū0(ξ , 0)

∂X

=



1−
∞
�

j=2

�

−δ̄0
�j

j!
∂ jŪ0(ξ , 0)

∂Xj





�

�

−δ̄0
��

or Ū0

�

ξ , δ̄0
�

= 0
�
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Setting the order of magnitude for the perturbation param-
eter as ε ∼ 10−6 yields

Equation (5.37) can be used to obtain

Therefore,

After various variable transformations, the function given 
above represents the equation for the temperature of the 
thawed soil phase. Equation  (5.33) for the temperature of 
the homogenous frozen phase can then be combined with 
the following boundary conditions:

to describe heat conduction in the frozen phase.
The coefficients of the governing equation for the tem-

perature field of the frozen phase are transcendental func-
tions and thus cannot be solved using conventional math-
ematical and physics methods. Thus, we used the Galerkin 
method, which is based on a variational principle [26], to 
solve the equation. Trial solutions of orthogonal functions 
that satisfy the corresponding problem boundary conditions 
form the basis of an approximate solution to the partial dif-
ferential equation with function coefficients [27, 28]. This 
approximate solution satisfies the orthogonality conditions 
of the complete basis functions, which are used to derive 
the undetermined coefficients of the asymptotic solution 
in the form of an orthogonal polynomial expansion, which 
in turn can be substituted into the asymptotic solution to 
derive an approximate solution to the partial differential 
equation with function coefficients.

A trial solution for the non-homogeneous partial dif-
ferential equation for thermal conduction in the frozen 
soil can be approximated by an orthogonal polynomial, 
V0(ξ , η):

where the independent variables η ∈ [δ0, 1], ξ ∈ [−L,L],

ϕk(η), and ψl(ξ) are Fourier polynomials (which are given 
in “Appendix 4”).

(5.37)

Ū0(ξ ,X) =









1−
∞
�

j=2

�

−δ̄0
�j

j!
∂ jŪ0(ξ , 0)

∂Xj





�

�

−δ̄0
�







X + 1

(5.38)
∂ jŪ0(ξ ,X)

∂Xj
= 0 j ≥ 2

(5.39)Ū0(ξ ,X) = 1−
X

δ̄0

(5.40)V0(ξ , 1) = −κ

(5.41)V0(ξ , 1− δ0) = 0

(5.42)

V0(ξ , η) = −(η + δ0 − 1)
κ

δ0
+

N
∑

l=0

M
∑

k=0

Aklϕk(η)ψl(ξ)

Introducing the trial solution given by Eq. (5.42) into the 
governing Eq. (5.33) yields

Next, we introduce the complete eigenfunctions for the 
orthogonal basis functions (see “Appendix 4”):

Substituting the two equations above into Eq.  (5.43) 
yields

We then expand (η+δ0−1)
δ0

|J| in Eq.  (5.46) in a series of 
the complete basis functions ϕk(η) and ψl(ξ):

where

and ϕ̄k(η) and ψ̄l(ξ) are the conjugate Fourier basis func-
tions. The second term on the left-hand side of Eq. (5.43) 
can be expanded as follows:

where

Let us define the following term:

(5.43)

i
γ

ς
|J|

{

−(η + δ0 − 1)
κ

δ0
+

N
∑

l=0

M
∑

k=0

Aklϕk(η)ψl(ξ)

}

=
N
∑

l=0

M
∑

k=0

Akl

[

ϕ′′
k (η)ψl(ξ)+ ϕk(η)ψ

′′
l (ξ)

]

(5.44)ψ ′′
l (ξ)+ αlψl(ξ) = 0

(5.45)ϕ′′
k (η)+ βkϕk(η) = 0

(5.46)

i
γ

ς
|J|

{

−(η + δ0 − 1)
κ

δ0
+

N
∑

l=0

M
∑

k=0

Aklϕk(η)ψl(ξ)

}

= −
N
∑

l=0

M
∑

k=0

Akl(αl + βk)ϕk(η)ψl(ξ)

(5.47)
(η + δ0 − 1)

δ0
|J| =

N
∑

l=0

M
∑

k=0

Cklϕk(η)ψl(ξ)

(5.48)Ckl =
1

∫

δ0

L
∫

−L

(η + δ0 − 1)

δ0
|J|ϕ̄k(η)ψ̄l(ξ)dηdξ

(5.49)|J|
N
∑

l=0

M
∑

k=0

Aklϕk(η)ψl(ξ) =
M
∑

s=0

N
∑

t=0

Bstϕs(η)ψt(ξ)

(5.50)

Bst =
N
∑

l=0

M
∑

k=0

1
∫

δ0

L
∫

−L

|J|Aklϕk(η)ψl(ξ)ϕ̄s(η)ψ̄t(ξ)dηdξ

(5.51)Dkl,st =
1

∫

δ0

L
∫

−L

|J|ϕk(η)ψl(ξ)ϕ̄s(η)ψ̄t(ξ)dηdξ
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Substituting Eqs.  (5.48), (5.50), and (5.51) into 
Eq. (5.46) yields

Comparing the coefficients of the same terms on both 
sides of the equation yields

Let us define the following matrices:

Equation  (5.53) can then be written in matrix form as 
follows:

The equation above can then be solved for A as follows:

Substituting Eqs. (5.39) and (5.42) into the phase transi-
tion interface condition (5.34) and using Eq. (5.38) shows 

that the first term in Eq. (5.34), 
∑∞

j=0
(δ̄0)

j

j!
∂ j+1Ū0(ξ ,0)

∂Xj+1 , only 

needs to be expanded up to the first term. The following 
equation is thus obtained for the phase transition interface:

The parameter for the phase transition interface, δ̄0,  
appears on both sides of Eq.  (5.57), making it somewhat 
cumbersome to derive an accurate solution to this equa-
tion. However, the terms with coefficients of 

√
ε can 

be neglected because the perturbation parameter ε in 

(5.52)

{

N
∑

l=0

M
∑

k=0

−i
γ κ

ς
Cklϕk(η)ψl(ξ)+

N
∑

l=0

M
∑

k=0

i
γ

ς
Bklϕk(η)ψl(ξ)

}

= −
N
∑

l=0

M
∑

k=0

Akl(αl + βk)ϕk(η)ψl(ξ)

(5.53)−i
γ κ

ς
Ckl + i

γ

ς
Bkl = −Akl(αl + βk)

(5.54)

A = (Akl)D =
(

Dst,kl

)

C = (Ckl)Λ = diag(αl + βk)

(5.55)−i
γ κ

ς
C + i

γ

ς
DA = −ΛA

(5.56)A = i
γ κ

ς

(

i
γ

ς
D+Λ

)−1

C

(5.57)

−
1

δ̄0
+

√
εκ

δ0
−

√
ε(η + δ0 − 1)

N
∑

l=0

M
∑

k=0

Aklϕ
′
k(1)ψl(ξ)

= ihJ(ξ , 1)δ̄0

Eq. (5.57) is small. The transformation given by Eq. (5.21) 
is used to obtain an expression for δ̄0:

The real part of the solution to Eq.  (5.58) is the zeroth-
order term of the phase transition front.

6 � Example calculations

To verify the accuracy of the approximate method devel-
oped in this study, some of the approximate analytical 
results are compared with computational results from finite 
element analysis. The example calculations use the follow-
ing geometric model of the embankment (the geometric 
configuration is shown in Fig. 1): a roadbed width of 8.4 m, 
a roadbed height of 2.05 m, a roadbed slope of 1:1; a calcu-
lated roadbed width of 70 m, which extends from the center 
of roadbed to both sides for 35 m; and a calculated depth of 
the roadbed that is 23 m below the original surface at the 
center of roadbed. The thermal parameters for the embank-
ment soil are shown in Table 1.

The temperature at the upper boundary of embankment 
is given by

where A = 21.5 ◦C and ϕ = 2.1981, and the units of the 
time t are in second. The temperature at the lower bound-
ary is TG = −6.75 ◦C, and the corresponding depth is 
X̄ = 23m. The initial temperature of the entire embank-
ment, including the roadbed, is T(x, y; 0) = −6.75 ◦C,  
and the phase transition temperature of the soil is 
Tf = −0.1 ◦C.

In the derivation process, the transformation relation and 
the inversion formation in the conformal mapping must be 
substituted into each set of equations derived above. The 
equation for the temperature field and the function for the 
phase transition front are inversely derived using the origi-
nal coordinates (u, v) of the embankment cross section as 
the independent variables.

(5.58)δ̄0 =

√

i(1+ κ)

hJ(ξ , 1)

Tu(t) = Tf + A cos
(

6.342× 10−8π t + ϕ

)

Table 1   Thermal parameters for a homogenous embankment

Soil material Bulk density,  
ρ (kg m−3)

Thermal conductivity,  
k (W m−1 °C−1)

Specific heat capacity,  
C (J kg−1 °C−1)

Latent heat of phase 
transition, L (J kg−1)

Frozen soil Melted soil Frozen soil Melted soil

Clayey (mild clay) 1,600 2.12 1.42 1,222 1,608 3.769 × 104 
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6.1 � Temporal evolution of the phase transition front

For times t > t0 (where t0 = 1.26× 107 s is the time when 
the temperature at the upper boundary first becomes posi-
tive), the permafrost embankment starts to melts from 
the upper part, forming an active layer until refreezing 
occurs, i.e., when the temperature of the upper part of the 
embankment drops to the freezing temperature again (at 
time t1 = 2.844× 107 s). Equation  (5.59) is substituted 
into Eq.  (5.12) and the conversion Eqs.  (5.21) and (5.1) 
are applied. We then used the conformal mapping relation-
ship (3.2) to inversely derive the original coordinates (u, v), 
yielding the temporal function of the phase transition front. 
Figure 4 shows the position profile of the phase transition 
front on the symmetric axis of embankment over the time 
interval [t0, t1].

Fig. 4   Temporal curve of the phase transition front

Fig. 5   Thawed soil temperature variation vs depth at t = 2.052× 10
7
s

Fig. 6   Thawed soil temperature variation vs depth at t = 2.52× 10
7
s

Fig. 7   Thawed soil temperature variation vs depth at t = 2.844× 10
7
s

Fig. 8   Temperature change at the coordinates [0, 0]
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6.2 � Temperature change in the active embankment layers 
in permafrost areas

After a variety of variable transformations, the temperature of 
the thawing soil, i.e., Eq. (5.39), deceptively appears to be a 
simple first-order function in the x-coordinate. However, the 
solution equation contains the interface position δ̄0(ξ), and the 
physical variables undergo a series of transformations and a 
spatial mapping while solving for the solutions; thus, the tem-
perature of the thawing soil is actually a complicated function 
of the spatial coordinates and time. In unidirectional melting, 
the thawing soil is located over the phase transition front, 
i.e., the vertical coordinate of the thawing soil, v < s(u; t).  
Figures 5, 6 and 7 show the temperature variation with depth 
in the direction of symmetric axis of embankment at times 
t = 2.052 × 107 s, 2.52 × 107 s and 2.844 × 107 s. It worth 
noting from Fig. 7 that it’s the time at t = 2.844× 107 s to 
refreeze on the symmetric axis of embankment.

6.3 � Temporal curve for fixed embankment positions

There is no consensus on standard criteria to validate a non-
linear temperature field for phase transitions such as freeze–
thaw cycles for an embankment in a permafrost region. In this 
paper, we verify the approximate analytical solution for the 
temperature by comparison with computation results from 
finite element analysis. To improve the computational accu-
racy of the finite element solution, we divide the geometric 
configuration of the embankment into fine finite element 
meshes, each of a 10−2 m side. Figure 8 compares the time-
resolved temperature at the coordinates [0, 0], showing that 
the approximate analytical solution developed in this paper is 
in excellent agreement with the finite element solution.

7 � Conclusions

Few accurate analytical solutions exist for non-linear ther-
mal conduction problems over irregular domains, such as 
the temperature field for a phase transition in an embank-
ment in a permafrost region. In the analytical calculation, 
the irregularity of the domain causes greater computational 
difficulties than the soil phase transition. The boundary of 
a complicated domain must be described using functions 
of coordinate variables. Unlike in numerical calculations, 
the boundary conditions for thermal conductivity problems 
with phase transitions cannot be applied from one point to 
the next over the domain boundary in an analytical calcula-
tion. Therefore, conformal mapping is used in this paper to 
regularize the irregular domain, such that the boundary of 
the phase transition thermal conduction problem is trans-
formed to a regular boundary with constant coordinate val-
ues in the mapping coordinates. This approach enables us 

to formulate an analytical solution even though the partial 
differential equations for the temperature field in the frozen 
and melting areas are transformed from a linear equation to 
non-linear equations with function coefficients.

The inherent complexity of thermal conduction problems 
with phase transitions requires the use of assumptions and 
approximations to generate analytical solutions. The key 
assumptions used in this paper have a sound theoretical 
basis. That is, the directional derivative at the phase transi-
tion front is approximated by preserving the angles in the 
conformal mapping, and the analytical results are validated 
by comparison with computational results. The perturba-
tion method consists of an approximate series expansion of 
the solution in the perturbation parameter; thus, the conver-
gence and accuracy of the approximate solutions depends 
considerably on the magnitude of the perturbation parame-
ters. In this paper, the magnitude of the adopted perturbation 
parameters is very small. Thus, very high numerical accu-
racy can be achieved by using only the lowest order terms in 
the expansion, thereby avoiding having to solve very com-
plicated different equations with higher order terms.

Finally, we should to emphasize that developing an 
analytical solution to a thermal conduction problem with 
a phase transition for irregular boundaries (such as for an 
embankment in a permafrost region) remains highly chal-
lenging even when the material inhomogeneity in the 
embankment structure is neglected. Considerable work 
remains to be performed to develop an analytical solution 
for a non-linear thermal conduction problem with irregular 
boundaries. To the best of our knowledge, very few stud-
ies exist on this subject. The assumptions we have made to 
generate an approximate analytical solution are compro-
mises between the tractability of the calculation scheme and 
the accuracy of the results to a complex problem. Here, we 
have obtained a considerably high accuracy in the analytical 
results by selecting an appropriate perturbation parameter.
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Appendix 1: Nomenclature

i	� Complex number
Complex plane	� z = x + iy, (x, y) are the mapping 

coordinates
Complex plane	� w = u(x, y)+ iv(x, y), (u, v) are the origi-

nal coordinates
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hm	� Metric coefficient of the mth mapping 
coordinate

∇	� Hamilton operator
ρ	� Material density (kg m−3) in the original 

coordinate system
ρ′	� Material density (kg m−3) in the mapping 

coordinate system
�q	� Increment in the heat flux
q = k(∇T)	� Heat flux (W m2)
J(x, y) =

[

∂(u,v)
∂(x,y)

]

	�Jacobi matrix
|J(x, y)|	� Jacobi determinant
j = l, s	� Index corresponding to frozen and 

thawed soil phases, respectively
Ts	� Temperature of thawed soil phase (°C)
Tl	� Temperature of frozen soil phase (°C)
s(u)	� Function for phase transition front
t	� Time (h)
k	� Thermal conductivity (W m−1 °C−1)
L	� Latent heat of phase transition (J kg−1)
α = k

ρC
	� Thermal diffusivity (m2 h−1)

γ = αs
αl

	� Dimensionless constant

κ = kl
ks

	� Dimensionless constant
C	� Thermal capacity (J kg−1 °C−1)
TG	� Multi-year average ground temperature 

of permafrost (°C)
Tf 	� Phase transition temperature for soil (°C)
X̄	� Characteristic depth, i.e., the minimum 

depth (m) at which the embankment 
affects the permafrost temperature

(ξ , η)	� Dimensionless coordinates
τ	� Dimensionless time
U(ξ , η; τ)	� Dimensionless temperature of thawing 

soil phase
V(ξ , η; τ )	� Dimensionless temperature of frozen  

phase
vSte = Cs(Tf−TG)

L
	�Pseudo Stefan number

ω	� Frequency of periodic temperature 
change of embankment surface

ς = αs
ωX̄2	� Dimensionless parameter

ε = ζ · vSte	� Perturbation coefficient
δ(ξ ; τ )	� Dimensionless function for the phase 

transition front
superscript “′”	� A Fourier-transformed physical variable
X = η−1

ε
	� Vertical coordinate in the embankment 

active layer (0 ≤ η ≤ δ)

superscript “–”	� Physical variables in the embankment 
active layer

Appendix 2: Derivation of conformal mapping relation

Figures  2 and 3 show the embankment cross section and 
the semi-infinite system after the mapping.

If we set x1 = −∞, x2 = −1− b√
(a−b)2+h2

, x3 =

− b√
(a−b)2+h2

, x6 = ∞, and x4, x5 is determined by the side 

ratio. Using the relation |x3 − x2| = 1 yields the following:

This mapping relation maintains a good mapping 
symmetry.

The Schwarz–Christoffel mapping function is

Let a− b = h, b = 2h, then x2 = −1−
√
2, x3 = −

√
2,

x4 =
√
2, and x5 = 1+

√
2.

Let us define the following terms:

Using the following binomial series,

w1 = −∞, w2 = −a, w3 = −b+ ih,

w4 = b+ ih, w5 = a, w6 = ∞

|w3 − w2| = l2 =
√

(a− b)2 + h2, |w4 − w3| = 2b = l3,

|w5 − w4| = l4 =
√

(a− b)2 + h2

|x4 − x3| =
l3

l2
∴ x4 =

b
√

(a− b)2 + h2

|x5 − x4| =
l4

l2
∴ x5 = 1+

b
√

(a− b)2 + h2
.

w = f (z) = k

∫

[

(z − x2)
α2
π
−1(z − x3)

α3
π
−1

(z − x4)
α4
π
−1(z − x5)

α5
π
−1

]

dz + c.

α2 =
5π

4
, α3 =

3π

4
,α4 =

3π

4
,α5 =

5π

4

w = k

∫

[

(

z +
(

1+
√
2

))
1
4
(

z +
√
2

)− 1
4
(

z −
(

1+
√
2

))
1
4

]

dz + c = k

∫

[

1−
1+ 2

√
2

z2 − 2

]
1
4

dz + c

1+ 2
√
2

z2 − 2
= ξ , z =

(

1+ 2
√
2

ξ
+ 2

)
1
2

,

w = −
1+ 2

√
2

2
√
2

k

∫

(1− ξ)
1
4 ·

(

1+ 2
√
2

2
+ ξ

)− 1
2

ξ−
3
2 dξ

(1− ξ)
1
4 = 1−

1

4
ξ −

1 · 3
4 · 8

ξ2 −
1 · 3 · 7
4 · 8 · 12

ξ3

−
1 · 3 · 7 · 11
4 · 8 · 12 · 16

ξ4 − · · ·
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we can determine k and c as follows

Appendix 3: Metric coefficient hm and Jacobi matrix 
J(x, y)

The metric coefficient and Jacobi matrix J(x, y) along the 
direction of mapping coordinates (x, y) are derived as fol-
lows. The mapping function is given by

Since w is an analytic function, the following relation-
ships hold:

Therefore, we can write

i.e.,

and

k = 0.7388+ 6.7947hi c = −0.0458+ ih.

w = 1.3536k

{

2.7071z − 0.1412

[

0.32465+ ln

∣

∣

∣

√
2+ z

∣

∣

∣
−

1

2
ln

∣

∣

∣
z
2 − 2

∣

∣

∣

]

+
0.50742z

z2 − 2
−

0.338177z
(

z2 − 2
)2

+
0.99472z
(

z2 − 2
)3

}

+ c

= (1.000005+ 18.854i)

×
[

2.7071z − 0.1412

(

0.32465+ ln

∣

∣

∣

√
2+ z

∣

∣

∣
−

1

2
ln

∣

∣

∣
z
2 − 2

∣

∣

∣

)]

+ 0.5074
z

z2 − 2
− 0.3382

z
(

z2 − 2
)2

+ 0.9947
z

(

z2 − 2
)3

− (0.04584− ih)

w = f (z) = u(x, y)+ iv(x, y) = k

∫

[

1−
1+ 2

√
2

z2 − 2

]
1
4

dz.

∂u

∂x
=

∂v

∂y

∂u

∂y
= −

∂v

∂x

dw

dz
= k

[

1−
1+ 2

√
2

z2 − 2

]
1
4

=
∂v

∂y
+ i

∂v

∂x

hx =

√

(

∂u

∂x

)2

+

(

∂v

∂x

)2

=

√

(

∂v

∂x

)2

+

(

∂v

∂y

)2

hy =

√

(

∂u

∂y

)2

+

(

∂v

∂y

)2

=

√

(

∂v

∂x

)2

+

(

∂v

∂y

)2

,

hx = hy,

J(x, y) =
∣

∣

∣

∣

∂(u, v)

∂(x, y)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣

∣

∣

∣

∣

=
∂u

∂x
·
∂v

∂y
−

∂u

∂y
·
∂v

∂x

=
(

∂v

∂x

)2

+
(

∂v

∂y

)2

=
∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

2

.

Therefore, we can write

Appendix 4: Fourier orthogonal basis function

In the space of L2([a, a+ L],m;C), let us set 
dn(x) = L−1/2 exp

{

2π in(x−a)
L

}

, n ∈ Z, which forms a set 
of orthogonal canonical bases. For any continuous meas-
ureable function, we can write

where dn(x) satisfies the following equation:

Then, for η ∈ [δ0, 1], we obtain a = δ0, L = 1− δ0,ϕk(η) =
1

(1−δ0)
1/2 exp

{

2π ik(η−δ0)
1−δ0

}

, andβk = 4π2k

(1−δ0)
2 .If ξ ∈ [−L, L],  

then a = −L, L = 2L, ψl(ξ) = 1

(2L)1/2
exp

{

2π il(ξ+L)
2L

}

,

and αl =
4π2l

4L2
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