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Abstract. By a theorem of Banagl–Chriestenson, intersection spaces of depth one pseudo-
manifolds exhibit generalized Poincaré duality of Betti numbers, provided that certain char-
acteristic classes of the link bundles vanish. In this paper, we show that the middle-perversity
intersection space of a depth one Witt space can be completed to a rational Poincaré dual-
ity space by means of a single cell attachment, provided that a certain rational Hurewicz
homomorphism associated to the link bundles is surjective. Our approach continues previ-
ouswork ofKlimczak covering the case of isolated singularities with simply connected links.
For every singular stratum, we show that our condition on the rational Hurewicz homomor-
phism implies that the Banagl–Chriestenson characteristic classes of the link bundle vanish.
Moreover, using Sullivan minimal models, we show that the converse implication holds at
least in the case that twice the dimension of the singular stratum is bounded by the dimen-
sion of the link. As an application, we compare the signature of our rational Poincaré duality
space to the Goresky–MacPherson intersection homology signature of the given Witt space.
We discuss our results for a class of Witt spaces having circles as their singular strata.

1. Introduction

The method of intersection spaces has been introduced by Banagl [2,3] to provide
a spatial perspective on Poincaré duality for singular spaces. Following Banagl’s
original idea, such a theory should assign to a given singular space X a family of
intersection spaces—namely, spaces I p X parametrized by a so-called perversity
function p—in such a way that, when X is a closed, oriented n-dimensional pseu-
domanifold, generalized Poincaré duality ˜H∗(I p X;Q) ∼= ˜Hn−∗(I q X;Q) holds
for the reduced singular (co)homology groups across complementary perversities
p and q . Recall that this generalized form of Poincaré duality involving perver-
sity functions originates from the well-established intersection homology theory
I H p∗ (X;Q) of Goresky–MacPherson [18,19].

The purpose of this paper is to upgrade the middle perversity intersection space
of a depth one Witt space to a rational Poincaré duality space. The fundamental
class will be constructed by a single cell attachment in the top degree. Before
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discussing our results (see Sect. 2), which build on work of Klimczak [23] and
Banagl–Chriestenson [7], we give in the following an outline of several existing
results in the theory of intersection spaces.

In comparisonwithBanagl’s intersection spacehomology theory H I p∗ (X;Q) =
H∗(I p X;Q) one can observe that Goresky–MacPherson’s intersection homology,
and also Cheeger’s L2 cohomology of Riemannian pseudomanifolds [12–14], arise
from certain intermediate algebraic chain complexes rather than from spatial mod-
ifications. The intersection space construction itself modifies a space only near
its singular strata: Loosely speaking, each singularity link is replaced by a spatial
approximation that truncates its homology in a degree dictated by the perversity
function. Motivation for using such spatial homology truncations (Moore approx-
imations) of the links comes from a similar behavior of intersection homology
groups in the case of isolated singularities (see Section 2 in [2]). As it turns out,
the homology theories H I p∗ and I H p∗ (as well as their corresponding cohomology
theories) are in general not isomorphic. However, at least in the case of singular
Calabi–Yau threefolds, they are related via mirror symmetry (see [3]).

Whenever intersection spaces exists, they serve as a source of desirable fea-
tures that are not available in the context of intersection homology. For instance,
intersection space cohomology comes automatically equipped with a perversity
internal cup product. Moreover, addressing a problem suggested by Goresky and
MacPherson in [20], intersection spaces provide an approach to construct general-
ized homology theories for singular spaces, like intersection K -theory (see Chapter
2.8 in [3], as well as [26]). Naturally, the advantages of the theory H I p∗ over I H p∗
come at the cost that the existence of intersection spaces which satisfy generalized
Poincaré duality is far from granted. For pseudomanifolds with isolated singular-
ities, intersection spaces do always exist, and their duality theory is well-studied
[3]. However, for pseudomanifolds with more complicated singularities, the imple-
mentation of intersection space theory becomes rapidly more involved. This is
already evident in the case of arbitrary two strata pseudomanifolds: Surprisingly,
even if an intersection spaces can be constructed, the existence of a generalized
Poincaré duality isomorphism turns out to be obstructed in general. As discovered
byBanagl and Chriestenson [7], the failure of duality is preciselymeasured by local
duality obstructions, which are certain characteristic classes associated to the link
bundle over the singular stratum of the pseudomanifold. These obstruction classes
are abstractly definable for fiberwise truncatable fiber bundles, and they vanish for
product bundles and certain flat bundles, but not for generally twisted bundles. For
some specific three strata pseudomanifolds with bottom stratum a point, a duality
result for intersection spaces has been established in [4]. By developing an induc-
tive method of intersection space pairs, Agustín and Fernández de Bobadilla have
proposed in their recent preprint [1] a quite general construction of intersection
spaces for pseudomanifolds of arbitrary stratification depth, at least when the link
bundles can be compatibly trivialized. However, an obstruction theory for gener-
alized Poincaré duality of intersection space pairs is not known (compare problem
(6) in Section 2.6 in [1]).
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In view of the difficulties that arise in constructing intersection spaces, it seems
beneficial to study intersection space homology by means of techniques that avoid
constructing the intersection space itself. Notable alternative approaches are via L2

theory [8], via linear algebra [17], via sheaf theory [1], and via differential forms
[5,15]. The approach via L2 theory applies to two strata pseudomanifolds having
trivial link bundle. As for the linear algebra approach, Geske [17] constructs so-
called algebraic intersection spaces on the chain level. His construction is based on
a generalization of Moore approximations to multiple degrees that might in general
not be realizable as a spatial modification of a tubular neighborhood of the singular
set. While algebraic intersection spaces that satisfy generalized Poincaré duality
exist for a large class of Whitney stratified pseudomanifolds, they are remote from
the spatial concept in that they do not exhibit a natural cup product on cohomol-
ogy, and the generalized local duality obstructions of Banagl–Chriestenson can be
shown to vanish for an appropriate choice of the local intersection approximation
(see Theorem 4.10 in [17]). On the level of homology, algebraic intersection spaces
turn out to be non-isomorphic to the intersection space pair approach of Agustín
and Fernández de Bobadilla (see Section 6 in [17]). Note that in [1], Agustín and
Fernández de Bobadilla pursue a sheaf theoretic approach that is inspired by work
of Banagl, Maxim and Budur [6,9,10,24]. Namely, they associate to intersection
space pairs certain constructible sheaf complexes on the original pseudomanifold
satisfying axioms analogous to those of the intersection chain complex in intersec-
tion homology theory [19]. Then, in Theorem 10.6 in [1] they show that so-called
general intersection space complexes give rise to generalized Poincaré duality for
two strata pseudomanifolds. Finally, concerning the differential form approach, we
note the special and important feature that wedge product of forms followed by inte-
gration induces a canonical non-degenerate intersection pairing on cohomology in
analogy with ordinary de Rham cohomology.

Returning to the original spatial approach, Klimczak [23] pursues the idea to
realize Poincaré duality for intersection spaces by cup product followed by evalu-
ation with a fundamental class rather than only showing equality of complemen-
tary Betti numbers. Let us consider the important case of a Witt space X with
isolated singularities. In this case, the intersection spaces associated to the lower
middle and upper middle perversities m and n exist, and can be chosen to be equal,
I X = Im X = I n X . By a Klimczak completion of I X we shall mean a rational
Poincaré duality space of the form ̂I X = I X ∪ en , where n denotes the dimension
of X . If I X admits a Klimczak completion, then the fundamental class in Hn(̂I X)

arises from the newly attached top-dimensional cell en , and an easyMayer-Vietoris
argument implies that theBetti numbers of I X and ̂I X agree in degrees 1, . . . , n−1.
In [23] it is shown that Klimczak completions exist for compact Witt spaces having
isolated singularities with simply connected links. Moreover, the rational homo-
topy type of a Klimczak completion of a simply connected intersection space is
determined by the intersection space according to a theorem of Stasheff [27] (see
Remark 6.5). In view of future applications it seems interesting to invoke rational
surgery theory to realize Klimczak completions by manifolds.

In this paper we study Klimczak completions for middle perversity intersec-
tion spaces of compact depth one Witt spaces. Future study will have to clarify
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the obstructions to the existence of Klimczak completions in the case of higher
stratification depth.

The paper is structured as follows. Section 2 presents our main results in case of
a two strataWitt space. In Sect. 3 we list some notation that will be used throughout
the paper. Sections 4 and 5 contain the proofs of our main technical results. Finally,
in Sect. 6, we prove our main results for depth one Witt spaces, and illustrate them
in an example.

2. Statement of results

In this paper we study Klimczak completions for middle perversity intersection
spaces of compact depth oneWitt spaces. For this purpose, we adopt the framework
of Thom–Mather stratified spaces as presented in Section 8 of [7]. For simplicity,
we consider in the following a two strata Witt space X with singular stratum B.
Then, the Thom–Mather control data induce a possibly twisted smooth fiber bundle
E → B with fiber the link L of B such that the complement of a suitable tubular
neighborhood of B in X is a smooth n-manifold M with boundary ∂M = E . In
this setting, as explained in Section 10 of [7], the intersection spaces Im X and I n X
associated to the lower middle and upper middle perversitiesm and n exist and can
be chosen to be equal, I X = Im X = I n X , provided that the fiber L admits an
equivariant Moore approximation f< : L< → L of degree � 1

2 (dim L + 1)� (with
respect to a suitable structure group for E → B). In view of Theorem 9.5 in [7] one
might speculate that vanishing of Banagl–Chriestenson’s local duality obstructions
for E → B is in some way related to existence of a Klimczak completion for
I X because both assumptions imply Poincaré duality for the Betti numbers of
I X . In this context, a central role is played by the truncation cone, cone(F<),
the mapping cone of the fiberwise truncation F< : ft< E → E induced by f<.
Namely, the local duality obstructions of the bundle E → B vanish if and only if
all (n−1)-complementary cup products in ˜H∗(cone(F<)) vanish, where n denotes
the dimension of X . Moreover, when B is a point and L is simply connected,
then the construction of the Klimczak completion for the intersection space I X =
cone(F<) ∪∂M M is implemented in [23] (see Section 3.2.1 and also Proposition
3.11 therein) as follows. In a first local step, an n-cell en is attached to the truncation
cone to produce a Poincaré duality pair (cone(F<) ∪ en, E), which is then in a
second global step glued to the regular part (M, ∂M) of X to yield the desired
rational Poincaré duality space ̂I X . Generalizing to an arbitrary singular stratum B
and arbitrary link L , our Theorem 4.2 states that a Poincaré duality pair of the form
(cone(F<) ∪ en, E) exists if and only if the rational Hurewicz homomorphism of
the truncation cone in degree n − 1,

Hurn−1∗ : πn−1(cone(F<), pt) ⊗Z Q → Hn−1(cone(F<)), (1)

is surjective. Moreover, we show that the local duality obstructions for E → B
vanish necessarily in that case, which reveals some part of their homotopy theoretic
nature. As a counterpart of Theorem 9.5 in [7], we show in Remark 6.4 that our
Theorem 4.2 implies the following
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Theorem 2.1. Let (X, B) be a compact two strata Witt space of dimension n ≥ 3.
Assume that the link L admits an equivariant Moore approximation f< : L< → L
of degree � 1

2 (dim L+1)�. If the rational Hurewicz homomorphism of the associated
truncation cone (see (1)) is surjective in degree n − 1, then the middle perversity
intersection space I X admits a Klimczak completion.

More generally, our method applies to depth one Witt spaces with more than one
singular stratum (see Theorem 6.3(a)). Note that when B is a point and L is simply
connected, we recover Klimczak’s original result. Recall that the argument in [23]
uses the rational Hurewicz theorem to show that the rational Hurewicz homomor-
phism of the truncation cone is always surjective in the relevant degree. We do not
need to assume that the link is simply connected by employing the results of [28] for
constructing Moore approximations for arbitrary path connected cell complexes.

According to Theorem 4.2, our surjectivity condition on the rational Hurewicz
homomorphism is sufficient for the local duality obstructions to vanish. However,
even in the case of a globally trivial link bundle, we do in general not knowwhether
the converse implication is also true. Nevertheless, under the additional assump-
tion that the truncation cone is simply connected, the converse implication can be
analyzed further by means of minimal Sullivan models from rational homotopy
theory (see Corollary 5.7 and Remark 5.8). In particular, in view of Theorem 4.2,
an important consequence of our Theorem 5.1 is the following

Theorem 2.2. (see Remark 6.4) Let (X, B) be a compact two strata Witt space of
dimension n ≥ 3. Assume that the link L admits an equivariant Moore approx-
imation f< : L< → L of degree � 1

2 (dim L + 1)�. Suppose that cone(F<), the
associated truncation cone, is simply connected. If

n < 3 · 
1
2
(dim L + 1)� =

{ 3
2 (dim L + 1), dim L odd,
3
2 (dim L + 2), dim L even,

or, equivalently,

dim B = n − 1 − dim L <

{ 1
2 (dim L + 1), dim L odd,
1
2 (dim L + 4), dim L even,

then the following statements are equivalent:

(i) The local duality obstructions of the link bundle vanish, that is, all (n − 1)-
complementary cup products in ˜H∗(cone(F<)) vanish.

(ii) The rational Hurewicz homomorphism of the truncation cone (see (1)) is sur-
jective in degree n − 1.

The assumption that the truncation cone is simply connected is valid in many
cases of practical interest—for instance, whenever the link has abelian fundamen-
tal group as pointed out in Example 4.18, or when the link bundle is trivial, see
Example 4.19.

If the dimension of the Witt space X is of the form n = 4d, then it is natural to
study the symmetric intersection form H2d(̂I X) × H2d(̂I X) → Q of a Klimczak
completion ̂I X . In accordance with the results of Section 11 in [7], we can compare
it to theGoresky–MacPherson–Siegel intersection form I H2d (X)× I H2d(X) → Q

on middle-perversity intersection homology (see Section I.4.1 in [25]) as follows.
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Theorem 2.3. (see Remark 6.4) Let (X, B) be a compact two strata Witt space
of dimension n = 4d. Suppose that the rational Hurewicz homomorphism of the
truncation cone (see (1)) is surjective in degree n−1. Then, theWitt elementwH I ∈
W (Q) induced by the symmetric intersection form H2d(̂I X) × H2d(̂I X) → Q of
the Poincaré duality space ̂I X equals the Witt element wI H ∈ W (Q) induced by
the Goresky–MacPherson–Siegel intersection form I H2d(X) × I H2d(X) → Q

on middle-perversity intersection homology. In particular, it follows that the two
intersection forms have equal signatures.

We point out that our proof of Theorem 6.3(c) exploits massively the exis-
tence of a fundamental class for ̂I X , which enables us to invoke Novikov additivity
for Poincaré duality pairs (see Lemma 3.4 in [23]). On the other hand, lacking the
existence of a fundamental class under the assumption that the local duality obstruc-
tions vanish, the argument of Banagl–Chriestenson in Section 11 in [7] requires an
involved construction of an abstract, non-canonical symmetric intersection form
for I X . It seems to be an interesting problem to compare intersection forms of
Klimczak completions to intersection forms that arise from the differential form
approach [5].

In Sect. 6.2we provide a class of examples of depth oneWitt spaceswith twisted
link bundles for which our Theorem 6.3 applies. For further examples concerning
the existence of equivariant Moore approximations in general we refer to Sections
3 and 12 in [7].

3. General notation

We collect some general notation that will be used throughout the paper.
By a pair of spaces (X, A) we mean a topological space X together with a

subspace A ⊂ X . A pointed pair of spaces (X, A, x0) is a pair of spaces (X, A)

together with a basepoint x0 ∈ A. A map of pairs f : (X, A) → (X ′, A′) is a map
f : X → X ′ such that f (A) ⊂ A′.

Let Dp = {x ∈ Rp; x21 +· · ·+ x2p ≤ 1} denote the closed unit ball in Euclidean
p-space Rp, and S p−1 := ∂Dp the standard (p − 1)-sphere. We also fix s0 = 1 ∈
S0 ⊂ S p−1 as a basepoint.

Given a pointed pair of spaces (X, A, x0), the Hurewicz map in degree n ≥ 1
is

Hurn : πn (X, A, x0) → Hn (X, A;Z) , Hurn ([ f ]) = f∗ (ν) ,

where f∗ : Hn (Dn, ∂Dn;Z) → Hn (X, A;Z) is induced by a representative

f : (

Dn, ∂Dn, s0
) → (X, A, x0)

of [ f ] ∈ πn (X, A, x0), and ν denotes a fixed generator of Hn (Dn, ∂Dn;Z) ∼= Z.
For a pair of spaces (X, A), we will denote by Hi (X, A) and Hi (X, A) the i-th

homology and cohomology groups with rational coefficients, respectively. Using
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the canonical identifications Hi (X, A) = Hi (X, A;Z) ⊗Z Q and Hi (X, A) =
HomZ(Hi (X, A;Z),Q), we will also write

Hurn∗ = Hurn ⊗ZQ : πn (X, A, x0) ⊗Z Q → Hn (X, A)

and

Hur∗n = HomZ(Hurn,Q) : Hn (X, A) → HomZ(πn (X, A, x0) ,Q).

Givenmaps X
f←− A

g−→ Y between topological spaces, we define the homotopy
pushout of f and g (see Section 2 in [7]) to be the topological space X∪A Y defined
as the quotient of the disjoint union A×[0, 1] � X �Y by the smallest equivalence
relation generated by {(a, 0) ∼ f (a)| a ∈ A} ∪ {(a, 1) ∼ g(a)| a ∈ A}. In
particular, if X = pt is the one-point space, then pt∪AY = cone(g : A → Y ) =
cone(g) is just themapping cone (the homotopy cofiber) of A

g−→ Y , and throughout
the paper we take the cone point pt ∈ cone(g) as the canonical basepoint. If, in
addition, Y = A and g = idA, then pt∪A A = cone(idA) = cone(A) is just the
cone of the space A. The inclusion A × {1} ⊂ A × [0, 1] induces a canonical
inclusion A ⊂ cone(A). Moreover, given a map g : A → Y , the homotopy pushout

of A
idA←−− A

g−→ Y is just the mapping cylinder cyl(g) of g, and the inclusion
A × {0} ⊂ A × [0, 1] induces a canonical inclusion A ⊂ cyl(g).

Let [M] ∈ Hn(M,Z) denote the fundamental class of a closed oriented n-
manifoldMn . The image of [M]⊗1 under the canonical identification Hn(M,Z)⊗
Q ∼= Hn(M) will be denoted by [M] as well.

4. Truncation cones

Before stating Theorem 4.2, the main result of this section (see Sect. 4.3 for the
proof), we explain the necessary notation taken from [7]. Throughout this section,
let π : E → B be a (locally trivial) fiber bundle of closed manifolds with closed
manifold fiber L and structure group G such that B, E and L are compatibly
oriented. In our applications in Sect. 6, π will arise as a link bundle of a depth
one pseudomanifold X , where we utilize the setting of Thom–Mather stratified
pseudomanifolds that is considered in the work of Banagl and Chriestenson (see
Section 8 in [7]).

Recall that a perversity is a function p : {2, 3, . . . } → {0, 1, . . . }which satisfies
the Goresky-MacPherson growth conditions p(2) = 0 and p(s) ≤ p(s + 1) ≤
p(s) + 1 for all s ∈ {2, 3, . . . }. We fix two perversities p and q , and require
them to be complementary in the sense that p(s) + q(s) = s − 2 = t(s) for
all s ∈ {2, 3, . . . }, where t is called the top perversity. Let n − 1 = dim E and
c = dim L denote the dimensions of the total space and the fiber, respectively. We
define the cut-off degrees k = c − p(c + 1) and l = c − q(c + 1), and note that
k + l = 2c − t(c + 1) = c + 1.

Recall from Definition 3.2 in [7] that a G-equivariant Moore approxima-
tion to L of degree r is a G-space L<r together with a G-equivariant map
L<r → L that induces isomorphisms Hi (L<r ) ∼= Hi (L) in degrees i < r ,



206 D. J. Wrazidlo

and such that Hi (L<r ) = 0 in degrees i ≥ r . We assume that Hi (L) = 0 for
i = min{k, l}, . . . ,max{k, l} − 1, and that the fiber L possesses a G-equivariant
Moore approximation of degree k. Equivalently, there is amap f< : L< → L which
is a G-equivariant Moore approximation to L both of degree k and of degree l. This
situation is of interest in the important case that π is the link bundle of a two strata
Witt space, and p = m and q = n are the lower middle and upper middle perver-
sities defined by m(s) = �s/2� − 1 and n(s) = 
s/2� − 1 for all s ∈ {2, 3, . . . },
respectively (see Section 10 of [7]). In this case it follows that k = l = (c + 1)/2
for c odd, and min{k, l} = c/2 and max{k, l} = c/2 + 1 for c even.

Fix a G-equivariant Moore approximation f< : L< → L which is both of
degree k and of degree l. For later reference, we observe that

˜Hi (cone( f<)) = 0, i < max{k, l}, (2)

which follows from the long exact sequence on reduced homology induced by the
pair (cyl( f<), L<) by using the properties of the Moore approximation.

Following the discussion leading to Definition 6.1 in [7], we can consider the
induced fiberwise truncation (both of degree k and of degree l)

F< : ft< E → E .

Recall that ft< E is the total space of the fiber bundle π< : ft< E → B obtained
by replacing the fiber L of π with the fiber L< (by means of the G-action), and
F< : ft< E → E is induced by f< : L< → L (using G-equivariance) in such a
way that π ◦ F< = π<. The mapping cone of the fiberwise truncation F< plays a
central role in the theory. In fact, according to Definition 9.1 in [7] the perversity p
and perversity q intersection spaces of a two strata pseudomanifold Xn are given
by

I X = I p X = I q X = cone(F<) ∪E M,

where M is the n-dimensional manifold with boundary ∂M = E that arises as the
complement of a suitable tubular neighborhood of B in X . (Note that I X is actually
defined as the mapping cone of the composition of F< with the inclusion E ⊂ M ,
but this space can be seen to be homeomorphic to cone(F<) ∪E M .) Furthermore,
we can characterize the vanishing of the local duality obstructionsO∗(π, k, l) intro-
duced in Definition 6.8 in [7] in terms of the truncation cone cone(F<) as follows.

Lemma 4.1. We have Oi (π, k, l) = 0 for all i /∈ {1, . . . , n − 2}. Moreover, if B
admits a good cover, then we have Oi (π, k, l) = 0 in degree i ∈ Z if and only if
x∪ y = 0 in ˜Hn−1(cone(F<)) for all x ∈ ˜Hi (cone(F<)), y ∈ ˜Hn−1−i (cone(F<)).

Proof. With the fiberwise truncation F< being both of degree k and of degree l,
the local duality obstructions O∗(π, k, l) are defined in terms of a certain map
C≥ : E → Q≥E constructed from F< in Definition 6.3 of [7]. It follows from
Definition 6.8 in [7] that we have Oi (π, k, l) = 0 if and only if the cup products
C∗≥(x ′) ∪ C∗≥(y′) = C∗≥(x ′ ∪ y′) ∈ Hn−1(E) vanish for all x ′ ∈ ˜Hi (Q≥E) and
y′ ∈ ˜Hn−1−i (Q≥E). To show the claims, we use properties (a) and (b) of Q≥E
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stated at the beginning of the proof of Theorem 4.2 (see Sect. 4.3 below), from
where we also recall that property (a) is only available under the assumption that
B admits a good cover. The first claim follows because Q≥E is path connected.
(In fact, we have Q≥E � cone(F<) by property (b) of Q≥E , and the truncation
cone cone(F<) is path connected by Lemma 4.17 below.) To show the second
claim, we first note that the map C∗≥ : Hn−1(Q≥E) → Hn−1(E) is injective by
property (a) of Q≥E because B admits a good open cover by assumption. Then,
the second claim follows from the fact that the cohomology rings H∗(Q≥E) and
H∗(cone(F<)) are isomorphic by property (b) of Q≥E . ��

We state the main result of this section (see Sect. 4.3 for the proof).

Theorem 4.2. Let n ≥ 3 be an integer. Let π : En−1 → B be a fiber bundle of
closedmanifolds with closedmanifold fiber L and structure group G such that B, E
and L are compatibly oriented. Suppose that B admits a good open cover (this holds
whenever B is smooth or at least PL). Let p and q be complementary perversities,
and set k = c− p(c+ 1) and l = c−q(c+ 1), where c = dim L. Suppose that the
fiber L possesses a G-equivariant Moore approximation f< : L< → L which is
both of degree k and of degree l. Let F< : ft< E → E denote the induced fiberwise
truncation of π . Then, the following statements are equivalent:

(i) There exists an attaching map

φ : (Sn−1, s0) → (cone(F<), pt)

and a lift [eφ] ∈ Hn(cone(F<) ∪φ Dn, E) of the fundamental class [E] ∈
Hn−1(E) under the connecting homomorphism

∂n : Hn(cone(F<) ∪φ Dn, E) → Hn−1(E)

such that (cone(F<)∪φ Dn, E) is a rational Poincaré duality pair of dimension
n with orientation class [eφ] (see Definition 4.7).

(ii) The image of the fundamental class [E] ∈ Hn−1(E) under the map

Hn−1(E) → Hn−1(cone(F<))

induced by the inclusion E ⊂ cone(F<) is contained in the image of the rational
Hurewicz homomorphism

Hurn−1∗ : πn−1(cone(F<), pt) ⊗Z Q → Hn−1(cone(F<)).

Furthermore, if either of the above statements holds, thenOi (π, k, l) = 0 for all i .

Remark 4.3. (choice of basepoints)Wepoint out that the proof of the equivalence of
the statements (i) and (i i) in Theorem 4.2 (see Sect. 4.3) works out for any choice of
basepoint x0 ∈ cone(F<), not just for the cone point x0 = pt used in Theorem 4.2.
Moreover, if statement (i i) is valid for a specific choice of basepoint, then it is
valid for any choice of basepoint of cone(F<). (In fact, cone(F<) is path connected
by Lemma 4.17, and a change-of-basepoint transformation on homotopy groups
covers the identity map on homology groups under the Hurewicz homomorphism.)
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Remark 4.4. (CW structures) In applications it might be necessary to know that
the Poincaré duality pair provided by statement (i) in Theorem 4.2 is a CW pair. To
achieve this, we assume that the spaces B, L , and L< carry CW structures, and that
the map f< : L< → L is cellular. Then, note that E and ft< E inherit natural CW
structures in such a way that the induced fiberwise truncation F< : ft< E → E
is cellular. Thus, the truncation cone cone(F<) has a cell structure. Finally, by
applying the cellular approximation theorem to the map φ in Lemma 4.5, we may
without loss of generality assume that the map φ in statement (i) of Theorem 4.2
is cellular. Hence, it follows that (cone(F<) ∪φ Dn, E) is a CW pair.

4.1. The rational Hurewicz homomorphism

The following lemma is a slight modification of Lemma 3.8 in [23, p. 248], and
will be used in the proofs of Theorem 4.2 (see Sect. 4.3) and Theorem 6.3.

Lemma 4.5. Let n ≥ 3 be an integer. Let φ : (Sn−1, s0) → (X, x0) be a map of
pointed spaces, and let Xφ = cone(φ) denote the associated mapping cone. Then
for any class x ∈ Hn−1(X) the following statements are equivalent:

(i) There exists q ∈ Q such that the element [φ] ⊗ q ∈ πn−1(X, x0) ⊗Z Q is
mapped to the class x ∈ Hn−1(X) under the Hurewicz homomorphism

Hurn−1∗ : πn−1(X, x0) ⊗Z Q → Hn−1(X).

(ii) The class x ∈ Hn−1(X) lies in the image of the connecting homomorphism

∂n : Hn(X
φ, X) → Hn−1(X).

Proof. Consider the commutative diagram

πn
(

Xφ, X, x0
) ⊗Z Q πn−1 (X, x0) ⊗Z Q

Hn
(

Xφ, X
)

Hn−1 (X) .

∂n

Hurn∗ Hurn−1∗
∂n

By construction of Xφ we have a map of pointed pairs

(�, φ) : (Dn, Sn−1, s0) → (Xφ, X, x0).

Consider the induced element [�]⊗1 ∈ πn
(

Xφ, X, x0
)⊗ZQ. The homomorphism

∂n : πn
(

Xφ, X, x0
) ⊗Z Q → πn−1 (X, x0) ⊗Z Q

maps [�] ⊗ 1 to the element [φ] ⊗ 1 ∈ πn−1 (X, x0) ⊗Z Q. The homomorphism

Hurn∗ : πn
(

Xφ, X, x0
) ⊗Z Q → Hn

(

Xφ, X
)
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maps [�] ⊗ 1 to a generator of Hn
(

Xφ, X
) ∼= H̃n(Xφ/X) ∼= H̃n(Sn) ∼= Q. (Here,

the isomorphism Hn(Xφ, X) ∼= ˜Hn(Xφ/X) holds by Proposition 2.22 in [22, p.
124].) Thus, if statement (i) holds, then we have

x = Hurn−1∗([φ] ⊗ q) = Hurn−1∗(∂n([�] ⊗ q)) = ∂n(Hurn∗([�] ⊗ q)),

and statement (i i) follows. Conversely, if statement (i i) holds, then there exists
q ∈ Q such that

x = ∂n(q · Hurn∗([�] ⊗ 1)) = Hurn−1∗(∂n([�] ⊗ q)) = Hurn−1∗([φ] ⊗ q),

and statement (i) follows. ��
Remark 4.6. For n = 2, Lemma 4.5 and its proof remain valid after replacing
π1(X, x0) by its abelianization π1(X, x0)ab. However, the integer n will arise in
our applications in Sect. 6 as the dimension of depth one pseudomanifolds. As
their singular strata are required to have codimension at least 2 (see Sect. 6.1) and
the case of point strata is covered by [23], we will generally assume that n ≥ 3
throughout the paper.

4.2. Rational Poincaré duality pairs

We recall the fundamental concept of Poincaré duality pairs of spaces (compare
Section 3.1 in [23] and Section I.2 in [11]). In this paper we do not require cell
structures on our spaces, but see Remark 4.4.

Definition 4.7. Apair (A, B) is called (rational) Poincaré duality pair of dimension
n if

(i) all homology groups Hr (A) and Hr (B), r ∈ Z, are of finite rank, and
(ii) there exists a class a ∈ Hn(A, B) such that

− ∩ a : Hr (A) → Hn−r (A, B)

is an isomorphism for all r ∈ Z. Any such class a ∈ Hn(A, B) will be called
an orientation class for (A, B).

Remark 4.8. It is well-known (see Remark 3.2 in [23, p. 245] and Corollary I.2.3
in [11, p. 8]) that for a Poincaré duality pair (A, B) of dimension n which is
equippedwith an orientation class a ∈ Hn(A, B), the associated oriented boundary
B = (B,∅) is a Poincaré duality pair of dimension n−1 bymeans of the orientation
class ∂na ∈ Hn−1(B).

In the following, a Poincaré duality pair of the form A = (A,∅) will be called
a Poincaré space.

We state our main technical result, which is a careful extension of Lemma 3.7
in [23, p. 247]. Our purpose is to cover also the case of depth one pseudomanifolds
having non-isolated singular strata as considered in [7].
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Proposition 4.9. Let Z be aPoincaré space of dimension n−1 > 0with orientation
class [Z ] ∈ Hn−1(Z). Let f : Y → Z be a map from a space Y to Z such that the
induced map f∗ : H0(Y ) → H0(Z) is bijective, and let X = cone( f ) denote the
mapping cone of f . Suppose that for every r ∈ Z the following conditions hold:

(1) The inclusion Z ⊂ X induces a surjective homomorphism Hr (Z) → Hr (X).
(2) The rational vector spaces Hr (Y ) and ˜Hn−r−1(X) have the same rank.

Then, for any space Xφ = cone(φ) given by the mapping cone of some map
φ : Sn−1 → X the following statements are equivalent:

(i) There exists a lift [eφ] ∈ Hn(Xφ, Z) of the orientation class [Z ] ∈ Hn−1(Z)

under the connecting homomorphism ∂n : Hn(Xφ, Z) → Hn−1(Z) such that
the pair (Xφ, Z) is a Poincaré duality pair of dimension n with orientation
class [eφ].

(ii) The orientation class [Z ] ∈ Hn−1(Z) of Z lies in the image of the connecting
homomorphism ∂n : Hn(Xφ, Z) → Hn−1(Z).

(iii) The image of the orientation class [Z ] ∈ Hn−1(Z) of Z under the map
Hn−1(Z) → Hn−1(X) induced by the inclusion Z ⊂ X lies in the image
of the connecting homomorphism ∂n : Hn(Xφ, X) → Hn−1(X).

Proof. (i i) ⇔ (i i i). The inclusion of pairs (Xφ, Z) ⊂ (Xφ, X) induces the com-
mutative diagram

Hn(Z) Hn(Xφ) Hn(Xφ, Z) Hn−1(Z) Hn−1(Xφ)

Hn(X) Hn(Xφ) Hn(Xφ, X) Hn−1(X) Hn−1(Xφ).

η =

∂n

ζ ξ =
∂n

Let us show that η and ξ are isomorphisms. First, note that η and ξ are surjective
homomorphisms of finite dimensional vector spaces by assumption (1) applied for
r = n and r = n − 1, respectively, as well as by Definition 4.7(i). Next, observe
that Hn(Z) ∼= H−1(Z) = 0 and Hn−1(Z) ∼= H0(Z) because Z is a Poincaré space
of dimension n − 1. Moreover, using that H0(Y ) ∼= H0(Z) and that n − 1 > 0, we
obtain Hn−1(X) = ˜Hn−1(X) ∼= H0(Y ) ∼= H0(Z) by assumption (2) applied for
r = 0. All in all, we have shown that η and ξ are isomorphisms. Finally, the five
lemma implies that the map ζ in the above diagram is an isomorphism as well, and
the equivalence (i i) ⇔ (i i i) follows.

Remark 4.10. For future reference we note that assuming either (i i) or (i i i) in
Proposition 4.9, we can show that the connecting homomorphisms in the diagram

Hn(Xφ, Z) Hn−1(Z)

Hn(Xφ, X) Hn−1(X)

∂n

∼= ∼=
∂n

are both injective because Hn(Xφ, Z) ∼= Hn(Xφ, X) ∼= Q, and they are non-trivial.
(Indeed, observe that we have

Hn(X
φ, X) ∼= ˜Hn(X

φ/X) ∼= ˜Hn(S
n) ∼= Q.
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Here, the isomorphism Hn(Xφ, X) ∼= ˜Hn(Xφ/X) holds by Proposition 2.22 in [22,
p. 124]. Note that for any map α : C → D, the pair (cone(α), D) is a good pair,
that is, D is a nonempty closed subset of cone(α) that is a deformation retract of
some neighborhood in cone(α).)

(i) ⇒ (i i). This implication is clear because statement (i) implies that [Z ] =
∂n([eφ]).
(i i) ⇒ (i). By statement (i i) there exists an element [eφ] ∈ Hn(Xφ, Z) such
that ∂n([eφ]) = [Z ] ∈ Hn−1(Z). (In fact, eφ is uniquely determined because ∂n
is injective by Remark 4.10.) We claim that the homomorphism

− ∩ [eφ] : Hr (Xφ) → Hn−r (X
φ, Z)

is an isomorphism for every r ∈ Z. (It is clear by assumption (1) that all rational
homology groups of Xφ have finite rank, so that (Xφ, Z)will then be a Poincaré
duality pair of dimension n according to Definition 4.7.) In general, observe
that every element α ∈ Hn(Xφ, Z) gives by Proposition I.1.4(ii) in [11, p. 4]
rise to a commutative diagram

Hr (Xφ) Hn−r (Xφ, Z)

Hr (Z) Hn−1−r (Z) .

incl∗

−∩α

∂n−r

−∩∂nα

If we specialize to α = [eφ], then the lower horizontal homomorphism − ∩ [Z ] is
an isomorphism because Z is a Poincaré space of dimension n − 1. Thus, in order
to show that the upper horizontal row of the above diagram is an isomorphism, it
suffices to verify that for every r ∈ Z, the following two assertions (a) and (b) hold.
(In fact, by assertion (a) below, the map incl∗ : Hr (Xφ) → Hr (Z) in the above
diagram is injective. Since the lower horizontal map − ∩ [Z ] is an isomorphism,
it follows that the upper horizontal map − ∩ [eφ] is injective as well, and thus an
isomorphism in view of assertion (b) below.)

(a) The inclusion Z ⊂ Xφ induces a surjective map Hr (Z) → Hr (Xφ). In view of
assumption (1), our claim (a) is in fact equivalent to showing that the inclusion
X ⊂ Xφ induces a surjective homomorphism Hr (X) → Hr (Xφ).We compute

Hr (X
φ, X) ∼= ˜Hr (X

φ/X) ∼= ˜Hr (S
n) ∼=

{

Q, r = n,

0, r �= n.

Thus, for r �= n, the claim follows from the exactness of

Hr (X) → Hr (X
φ) → Hr (X

φ, X).

For r = n we consider the exact sequence

Hn(X) → Hn(X
φ) → Hn(X

φ, X)
∂n→ Hn−1(X).

Since the connecting homomorphism ∂n is injective by Remark 4.10, we con-
clude that the homomorphism Hn(X) → Hn(Xφ) is surjective.
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Remark 4.11. Suppose that either (i i) or (i i i) holds in Proposition 4.9. Then, for
future reference, we note that an inspection of the homology long exact sequence
of the pair (Xφ, X) combined with the above information implies that the inclusion

X ⊂ Xφ induces an isomorphism Hr (X)
∼=−→ Hr (Xφ) for r �= n − 1, whereas

the induced map Hn−1(X) → Hn−1(Xφ) is surjective with kernel isomorphic to
Hn(Xφ, X) ∼= Q.

(b) The rational vector spaces Hr (Xφ) and Hn−r (Xφ, Z) have the same (finite)
rank.

To prove assertion (b), it suffices to show that

Hr (X
φ, Z) ∼=

{

˜Hr−1(Y ), r �= n,

Hn−1(Y ) ⊕ Q, r = n.

(In fact, writing δi,i = 1 and δi, j = 0 for i �= j , we then obtain

rank Hn−r (X
φ, Z)

n �=1= rank Hn−r−1(Y ) − δn−r,1 + δn−r,n

(2)= rank ˜Hr (X) − δr,n−1 + δr,0

= rank Hr (X) − δr,n−1

4.11= rank Hr (X
φ),

where we have used n �= 1, as well as assumption (2) and Remark 4.11.)
The inclusion of pairs (X, Z) ⊂ (Xφ, Z) induces the commutative diagram

Hr (Z) Hr (X) Hr (X, Z) Hr−1(Z) Hr−1(X)

Hr (Z) Hr (Xφ) Hr (Xφ, Z) Hr−1(Z) Hr−1(Xφ).

=

∂r

=
∂r

Observe that for all r ∈ Z,

Hr (X, Z) ∼= ˜Hr (X/Z) ∼= ˜Hr (�Y ) ∼= ˜Hr−1(Y ).

(Here, the isomorphism Hr (X, Z) ∼= ˜Hr (X/Z) holds by Proposition 2.22 in [22,
p. 124] because X is the cone of f : Y → Z .) Since by Remark 4.11 the inclusion

X ⊂ Xφ induces an isomorphism Hr (X)
∼=−→ Hr (Xφ) for r �= n − 1, the claim

follows for r /∈ {n − 1, n} from the five lemma applied to the above diagram. We
check the remaining cases:

• In the case r = n − 1, we note that in the above diagram the homomorphism
Hn−1(Z) → Hn−1(X) is surjective by assumption (1), and the homomorphism
Hn−1(X) → Hn−1(Xφ) is surjective by Remark 4.11. Thus, we obtain the
following simplified commutative diagram with exact rows:

0 0 Hn−1(X, Z) Hn−2(Z) Hn−2(X)

0 0 Hn−1(Xφ, Z) Hn−2(Z) Hn−2(Xφ).

∂n−1

=
∂n−1
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Finally, as the right vertical arrow Hn−2(X) → Hn−2(Xφ) is an isomorphism
by Remark 4.11, the five lemma yields

Hn−1(X
φ, Z) ∼= Hn−1(X, Z) ∼= ˜Hn−2(Y ).

• In the case r = n, we consider the following portion of the homology exact
sequence of the pair (X, Z):

Hn(X) → Hn(X, Z) → Hn−1(Z) → Hn−1(X).

Note that Hn−1(X) ∼= H0(Y ) and Hn(X) ∼= 0 by assumption (2). As the
homomorphism Hn−1(Z) → Hn−1(X) is surjective by assumption (1), we
obtain

Hn−1(Z) ∼= Hn(X, Z) ⊕ Hn−1(X) ∼= Hn−1(Y ) ⊕ H0(Y ).

Hence, it follows from Hn−1(Z) ∼= H0(Z) ∼= H0(Y ) that Hn−1(Y ) = 0. On
the other hand, Hn(Xφ, Z) ∼= Q according to Remark 4.10.

Remark 4.12. Suppose that either (i i) or (i i i) holds in Proposition 4.9. Then, for
future reference, we note that the inclusion of pairs (X, Z) ⊂ (Xφ, Z) induces

an isomorphism Hr (X, Z)
∼=−→ Hr (Xφ, Z) for r �= n, whereas Hn(Xφ, Z) ∼=

Hn(X, Z) ⊕ Q. ��

By invoking Lemma 4.5, we obtain the following

Corollary 4.13. If f : Y → Z and (X, x0) = (cone( f ), pt) satisfy all assumptions
of Proposition 4.9, then the following statements are equivalent:

(i) There exists a map φ : (Sn−1, s0) → (X, x0) such that statement (i) of Propo-
sition 4.9 holds for Xφ = cone(φ).

(ii) The image of the orientation class [Z ] ∈ Hn−1(Z) of Z under the map
Hn−1(Z) → Hn−1(X) induced by the inclusion Z ⊂ X lies in the image
of the rational Hurewicz homomorphism

Hurn−1∗ : πn−1(X, x0) ⊗Z Q → Hn−1(X).

Proof. By combining the equivalence (i) ⇔ (iii) of Proposition 4.9 and the equiv-
alence (ii) ⇔ (i) of Lemma 4.5, we conclude that statement (i) is equivalent to
the following statement. There exist a map φ : (Sn−1, s0) → (X, x0) and q ∈ Q

such that Hurn−1∗([φ] ⊗ q) ∈ Hn−1(X) equals the image of the orientation class
[Z ] ∈ Hn−1(Z) of Z under the map Hn−1(Z) → Hn−1(X) induced by the inclu-
sion Z ⊂ X . But since every element of πn−1(X, x0) ⊗Z Q can be written in the
form [φ]⊗q for suitable φ and q, the previous statement is equivalent to statement
(ii), and the claim follows. ��
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4.3. Proof of Theorem 4.2

Following Definition 6.2 in [7], we define the fiberwise cotruncation ft≥ E (both of
degree k and of degree l) of the fiber bundle π : E → B as the homotopy pushout
of the diagram

B
π<←− ft< E

F<−→ E .

In Definition 6.3 of [7] an auxiliary space Q≥E together with a structure map
C≥ : E → Q≥E is introduced. In Section 6 of [7] the following properties of
Q≥E are derived (the assumption that B admits a good cover is needed to deduce
item (a) and (c) because they are both based on Proposition 6.5 in [7]):

(a) By Lemma 6.6 in [7], the map C≥ : E → Q≥E induces for every r ∈ Z a
surjective homomorphism C≥∗ : Hr (E) → Hr (Q≥E).

(b) By the proof of Lemma 6.6 in [7], there exists a diagram

E cone(F<)

Q≥E ft≥ E/B

incl

C≥ �
�

which commutes on the nose. In particular, Q≥E and cone(F<) are homotopy
equivalent spaces.

(b) According to Proposition 6.7 in [7], the rational vector spaces Hr (ft< E) and
˜Hn−r−1(Q≥E) have for every r ∈ Z the same rank.

Let us prove the equivalence (i) ⇔ (i i) claimed by Theorem 4.2. For this
purpose, it suffices to apply Corollary 4.13 to the map f : Y → Z given by
F< : ft< E → E . Note that the space Z = E is a Poincaré space with ori-
entation class given by [Z ] = [E] ∈ Hn−1(Z) because E is a closed oriented
manifold. Moreover, note that the map F< : ft< E → E induces a bijection
F< : H0(ft< E) → H0(E). Taking (X, x0) = (cone(F<), pt) to be the mapping
cone of the map f = F<, we see that condition (1) of Proposition 4.9 holds by
properties (a) and (b) of Q≥E , and that condition (2) of Proposition 4.9 holds by
properties (b) and (c) of Q≥E . Thus, all assumptions of Corollary 4.13 hold, and
the desired equivalence (i) ⇔ (i i) follows.

We continue to use the notation f : Y → Z for the map F< : ft< E → E ,
and write X = cone(F<) for the mapping cone of f = F<. From now on we
suppose that either of the equivalent statements of Theorem 4.2 holds. Fix r ∈
{1, . . . , n − 2}. We have to show that the local duality obstructionOn−1−r (π, k, l)
vanishes (see Lemma 4.1). By statement (i) there is a map φ : Sn−1 → X and a
lift [eφ] ∈ Hn(Xφ, Z) of the orientation class [Z ] ∈ Hn−1(Z) such that (Xφ, Z)

is a rational Poincaré duality pair of dimension n with orientation class [eφ]. By
Theorem I.2.2 in [11, p. 8], there is the following commutative diagram:

Hr (Xφ) Hn−r (Xφ, Z)

Hr (Z) Hn−1−r (Z) .

−∩[eφ ]

incl∗ ∂n−r

−∩[Z ]
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Factoring the inclusion Z ⊂ Xφ as Z ⊂ X ⊂ Xφ , and using the inclusion of
pairs (X, Z) ⊂ (Xφ, Z), we can extend the diagram to a commutative diagram as
follows:

Hr (X) Hr (Xφ) Hn−r (Xφ, Z) Hn−r (X, Z)

Hr (Z) Hn−1−r (Z) .
incl∗

incl∗

incl∗

−∩[eφ ]

∂n−r
∂n−r

incl∗

−∩[Z ]

Since for r ∈ {1, . . . , n − 2} the inclusions X ⊂ Xφ and (X, Z) ⊂ (Xφ, Z)

induce isomorphisms Hr (Xφ)
∼=−→ Hr (X) by Remark 4.11 and Hn−r (X, Z)

∼=−→
Hn−r (Xφ, Z) by Remark 4.12, respectively, we obtain a commutative diagram of
the form

Hr (X) Hn−r (X, Z)

Hr (Z) Hn−1−r (Z) ,

Dφ
r

∼=
incl∗ ∂n−r

−∩[Z ]
∼=

(3)

in which Dφ
r is the unique isomorphism such that the diagram

Hr (X) Hn−r (X, Z)

Hr (Xφ) Hn−r (Xφ, Z)

Dφ
r

∼=
incl∗∼=

−∩[eφ ]
∼=

∼= incl∗ (4)

commutes. We claim that diagram (3) is part of a commutative diagram of the form

Hr (ft≥ E/B) Hr (X) Hn−r (X, Z) Hn−r (cone(Y ),Y )

Hr (Q≥E) Hr (Z) Hn−1−r (Z) Hn−1−r (Y ).

∼=

∼= (I ) (3)

Dφ
r

∼=
incl∗ (I I )∂n−r

∼=

∼=
C∗≥ −∩[Z ] f∗

In fact, the commutative square (I ) exists by property (b) of Q≥E , and the com-
mutative square (I I ) is given by the square (I I )′ in the following commutative
diagram, which is induced by the canonical map of pairs ( ˜f , f ) : (cone(Y ),Y ) →
(X, Z):

Hn−r−1(Y ) Hn−r (cone(Y ),Y ) ˜Hn−r (cone(Y )/Y )

Hn−r−1(Z) Hn−r (X, Z) ˜Hn−r (X/Z) .

(I I )′f∗

∂n−r

˜f∗

quot∗

∼=
∂n−r quot∗

(Note that ˜f∗ is an isomorphism because the horizontal arrows induced by the
quotient maps (cone(Y ),Y ) → (cone(Y )/Y, pt) and (X, Z) → (X/Z , pt) are
isomorphisms (see Proposition 2.22 in [22, p. 124], and note that (cone(Y ),Y ) and
(X, Z) are good pairs). Moreover, the connecting homomorphism

∂n−r : Hn−r (cone(Y ),Y ) → Hn−r−1(Y )
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is an isomorphism because cone(Y ) is contractible, and r �= n − 1.)
All in all, we obtain a commutative diagram

Hr (Q≥E) Hn−r−1(Y )

Hr (Z) Hn−1−r (Z) .

∼=

C∗≥ f∗
−∩[Z ]

∼=

(5)

After applying the functor HomQ(−,Q), we conclude from Proposition 6.9 in [7]
that On−1−r (π, k, l) vanishes.

This completes the proof of Theorem 4.2.

Remark 4.14. The isomorphism Dφ
r in diagram (4) does actually not depend on

φ. In fact, the isomorphism Hr (Q≥E)
∼=−→ Hn−r−1(Y ) in diagram (5) is unique

according to the last statement of Proposition 6.9 in [7].

4.4. Connectivity of truncation cones

Recall from the beginning of Sect. 4 thatπ : E → B is a (locally trivial) fiber bundle
of closed manifolds with closed manifold fiber L and structure group G such that
B, E and L are compatibly oriented. The dimensions of the total space and the fiber
are n−1 = dim E and c = dim L , respectively. Using the given perversities p and
q , we have the cut-off degrees k = c − p(c + 1) and l = c − q(c + 1). Recall that
f< : L< → L is a G-equivariant Moore approximation which is both of degree k
and of degree l, and F< : ft< E → E is the associated fiberwise truncation.

In order to be able to apply rational homotopy theory to truncation cones in
Sect. 5, we study the connectivity properties of truncation cones in the present
section.

The following result shows that the reduced homology of truncation cones
vanishes in low degrees.

Lemma 4.15. If B admits a good cover (e.g., if B is smooth or at least PL), then
the homology of cone(F<) satisfies ˜Hi (cone(F<)) = 0 for i < max{k, l}.
Proof. Weemploy the local to global technique based on precosheaves as presented
in Section 4 of [7], and assume familiarity with the notation and definitions used
therein.

Our argument requires a slightmodification of Proposition 4.4 of [7] that applies
to finite sequences of δ-compatible morphisms between precosheaves instead of
inifinite sequences (see Proposition 4.16 below). For this purpose, consider an open
cover U of the topological space B. Let τU denote the category whose objects are
unions of finite intersections of open sets inU , andwhosemorphisms are inclusions.
On the product category τU × τU , consider the functors ∩,∪: τU × τU → τU
induced by intersection and union of open sets, respectively. For i = 1, 2, projection
to the i-th factor determines a projection functor pi : τU×τU → τU .We also need
for i = 1, 2 the natural transformations ji : pi → ∪ and ιi : ∩ → pi induced by the
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inclusions U, V ⊂ U ∪ V and U ∩ V ⊂ U, V , respectively. Now consider a finite
sequence Fi = F0, . . . ,FN of precosheaves on B. Slightly modifying Definition
4.3 in [7], we say that the finite sequenceFi satisfies theU-Mayer-Vietoris property
if there are natural transformations of functors on τU × τU ,

δFi : Fi ◦ ∪ → Fi−1 ◦ ∩, 1 ≤ i ≤ N ,

such that for every pair of open sets U, V ∈ τU the following sequence is exact:

FN (U ∩ V )
(ιN1 ,ιN2 )−→ FN (U ) ⊕ FN (V )

j N1 − j N2−→ FN (U ∪ V )
δFN−→ . . .

· · · δFi+1−→ Fi (U ∩ V )
(ιi1,ι

i
2)−→ Fi (U ) ⊕ Fi (V )

j i1− j i2−→ Fi (U ∪ V )
δFi−→ . . .

· · · δF1−→ F0(U ∩ V )
(ι01,ι

0
2)−→ F0(U ) ⊕ F0(V )

j01− j02−→ F0(U ∪ V ) −→ 0.

(Note that the only difference to Definition 4.3 in [7] is that our sequence ends to the
left with the termFN (U ∩V ) becauseFN+1(U ∪V ), δFN+1, etc. are not defined.) In
accordance with Definition 4.3 in [7], a collection of morphisms of precosheaves
fi : Fi → Gi , 0 ≤ i ≤ N , is called δ-compatible if for every pair of open sets
U, V ∈ τU the following diagram commutes for all i (where 0 ≤ i ≤ N − 1 in our
setting):

Fi+1(U ∪ V ) Fi (U ∩ V )

Gi+1(U ∪ V ) Gi (U ∩ V ).

δFi+1(U,V )

fi+1(U∪V ) fi (U∩V )
δGi+1(U,V )

Next we state our adaption of Proposition 4.4 in [7] to finite sequences of δ-
compatible morphisms between precosheaves. (The only change in the proof is
that the five lemma is applied to a commutative ladder that ends on the left with
the homomorphism fN (V j ) : FN (V j ) → GN (V j ).)

Proposition 4.16. LetU be an open cover of the topological space B. Let fi : Fi →
Gi , 0 ≤ i ≤ N, be a finite sequence of δ-compatible morphisms between U-
locally constant precosheaves on B that satisfy the U-Mayer-Vietoris property. If
the map fi (U ) : Fi (U ) → Gi (U ) is an isomorphism for every U ∈ U and for every
0 ≤ i ≤ N, then fi (B) : Fi (B) → Gi (B) is an isomorphism for all 0 ≤ i ≤ N.

Recall that we have a fiber bundle π< : ft< E → B with fiber L<. Consider
also the fiber bundle ρ : cyl(F<) → B with fiber cyl( f<), and note that there are
morphisms of fiber bundles ft< E → cyl(F<) → E restricting to fiberwise maps
L< → cyl( f<) → L .

Fix a good cover U of B, and set N = max{k, l}−1.We apply Proposition 4.16
to the precosheavesFi and Gi , 0 ≤ i ≤ N , given on open setsU ∈ τU byFi (U ) =
Hi (ρ

−1(U ), π−1
< (U )) and Gi (U ) = 0, and the morphisms of precosheaves

fi : Fi → Gi determinedby the uniquemap fi (U ) : Hi (ρ
−1(U ), π−1

< (U )) → 0 for
open sets U ∈ τU . Note that, by the Eilenberg-Steenrod axioms, the precosheaves
Fi are U-locally constant because U is a good open cover of B, and satisfy the
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U-Mayer-Vietoris property with respect to the connecting homomorphisms of the
relative form of theMayer-Vietoris sequence. It is clear that the trivial precosheaves
Gi are U-locally constant and satisfy the U-Mayer-Vietoris property with respect
to the natural transformations δGi = 0. Obviously, the morphisms of precosheaves
fi : Fi → Gi are δ-compatible. Moreover, as every open setU ∈ U is contractible,
we conclude for every 0 ≤ i ≤ N (< max{k, l}) that fi (U ) : Fi (U ) → Gi (U ) = 0
is an isomorphism because

Fi (U ) = Hi (ρ
−1(U ), π−1

< (U )) ∼= Hi (cyl( f<), L<) ∼= ˜Hi (cone( f<)) = 0,

where the last equality holds by equation (2). Hence, Proposition 4.16 implies that
Fi (B) = 0 for all 0 ≤ i ≤ N , where note that

Fi (B) = Hi (cyl(F<), ft< E) ∼= ˜Hi (cone(F<)).

��
The following result provides a proof of simple connectivity of truncation cones,

at least under a mild hypothesis on the underlying Moore approximation. Simple
connectivity of the truncation conewill enable us to invoke themachinery of rational
homotopy theory in Sect. 5.

Lemma 4.17. The truncation cone, cone(F<), is path connected. If the equivariant
Moore approximation f< : L< → L induces a surjection f<∗ : π1(L<, x0) →
π1(L , f<(x0)) for every basepoint x0 ∈ L<, then cone(F<) is simply connected.

Proof. Since f< : L< → L is a Moore approximation of positive degree, the
inducedmap H0(L<) → H0(L) is an isomorphism. Hence, cone( f<), themapping
cone of f<, is path connected. As the bundle morphism F< : ft< E → E restricts
on fibers to copies of the map f<, it follows that cone(F<) is path connected.

It remains to show that π1(cone(F<), pt) is trivial. For this purpose, we note
that the bundle morphism F< : ft< E → E can be written as the disjoint union
F< = ⊔

i F
(i)
< of bundle morphisms

F (i)
< : ft< E (i) → E (i),

where ft< E = ⊔

i ft< E (i) and E = ⊔

i E
(i) are decompositions into the path

components, and we note that the bundles π< : ft< E → B and π : E → B
restrict to bundles π

(i)
< : ft< E (i) → B and π(i) : E (i) → B. (In fact, from every

point x ∈ E there exists a path in E to a point of the form F<(y) for some
y ∈ ft< E because F< restricts over the basepoint π(x) ∈ B to a copy of the
map f< : L< → L , and we can use surjectivity of the induced map H0(L<) →
H0(L). Conversely, given two points y0, y1 ∈ ft< E whose images under F< can be
connected by a path in E , we construct a path between y0 and y1 in ft< E as follows.
We choose a path γE : [0, 1] → E from γE (0) = F<(y0) to γE (1) = F<(y1).
Then, γE is a section of π : E → B along the path γ = π ◦ γE : [0, 1] → B. In
particular we have F<(y0) ∈ π−1(γ (0)) and F<(y1) ∈ π−1(γ (1)). The pullback
of the bundle morphism F< : ft< E → E under γ is isomorphic to the bundle
morphism f< × id[0,1] : L< × [0, 1] → L × [0, 1] of trivial bundles over the
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interval [0, 1]. Under this pullback, the points y0 ∈ π−1
< (γ (0)) and y1 ∈ π−1

< (γ (1))
correspond to points of the form (y′

0, 0) ∈ L< × {0} and (y′
1, 1) ∈ L< × {1},

respectively. Furthermore, the section γE : [0, 1] → E of π : E → B pulls back
to a section γ ′

E : [0, 1] → L × [0, 1] of the projection L × [0, 1] → [0, 1] such
that γ ′

E (0) = ( f<(y′
0), 0) ∈ L × {0} and γ ′

E (1) = ( f<(y′
1), 1) ∈ L × {1}. Using

injectivity of the map H0(L<) → H0(L) induced by f<, we conclude that there
is a section γ ′

< : [0, 1] → L< × [0, 1] of the projection L< × [0, 1] → [0, 1]
such that γ ′

<(0) = (y′
0, 0) and γ ′

<(1) = (y′
1, 1). All in all, the composition of

γ ′
< : [0, 1] → L< × [0, 1] with the structure map L< × [0, 1] → ft< E is the

desired path in ft< E .) Since cone(F<) = ∨

i cone(F
(i)
< ), we conclude from the

Seifert–van Kampen theorem for a bouquet of spaces (see Example 1.21 in [22, p.
43]) that in order to show that π1(cone(F<), pt) is trivial, it suffices to show that
π1(cone(F

(i)
< ), pt) is trivial for every i .

Fix an index i . The Seifert–van Kampen theorem implies that the fundamen-
tal group π1(cone(F

(i)
< ), pt) is trivial when the canonical inclusion ft< E (i) ⊂

cyl(F (i)
< ) induces a surjection on fundamental groups. In view of the exactness of

the sequence

π1(ft< E (i)) → π1(cyl(F
(i)
< )) → π1(cyl(F

(i)
< ), ft< E (i)),

it suffices to show that π1(cyl(F
(i)
< ), ft< E (i)) is trivial. By the discussion in [22, p.

346], this means we have to show that every path [0, 1] → cyl(F (i)
< )with endpoints

in ft< E (i) is homotopic rel endpoints to a path [0, 1] → ft< E (i).
Let us show that every path α : [0, 1] → cyl(F<) with endpoints in ft< E ⊂

cyl(F<) is homotopic rel endpoints to a path [0, 1] → ft< E . Note that we
have a fiber bundle ρ : cyl(F<) → B with fiber cyl( f<), where the canon-
ical inclusion ft< E ⊂ cyl(F<) can fiberwisely be identified with the canon-
ical inclusion j : L< → cyl( f<). Then, we may consider α as a section of
ρ : cyl(F<) → B along the path β = ρ ◦ α : [0, 1] → B. The pullback of
the bundle ρ : cyl(F<) → B under β can be identified with the trivial bundle
ρ′ = pr[0,1] : cyl( f<) × [0, 1] → [0, 1] in such a way that the section α of ρ pulls
back to a section α′ : [0, 1] → cyl( f<) × [0, 1] of ρ′, where α′(0) ∈ L< × {0} and
α′(1) ∈ L< × {1}. It remains to show that the unique map α′′ : [0, 1] → cyl( f<)

satisfying α′(t) = (α′′(t), t) for all t ∈ [0, 1] is homotopic rel endpoints to a map
[0, 1] → L<. In other words, by the discussion in [22, p. 346], we have to show
that π1(cyl( f<), L<, x0) = 0 for every basepoint x0 ∈ L<. In order to show this,
we consider the following portion of the long exact sequence of homotopy groups
of the pointed pair (cyl( f<), L<, x0) (omitting the basepoint):

π1(L<)
j∗−→ π1(cyl( f<)) → π1(cyl( f<), L<) → π0(L<)

j∗−→ π0(cyl( f<)).

Note that j∗ is an isomorphism in degree 0 because f< induces an isomorphism
π0(L<, x) → π0(L , x). Thus, the claim follows from the assumption that f<
induces a surjection on fundamental groups, i.e., that j∗ is a surjection in degree
1. ��
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Example 4.18. If L is path connected and has abelian fundamental group, then
any equivariant Moore approximation f< : L< → L to L of degree ≥ 2 induces
automatically a surjection on fundamental groups. In fact, by naturality of the
Hurewicz homomorphism we have for any basepoint x0 ∈ L< the commutative
diagram

π1 (L<, x0) π1 (L , f<(x0))

H1 (L<) H1 (L) .

Hur

f<∗

Hur
f<∗

Note that the left vertical map is surjective and the right vertical map is an isomor-
phism because in degree one, Hurewicz maps are abelianization maps. Hence, the
claim follows because f<∗ : H1 (L<) → H1(L) is an isomorphism.

Example 4.19. If L is a path connected cell complex and the fiber bundle E → B
is trivial, then there exists for any d ≥ 2 an equivariant Moore approximation
f< : L< → L to L of degree d which induces a surjection on fundamental groups.
Indeed, since the bundle E → B is trivial, the structure group G can be chosen to
be trivial. Thus, by the results of [28], L admits a cellular Moore approximation
f< : L< → L of degree d ≥ 2 in such a way that f< restricts to the identity on
(d − 1)-skeleta. In particular, the map induced by f< on fundamental groups is
surjective.

5. Rational homotopy theory

Theorem 4.2 reveals a natural relation between the rational Hurewicz homomor-
phism of the truncation cone and the condition that in some degree all complemen-
tary cup products in the reduced cohomology ring of the truncation cone vanish. In
this section we study the homotopy theoretic ramifications of this cohomological
vanishing condition (see e.g. Corollary 5.7 and Remark 5.8).

The main purpose of this section is to prove (see Sect. 5.5) the following

Theorem 5.1. Let n ≥ 3 be an integer. Let π : En−1 → B be a fiber bundle of
closedmanifolds with closedmanifold fiber L and structure group G such that B, E
and L are compatibly oriented. Suppose that B admits a good open cover (this holds
whenever B is smooth or at least PL). Let p and q be complementary perversities,
and set k = c − p(c + 1) and l = c − q(c + 1), where c = dim L. Suppose that
the fiber L possesses a G-equivariant Moore approximation f< : L< → L both
of degree k and of degree l such that the associated truncation cone cone(F<) is
simply connected (compare Lemma 4.17). Furthermore, we suppose that

(1) n ≤ 3 · max{k, l} − 1, and
(2) Oi (π, k, l) = 0 for all i .

Then, the rational Hurewicz homomorphism of the associated truncation cone,

Hurn−1∗ : πn−1(cone(F<), pt) ⊗Z Q → Hn−1(cone(F<)),

is surjective.
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5.1. Minimal Sullivan algebras

Assuming the ground field to be the rationals, we provide some necessary notation
from [16].

By a graded (rational) vector space we mean a collection V = {V p}p≥1 of
rational vector spaces (see [16, p. 40] and [16, p. 138]). We say that v ∈ V p is an
element of V of degree p, and write v ∈ V and |v| = p. As in [16, p. 42], we use
the notation V≥p = {Vq}q≥p, V<p = {Vq}q<p, etc.

As in Example 6 of [16, p. 45], the free graded commutative algebra of V is
the quotient algebra �V = T V/I , where T V denotes the tensor algebra of V (see
Example 4 in [16, p. 45]), and I ⊂ T V denotes the ideal generated by all elements
of the form v ⊗ w − (−1)|v|·|w|w ⊗ v, where v,w ∈ V . Following [16, p. 140], we
also write �V≥p = �(V≥p), �V<p = �(V<p), etc.

Note that, as vector spaces, �V = ⊕∞
p=0 �pV , where �pV denotes the linear

span of all products v1 ∧ · · · ∧ vp, v1, . . . , vp ∈ V , of word length p and degree
|v1| + · · · + |vp| (see Example 6(vi) in [16, p. 46] as well as [16, p. 140]). We will
also write �≥pV = ⊕

q≥p �qV , and in particular �+V = �≥1V .
Recall from [16, p. 138] that a Sullivan algebra is a commutative cochain

algebra of the form (�V, d) whose differential d satisfies the following nilpotence
condition. It is required that there exists an increasing sequence V (0) ⊂ · · · ⊂
V (k) ⊂ . . . of graded linear subspaces of V such that V = ⋃∞

k=0 V (k), d = 0 on
V (0), and d(V (k)) ⊂ �V (k − 1) for all k > 0. If the differential d of the Sullivan
algebra (�V, d) satisfies in addition im d ⊂ �≥2V , then we call the Sullivan
algebra (�V, d) minimal.

Note that if a Sullivan algebra (�V, d) is minimal, then the projection

ρ : �+V =
⊕

q≥1

�qV → �1V = V

induces according to the discussion in [16, p. 173] a homomorphism

ζ : H+(�V ) = ker(d : �+V → �+V )

im (d : �+V → �+V )
→ V, ζ([z]) = ρ(z).

Lemma 5.2. Fix integers r, s, t ≥ 1. Suppose that (�V, d) is a minimal Sullivan
algebra whose underlying graded vector space V is of the form V = {V p}p≥r ,
and whose differential d vanishes on all elements of degree ≤ s. Furthermore,
suppose that all t-complementary products in H+(�V ) vanish, that is, for all
classes α ∈ Hi (�V ), β ∈ Ht−i (�V ), 1 ≤ i ≤ t − 1, we have α ∧ β = 0 in
Ht (�V ). If t ≤ r + s, then the associated homomorphism ζ : H+(�V ) → V is
injective in degree t.

Proof. Suppose that [z] ∈ Ht (�V ) is a class such that ζ([z]) = 0. That is, z is
a cocycle of degree t in (�V, d) satisfying ρ(z) = 0. Thus, since z ∈ �≥2V by
definition of ρ, z can be written as a rational linear combination of elements of the
form v1 ∧ · · · ∧ vm , where m ≥ 2, and v1, . . . , vm ∈ V are nonzero elements such
that |v1| + · · · + |vm | = t . Since m ≥ 2, it follows from |v1|, . . . , |vm | ≥ r and
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t ≤ r + s that |v1|, . . . , |vm | ≤ s. Consequently, the elements v1, . . . , vm ∈ V≤s

are all cocycles in (�V, d). Hence, [v1] ∧ · · · ∧ [vm] = 0 in Ht (�V ) according to
the vanishing assumption on t-complementary products in H+(�V ). This shows
that [z] = 0 in Ht (�V ). ��

The following example shows that the assumption t ≤ r + s is in general
necessary in Lemma 5.2.

Example 5.3. Fix an odd integer u ≥ 3. Suppose that the only nonzero parts of the
graded vector space V are V u with basis {x, y}, and V 2u−1 with basis {z}. Then,
it is easy to check that (�V, d) is a minimal Sullivan algebra with differential d
determined by dx = dy = 0 and dz = xy. (In fact, a sequence V (0) ⊂ · · · ⊂
V (k) ⊂ . . . of the required form is given by taking V (0) to be the graded vector
space whose only nonzero part is V (0)u = V u , and by setting V (k) = V for
k > 0.) By construction, the only non-trivial cohomology groups of H+(�V ) are
Hu(�V ) (generated by the classes of x and y), H3u−1(�V ) (generated by the
classes of xz and yz), and H4u−1(�V ) (generated by the class of xyz). Now let
r = u, s = 2u−2, and t = r + s+1 = 3u−1. Then, the minimal Sullivan algebra
(�V, d) satisfies all assumptions of Lemma 5.2 except for t ≤ r + s. Furthermore,
the homomorphism ζ : H+(�V ) → V is clearly not injective in degree t because
V 3u−1 = 0, whereas H3u−1(�V ) �= 0.

5.2. Minimal Sullivan models

Given any commutative cochain algebra (A, d), a Sullivan model for (A, d) is

a Sullivan algebra (�V, d) together with a quasi-isomorphism m : (�V, d)
�−→

(A, d). The Sullivan model is called minimal if the corresponding Sullivan algebra
(�V, d) is minimal. It can be shown that any commutative cochain algebra (A, d)

with H0(A) ∼= Q possesses a unique minimal Sullivan model (see the corollary to
Theorem 14.12 in [16, p. 191]).

Given a commutative cochain algebra (A, d) such that H0(A) ∼= Q and
H1(A) = 0, the following explicit algorithm for constructing the (unique) mini-

mal Sullivan model m : (�V, d)
�−→ (A, d) is described before Proposition 12.2

in [16, p. 145]. Starting with a morphism m2 : (�V 2, 0) → (A, d) such that

H2(m2) : V 2
∼=−→ H2(A), the construction provides inductively for k = 2, 3, . . .

a vector space V k+1, an extension of the (derivational) differential d from �V≤k

to �V≤k+1 = �V≤k ⊗ �V k+1, and an extension of mk : (�V≤k, d) → (A, d)

to a cochain algebra morphism mk+1 : (�V≤k+1, d) → (A, d), such that, for all
k = 2, 3, . . . , Hi (mk) is an isomorphism for i ≤ k, and Hk+1(mk) is injective.
Having constructed mk : (�V≤k, d) → (A, d), the next step of the induction is as
follows. Choose cocycles aα ∈ Ak+1 and zβ ∈ (�V≤k)k+2 such that

Hk+1(A) = im Hk+1(mk) ⊕
⊕

α

Q · [aα],

ker Hk+2(mk) =
⊕

β

Q · [zβ ].
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Let V k+1 be a vector space with basis {v′
α} ∪ {v′′

β} in correspondence with the

elements {aα} ∪ {zβ}. The (derivational) differential d is extended from �V≤k to
�V≤k+1 = �V≤k ⊗ �V k+1 by setting dv′

α = 0 and dv′′
β = zβ . Finally, the map

mk : (�V≤k, d) → (A, d) is extended to a cochain algebra morphism

mk+1 : (�V≤k+1, d) → (A, d)

via mk+1v
′
α = aα and mk+1v

′′
β = bβ , where bβ ∈ Ak+1 has been chosen in such a

way that dbβ = mkzβ .

Lemma 5.4. Consider a commutative cochain algebra (A, d) satisfying H0(A) ∼=
Q and H1(A) = 0. Let r ≥ 2 be the smallest integer such that Hr (A) �= 0. If

m : (�V, d)
�−→ (A, d) denotes the (unique) minimal Sullivan model for (A, d),

then the underlying graded vector space V is of the form V = {V p}p≥r , and the
differential d vanishes on all elements of degree ≤ 2r − 2.

Proof. The claim V = {V p}p≥r is part of Proposition 12.2(ii) in [16, p. 145].
In order to show that the differential d vanishes on all elements of degree ≤

2r−2, it suffices by the inductive construction of d to show that ker Hk+2(mk) = 0
for k = 2, . . . , 2r − 3. (For r = 2 there is nothing to show since d vanishes on
all elements of degree ≤ 2 by construction.) Fix k = 2, . . . , 2r − 3. If k < r ,
then V = {V p}p≥r implies that (�V≤k)0 = Q and (�V≤k)p = 0 for p > 0. If,
however, k ≥ r , then V = {V p}p≥r implies that

(�V≤k)p =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Q, p = 0,
0, p = 1, . . . , r − 1,
V p, p = r, . . . , k,
0, p = k + 1, . . . , 2r − 1.

In any case, we see that (�V≤k)k+2 = 0, and, in particular, ker Hk+2(mk) = 0. ��

5.3. Commutative cochain algebras for spaces

Recall from Section 10 in [16, p. 115 ff.] that Sullivan has constructed a contravari-
ant functor APL from the category of topological spaces and continuous maps to
the category of commutative cochain algebras and cochain algebra morphisms.
Furthermore, the functor APL has the important property that for any topological
space X , the graded algebras H∗(X) and H(APL(X)) are naturally isomorphic
(and can hence be identified).

Given a path connected topological space X , we can in particular consider
the minimal Sullivan model for X , that is, the (unique) minimal Sullivan model

mX : (�VX , d)
�→ APL(X) for the commutative cochain algebra (A, d) =

APL(X). Moreover, recall from Sect. 5.1 that we can associate to the minimal
Sullivan algebra (�VX , d) a homomorphism ζX : H+(�VX ) → VX .

In Proposition 5.5 below, we characterize the non-vanishing of the rational
Hurewicz homomorphism in terms of rational homotopy theory (compare the proof
of Proposition 3.14 in [23, p. 250]).
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Proposition 5.5. Let (X, x0) be a simply connected pointed space, and suppose that
H∗(X) is of finite type (i.e., the rational vector space Hr (X) has finite dimension
for all r ∈ Z). Then for any integer n ≥ 3 the following statements are equivalent:

(i) The Hurewicz homomorphism

Hurn−1∗ : πn−1(X, x0) ⊗Z Q → Hn−1(X)

is surjective.
(ii) The homomorphism ζ n−1

X : Hn−1(�VX ) → V n−1
X is injective.

Moreover, if either of the above statements is satisfied for X, then all (n − 1)-
complementary cup products in ˜H∗(X) vanish.

Proof. We fix a minimal Sullivan model mX : (�VX , d)
�−→ APL(X) for X .

Since (X, x0) is simply connected and H∗(X) is of finite type, the corollary to
Theorem 15.11 in [16, p. 210] implies that in degree n−1 > 1 the homomorphism
ζ n−1
X : Hn−1(�VX ) → V n−1

X can be identified with the dual

Hur∗n−1 : Hn−1(X) → HomZ(πn−1(X),Q)

of the Hurewicz map Hurn−1 : πn−1(X) → Hn−1(X;Z). Since the extension of
scalars functor − ⊗Z Q is left adjoint to the restriction of scalars functor (along
Z ⊂ Q), the latter homomorphism can furthermore be identified with

HomQ(Hurn−1∗(−),Q) : HomQ(Hn−1(X) ⊗Z Q,Q)

→ HomQ(πn−1(X) ⊗Z Q,Q).

Thus, the equivalence (i) ⇔ (i i) follows from the observation that a homo-
morphism V → W of rational vector spaces is surjective if and only if its dual
HomQ(W,Q) → HomQ(V,Q) is injective.

Let us suppose that there is a non-vanishing (n−1)-complementary cup product
in ˜H∗(X), that is, for some i ∈ {1, . . . , n − 2}, there exist classes α ∈ Hi (X) and
β ∈ Hn−1−i (X) such that 0 �= α ∪ β ∈ Hn−1(X). As H∗(APL(X)) ∼= H∗(X)

(as graded algebras) and mX : (�VX , d)
�−→ APL(X) is a quasi-isomorphism of

commutative differential graded algebras, there exist cocycles a ∈ �VX of degree i
and b ∈ �VX of degree n−1−i such that 0 �= [a∧b] ∈ Hn−1(�VX ). But then ζ n−1

X
is not injective because a ∧ b ∈ �≥2VX implies that ζX ([a ∧ b]) = ρ(a ∧ b) = 0.
Hence, we have shown that all (n−1)-complementary cup products in ˜H∗(X)must
vanish if X satisfies either of the statements (i) and (i i). ��

Remark 5.6. In the context of Theorem 4.2 we have exploited statement (i) in our
proof that the local duality obstructions vanish. Under the assumption that X =
cone(F<) is simply connected (compare Lemma 4.17), Proposition 5.5 provides
another proof by means of the minimal Sullivan model of X , based on statement
(i i).
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5.4. A rational Hurewicz theorem

One part of Proposition 5.5 states that in a given degree, surjectivity of the rational
Hurewicz homomorphism implies that complementary cup products in the reduced
cohomology ring vanish. Our purpose is to prove the converse implication under
reasonable hypotheses. This is addressed in Corollary 5.7, where the additional
assumption is that the considered degree n−1 should not be too large compared to
the rational connectedness r of the space X . Note that for n − 1 = 2r − 1, Corol-
lary 5.7 specializes to a part of the classical rational Hurewicz theorem (for spaces
with homology of finite type) because the vanishing condition for complementary
cup products is trivially satisfied. This is exactly the implication that is employed
in [23] in the context of isolated singularities.

Corollary 5.7. Let (X, x0) be a simply connected pointed space, and suppose that
H∗(X) is of finite type (i.e., the rational vector space Hr (X) has finite dimension
for all r ∈ Z). Let n ≥ 3 be an integer such that the following assumptions hold:

(1) If r ≥ 2 denotes the smallest positive integer such that Hr (X) �= 0, then
n ≤ 3r − 1.

(2) All (n − 1)-complementary cup products in ˜H∗(X) vanish, that is, for all α ∈
Hi (X), β ∈ Hn−1−i (X), 1 ≤ i ≤ n − 2, we have 0 = α ∪ β ∈ Hn−1(X).

Then, the rational Hurewicz homomorphism

Hurn−1∗ : πn−1(X, x0) ⊗Z Q → Hn−1(X)

is surjective.

Proof. We consider the commutative cochain algebra (A, d) = APL(X) and its

minimal Sullivan model mX : (�VX , d)
�−→ APL(X). Using that the graded alge-

bras H∗(X) and H∗(APL(X)) are isomorphic, we obtain from Lemma 5.4 that
VX = {V p

X }p≥r , and that the differential d vanishes on all elements of degree
≤ 2r − 2, where r ≥ 2 denotes the smallest positive integer such that Hr (X) �= 0.
Next, we apply Lemma 5.2 to the minimal Sullivan algebra (�VX , d) and the
integers r , s = 2r − 2 and t = n − 1. Note that t ≤ r + s by assumption (1),
and all t-complementary cup products in H+(�VX ) vanish by assumption (2)
because mX is a quasi-isomorphism. Hence, we conclude that the homomorphism
ζX : H+(�VX ) → VX is injective in degree t = n − 1. Finally, the claim that the
Hurewicz homomorphism Hurn−1∗ : πn−1(X, x0) ⊗Z Q → Hn−1(X) is surjective
follows from implication (i i) ⇒ (i) of Proposition 5.5. ��
Remark 5.8. (formality) In Corollary 5.7, the cohomological vanishing condition
in assumption (2) is a “formal shadow” of the statement that the rational Hurewicz
homomorphism of X is surjective in degree n − 1. In fact, let us show that Corol-
lary 5.7 remains valid if we replace assumption (1) by the assumption

(1’) The space X is formal (see [16, p. 156]), that is, APL(X) is connected to
(H∗(X), 0) by a chain

APL(X)
�−→ (C0, d0)

�←− . . .
�−→ (Ck, dk)

�←− (H∗(X), 0)

of quasi-isomorphisms of commutative cochain algebras.
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For this purpose, we exploit the well known fact that a minimal Sullivan model

mX : (�VX , d)
�−→ APL(X) lifts through a chain of quasi-isomorphisms as in

(1’) to yield a minimal Sullivan model m : (�VX , d)
�−→ (H∗(X), 0). We have to

prove that the homomorphism ζX : H+(�VX ) → VX is injective in degree n − 1.
Suppose that the cocycle x ∈ �VX represents a class in Hn−1(�VX ) such that
ζ n−1
X ([x]) = 0. By definition of the homomorphism ζX , this means that ρ(x) = 0
(i.e., x has no linear components). Thus, x can be written as a finite sum of the
form

x =
∑

i

v
(i)
1 ∧ · · · ∧ v

(i)
li

,

where for every i , we have li ≥ 2, and v
(i)
1 , . . . , v

(i)
li

∈ VX are nonzero elements

such that |v(i)
1 | + · · · + |v(i)

li
| = n − 1. By applying the algebra morphism m, we

obtain

m(x) =
∑

i

m(v
(i)
1 ) ∪ · · · ∪ m(v

(i)
li

) = 0

because each summand vanishes being an (n − 1)-complementary cup product in
˜H∗(X) by assumption (2). Therefore, passing to the map on cohomology induced
by m, we have Hn−1(m)([x]) = [m(x)] = 0 ∈ Hn−1(X). But since m is a quasi-
isomorphism, it follows that [x] = 0 in Hn−1(�VX ), which implies that ζ n−1

X is
injective. This proves our modified version of Corollary 5.7.

5.5. Proof of Theorem 5.1

We wish to apply Corollary 5.7 to the simply connected pointed space (X, x0) =
(cone(F<), pt). Note that H∗(X) is of finite type because the inclusion E ⊂
cone(F<) induces a surjective homomorphism Hp(E) → Hp(cone(F<)) for all
p ∈ Z (see properties (a) and (b) of Q≥E listed in the proof of Theorem 4.2 in
Sect. 4.3, where we use the assumption that B admits a good open cover). Since B
admits a good open cover, the assumptions (1) and (2) of Theorem 5.1 imply that
the conditions (1) and (2) of Corollary 5.7 are satisfied. (Concerning (1), note that
the smallest integer r ≥ 2 such that Hr (X) �= 0 satisfies r ≥ max{k, l} according
to Lemma 4.15. As for condition (2), we apply Lemma 4.1.)

Finally, application of Corollary 5.7 completes the proof of Theorem 5.1.

Remark 5.9. Weobtain an alternative proof of Theorem5.1 by checking assumption
(1’) of Remark 5.8 instead of assumption (1) of Corollary 5.7. By invoking the
obstruction theory developed in [21], we observe that assumption (1’) follows in
fact from assumption (1) if we impose the additional assumption that the space
X satisfies H p(X) = 0 for p > n − 1. (Indeed, if we assume (1) as well as
H p(X) = 0 for p > n − 1, then the commutative graded algebra H = H∗(X)

satisfies H0 = Q, and H p = 0 for 1 ≤ p ≤ r −1 and for p > 3(r −1)+1. Hence,
we can apply Corollary 5.16 in [21] for H = H∗(X), l = r − 1, and C = APL(X)
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to obtain a chain of quasi-isomorphisms between C and (H, 0) as desired.) But
by using the surjective homomorphism Hp(E) → Hp(cone(F<)) from the proof
of Theorem 5.1, we see that X = cone(F<) satisfies H p(X) = 0 for p > n − 1
because dim E = n − 1.

6. Intersection spaces and the signature

In Sect. 6.1 we apply the results of the previous sections to study middle perversity
intersection spaces of depth oneWitt spaceswithin the framework of Thom–Mather
stratified spaces. In particular, given a depth one Witt space X (see Definition 6.2),
Theorem 6.3(a) provides our Hurewicz criterion for the existence of a Klimczak
completion ̂I X = I X ∪en of the middle perversity intersection space I X . Then, in
part (b) of Theorem6.3,we relate theHurewicz criterion to the vanishing of the local
duality obstructions to Banagl–Chriestenson by showing that they are equivalent if
the dimensions of the singular strata are not too big. Moreover, when the dimension
n of X is of the form n = 4d, Theorem 6.3(c) implies that the signature of the
symmetric intersection form H2d(̂I X) × H2d(̂I X) → Q equals the signature of
the Goresky-MacPherson–Siegel intersection form I H2d(X) × I H2d(X) → Q

on middle-perversity intersection homology. Finally, we illustrate our results by a
concrete example in Sect. 6.2.

6.1. Depth one Witt spaces

Before focusing on depth one Witt spaces and their middle perversity intersection
spaces (seeTheorem6.3),wediscussmore generally intersection spaces of stratified
pseudomanifold of depth 1 along the lines of [7].

First of all, an n-dimensional two strata pseudomanifold is a pair (X, �) con-
sisting of a locally compact, second countable Hausdorff space X and a closed
connected subspace � such that � ⊂ X is equipped with a Thom–Mather C∞-
stratification of X as follows. The regular stratum X \ � is a smooth n-manifold
that is dense in X , and the singular stratum � is a smooth manifold whose codi-
mension in X is at least 2. Moreover, � is required to be equipped with so-called
Thom–Mather control data (for details, see Section 8 of [7]).

Suppose that (X, �) is an n-dimensional two strata pseudomanifold with non-
empty singular stratum �. Then, as explained at the beginning of Section 9 in
[7], the Thom–Mather control data of � ⊂ X can be used to construct an open
neighborhood U of � in X and a smooth (locally trivial) fiber bundle π : E → B
with the following properties. The complement M = X \U is a smooth n-manifold
with boundary ∂M = E , and there exists a homeomorphism from the closure

U ∪ ∂M ofU in X to the homotopy pushout DE of B
π←− E

idE−→ E that restricts
to diffeomorphisms � ∼= B and (U ∪ ∂M) \ � ∼= DE \ B = E × (0, 1] extending
∂M = E ∼= E × {1}. We assume that the data (U, π : E → B) have been fixed,
and callU a regular neighborhood, and the fiber bundle π : E → B the link bundle
of the singular stratum � = B. The (non-empty) fiber L of π is called the link of
the singular stratum � = B.
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More generally (see Definition 8.3 in [7]), an n-dimensional stratified pseudo-
manifold of depth 1 is a tuple (X, �1, . . . , �r ), where the �i are mutually disjoint
subspaces of X such that for every i = 1, . . . , r , the pair (X \ ⋃

j �=i � j , �i ) is
a two strata pseudomanifold whose singular stratum �i has regular neighborhood
U (i), and link bundle π(i) : E (i) → B(i) having link L(i). The stratified depth 1
pseudomanifold (X, �1, . . . , �r ) is called oriented if the top stratum X \ ⋃

i �i is
equipped with an orientation.

Consider an n-dimensional stratified pseudomanifold X = (X, �1, . . . , �r )

of depth 1. Given a perversity p, we proceed to explain the construction of the
p-intersection space I p X , which will depend on the choice of equivariant Moore
approximations of the link bundles of the singular strata. We denote by ci the
dimension of the link L(i) of the singular stratum �i , and set ki = ci − p(ci + 1),
which is a positive integer. For every i we assume that the link L(i) possesses for
some choice of structure groupG(i) of the link bundleπ(i) aG(i)-equivariantMoore
approximation of degree ki , say

f (i)
<ki

: L(i)
<ki

→ L(i).

As explained in the beginning of Sect. 4, the Moore approximations f (i)
<ki

induce
fiberwise truncations

F (i)
<ki

: ft<ki E
(i) → E (i),

where ft<ki E
(i) is the total space of the fiber bundle π

(i)
<ki

: ft<ki E
(i) →

B(i) obtained by replacing the fiber L(i) of π(i) with the fiber L(i)
<ki

, and

F (i)
<ki

: ft<ki E
(i) → E (i) is induced by f (i)

<ki
: L(i)

<ki
→ L(i) in such a way that

π(i) ◦ F (i)
<ki

= π
(i)
<ki

. Observe that if we choose the regular neighborhoods U (i)

sufficiently small so that U (i) ∩ U ( j) = ∅ for i �= j , then M = X \ ⋃

i U
(i) is a

smooth manifold with boundary ∂M = ⊔

i E
(i).

Definition 6.1. (compare Definition 9.1 in [7]) The perversity p intersection space
I p X of the depth 1 pseudomanifold X = (X, �1, . . . , �r ) is defined as the homo-
topy cofiber of the composition

⊔

i

ft<ki E
(i)

⊔

i F
(i)
<ki−−−−→

⊔

i

E (i) = ∂M
incl−−→ M.

In other words, I p X = cone(
⊔

i F
(i)
<ki

) ∪∂M M is the homotopy pushout of

pt ←−
⊔

i

ft<ki E
(i) τ−→ M.

From now on, we are concerned with Witt spaces, which are an important class
of stratified pseudomanifolds defined by Siegel [25].
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Definition 6.2. (seeDefinition 8.3 in [7]) An oriented depth 1 stratified pseudoman-
ifold (X, �1, . . . , �r ) is called Witt space if the following condition is satisfied.
For each 1 ≤ i ≤ r such that the dimension ci of the link L(i) of the singular
stratum �i is even, we have Hci

2
(L(i)) = 0.

We specialize to the case of the lower middle perversity p = m and the
upper middle perversity q = n. Consider a compact depth one Witt space
(X, �1, . . . , �r ). Suppose that f (i)

< : L(i)
< → L(i) is a G(i)-equivariant Moore

approximation of degree ki = ci−n(ci+1) = � 1
2 (ci+1)�. Then, it follows from the

homology vanishing condition of Definition 6.2 that f (i)
< is also a G(i)-equivariant

Moore approximation of L(i) of complementary degree li = ci − m(ci + 1) =

 1
2 (ci +1)�. Thus, the resulting intersection spaces Im X and I n X of Definition 6.1

can be chosen to be equal, Im X = I n X .
Let us state the main result of this section.

Theorem 6.3. Let (X, �1, . . . , �r ) be a compact depth oneWitt space of dimension
n ≥ 3. Assume that for every i = 1, . . . , r the link L(i) of the singular stratum
�i admits an equivariant Moore approximation f (i)

< : L(i)
< → L(i) of degree ki =

� 1
2 (ci + 1)� (and thus, also one of degree li = 
 1

2 (ci + 1)�). Let F (i)
< : ft< E (i) →

E (i) denote the fiberwise truncation of the link bundle π(i) : E (i) → B(i). Then,
for the resulting middle perversity intersection space

I X = cone(
⊔

i

F (i)
< ) ∪∂M M

of Definition 6.1, the following statements hold:

(a) If the rational Hurewicz homomorphism

Hurn−1∗ : πn−1(cone(F
(i)
< ), pt) ⊗Z Q → Hn−1(cone(F

(i)
< ))

is surjective for every i , then themiddle perversity intersection space I X admits
a completion ̂I X = I X ∪ en to a rational Poincaré duality space by attaching
a single n-cell.

(b) Fix an index i ∈ {1, . . . , r}. If the rational Hurewicz homomorphism in part
(a) is surjective, then the local duality obstructionsO∗(π(i), ki , li ) vanish. The
converse implication holds at least when the truncation cone, cone(F (i)

< ), is
simply connected (see Lemma 4.17), and

dim B(i) <

{

(dim L(i) + 1)/2, if dim L(i) is odd,
(dim L(i) + 4)/2, if dim L(i) is even.

(c) Suppose that the dimension of X is of the form n = 4d. Furthermore, suppose
that the rational Hurewicz homomorphism in part (a) is surjective for every
i , and let ̂I X = I X ∪ en be a completion to a Poincaré duality space as
provided by part (a). Then, the Witt element wH I ∈ W (Q) induced by the
symmetric intersection form H2d(̂I X)×H2d(̂I X) → Q of the Poincaré duality
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space ̂I X equals the Witt element wI H ∈ W (Q) induced by the Goresky–
MacPherson–Siegel intersection form I H2d(X) × I H2d(X) → Q on middle-
perversity intersection homology (see Section I.4.1 in [25]). In particular, the
two intersection forms have equal signatures.

Proof. (a). Fix i ∈ {1, . . . , r}. In the following, we let f (i) : Y (i) → Z (i) denote
the map F (i)

< : ft< E (i) → E (i), and set X (i) = cone( f (i)). By the same argument
as in the first half of the proof of Theorem 4.2 (see Sect. 4.3), we can show that the
map f (i) : Y (i) → Z (i) and its mapping cone X (i) satisfy all the assumptions of
Proposition 4.9. Then, it follows that the assumptions of Proposition 4.9 are also
satisfied for the map f : Y → Z given by

⊔

i f (i) : ⊔

i Y
(i) → ⊔

i Z
(i), and its

mapping cone X = ∨

i X
(i). In the following, we will construct a map φ : Sn−1 →

X such that statement (i i) of Proposition 4.9 holds for the map f : Y → Z and
its mapping cone X . Then, (cone(φ), Z) is an oriented Poincaré duality pair by
the implication (i i) ⇒ (i) of Proposition 4.9. Finally, the claim of statement (a)

follows by applying the gluing principle for Poincaré duality pairs (see Theorem
3.3 in [23]) to glue the oriented Poincaré duality pairs (cone(φ), Z) and (M, ∂M)

along their common oriented boundary Z = ∂M .
Since the rational Hurewicz homomorphism

Hurn−1∗ : πn−1(X
(i), pt) ⊗Z Q → Hn−1(X

(i))

is surjective by assumption, the image of the orientation class [Z (i)] ∈ Hn−1(Z (i))

of the Poincaré space Z (i) = E (i) under the map Hn−1(Z (i)) → Hn−1(X (i))

induced by the inclusion Z (i) ⊂ X (i) lies in the image of Hurn−1∗. Thus,
as a part of the implication (i i) ⇒ (i) of Theorem 4.2, there exists a map
φ(i) : (Sn−1, s0) → (X (i), pt) such that the orientation class [Z (i)] ∈ Hn−1(Z (i)) of
the Poincaré space Z (i) = E (i) lies in the image of the connecting homomorphism
∂n : Hn(cone(φ(i)), Z (i)) → Hn−1(Z (i)). Pick basepoints yi ∈ Y (i), and let Z ⊂ X
denote the mapping cone of the restriction f | : {y1, . . . , yr } → ⊔

i Z
(i) = Z . For

i = 1, . . . , r we choose pairwise disjoint embeddings ιi : Dn−1 → Sn−1 \ {s0}.
After choosing identifications Sn−1/(Sn−1 \ ιi (Dn−1 \∂Dn−1)) = Sn−1 of pointed
spaces, the quotient map Sn−1 → Sn−1/(Sn−1 \ ιi (Dn−1 \ ∂Dn−1)) can be con-
sidered as a map q(i) : (Sn−1, s0) → (Sn−1, s0) of degree 1. Let

φ : (Sn−1, s0) → X =
∨

i

X (i)

denote the map uniquely determined by r (i) ◦ φ = φ(i) ◦ q(i) for all i = 1, . . . , r ,
where r (i) : X = ∨

i X
(i) → X (i) is the collapse map given by r (i)|X (i) = idX (i)

and r (i)|X ( j) = pt ∈ X (i) for j �= i . Let R(i) : cone(φ) → cone(φ(i)) denote
the canonical map of homotopy cofibers induced by the pair (q(i), r (i)). (That
is, writing cone(φ) = (Sn−1 × [0, 1] � pt �X)/ ∼φ and cone(φ(i)) = (Sn−1 ×
[0, 1] � pt �X (i))/ ∼φ(i) , we have R(i)(pt) = (pt), R(i)([(s, t)]) = [(q(i)(s), t)]
for (s, t) ∈ Sn−1 × [0, 1], and R(i)([x]) = [r (i)(x)] for x ∈ X .) Note that R(i)

restricts to the collapse map S(i) : Z → Z
(i) := cone( f |{yi }) that extends idZ (i) by
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the constant map to the cone point of Z
(i)
. Writing ρi = R(i)∗ and σi = S(i)∗ for the

induced maps on homology, we have the commutative diagram

Hn(cone(φ), Z) Hn−1(Z)

Hn(cone(φ), Z) Hn−1(Z)

⊕

i Hn(cone(φ(i)), Z
(i)

)
⊕

i Hn−1(Z
(i)

)

⊕

i Hn(cone(φ(i)), Z (i))
⊕

i Hn−1(Z (i)),

∂n

incl∗∼= incl∗∼=
∂n

(ρ1,...,ρr )∼= (σ1,...,σr )∼=
⊕i ∂n

⊕i ∂n

∼= ⊕i incl∗ ∼= ⊕i incl∗

(6)

in which all vertical arrows are isomorphisms by the Eilenberg-Steenrod axioms
because n − 1 > 0. Note that the orientation class [Z ] ∈ Hn−1(Z) of the Poincaré
space Z = E corresponds to the tuple ([Z (1)], . . . , [Z (r)]) ∈ ⊕

i Hn−1(Z (i)) via
the vertical arrows on the right hand side. (In fact, using the inclusions ιi : Z (i) → Z ,
i ∈ {1, . . . , r}, we note that the map

� :
⊕

i

Hn−1(Z
(i)) → Hn−1(Z), �(z1, . . . , zr ) = ι1∗(z1) + · · · + ιr∗(zr ),

satisfies �([Z (1)], . . . , [Z (r)]) = [Z ], and fits into the commutative diagram

Hn−1(Z) Hn−1(Z)

⊕

i Hn−1(Z (i))
⊕

i Hn−1(Z
(i)

),

incl∗
∼=

(σ1,...,σr )∼=�

⊕i incl∗
∼=

whose commutativity can be checked element-wise by using that the composition

Z (i) ιi−→ Z
incl−−→ Z

S( j)−−→ Z
( j)

is the inclusion Z (i) → Z
(i)

for i = j , and the constant map to the cone point

pt ∈ Z
( j)

for i �= j .) Hence, it follows from diagram (6) that the orientation class
[Z ] ∈ Hn−1(Z) of the Poincaré space Z = E lies in the image of the connecting
homomorphism ∂n : Hn(cone(φ), Z) → Hn−1(Z), which is the desired statement
(i i) in Proposition 4.9.

(b). In view of Theorem 4.2, the claim follows directly from Theorem 5.1.
(c). We generalize the proof of Corollary 3.10 in [23] to depth one Witt spaces

with non-isolated singularities as follows. In view of Corollary 10.2 in [7], the
Witt element wI H ∈ W (Q) equals the Witt element ŵI H ∈ W (Q) induced by the
Goresky–MacPherson–Siegel intersection form�I H : I H2d( ̂M)× I H2d( ̂M) → Q

of the Witt space ̂M = cone(∂M
incl−−→ M) with one isolated singularity. Let

dM : H2d(M) → H2d(M, ∂M) be the Poincaré-Lefschetz duality isomorphism of
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(M, ∂M), and let α : H2d(M) → H2d(M, ∂M) be the map induced by the inclu-
sion of pairs (M,∅) → (M, ∂M). As explained in the proof of Theorem 2.28 in
[3, p. 137], we have explicitly I H2d( ̂M) = im α and �I H (v,w) = dM (v′)(w)

for any v′ ∈ H2d(M) with α(v′) = v. Thus, ŵI H ∈ W (Q) is just the Witt ele-
ment of the Poincaré duality pair (M, ∂M) of dimension n = 4d with orienta-
tion class [M] as considered in the context of Lemma 3.4 in [23]. Next, note that
̂I X is the gluing of (M, ∂M) along the oriented boundary ∂M with the oriented
Poincaré duality pair (cone(

⊔

i F
(i)
< ) ∪ en, ∂M) obtained from the construction

of part (a). Thus, we can apply Novikov additivity of Witt elements under gluing
of Poincaré duality pairs (see Lemma 3.4 in [23]) to obtain wH I = ŵI H − w�

in W (Q), where w� ∈ W (Q) denotes the Witt element of the oriented Poincaré
duality pair (Xφ, Z) = (cone(

⊔

i F
(i)
< ) ∪ en, ∂M). To conclude the claim that

wH I = wI H in W (Q), it remains to show that w� = 0. For this purpose, recall
that w� ∈ W (Q) can be represented by a pairing on the image of the canoni-
cal map H2d(Xφ) → H2d(Xφ, Z). But the inclusion Z → Xφ induces a sur-
jection H2d(Z) → H2d(Xφ) because the inclusion Z → X induces a surjection
H2d(Z) → H2d(X) by condition (1) of Proposition 4.9, and the inclusion X → Xφ

induces an isomorphism H2d(X) ∼= H2d(Xφ) by Remark 4.11 because 2d �= n−1.
Hence, H2d(Xφ) → H2d(Xφ, Z) is the zero map, and the claim follows. ��

Remark 6.4. (two strata Witt spaces) If we apply Theorem 6.3 for a two strata
Witt space (X, �), then the statements of the parts (a), (b), and (c) specialize to
Theorem 2.1, Theorem 2.2, and Theorem 2.3, respectively. The proof of part (a)
simplifies for two strata Witt spaces in such a way that we can deduce Theorem 2.1
more directly from Theorem 4.2. Namely, we apply the implication (i i) ⇒ (i) of
Theorem 4.2 to the link bundle π : En−1 → B of the singular stratum � = B
of X , and to the given equivariant Moore approximation f< : L< → L of degree
k = � 1

2 (dim L+1)� (and thus, also of degree l = 
 1
2 (dim L+1)�) of the link L . As

a result, we obtain a completion of the associated truncation cone cone(F<) to an
oriented Poincaré duality pair (cone(F<)∪en, E) of dimension nwhose orientation
class extends the orientation [E] ∈ Hn−1(E) of the boundary. Finally, we apply the
gluing principle for Poincaré duality pairs (see Theorem 3.3 in [23]) to the oriented
Poincaré duality pairs (cone(F<) ∪ en, E) and (M, ∂M) with common oriented
boundary E = ∂M to obtain a Klimczak completion ̂I X = (cone(F<) ∪ en) ∪∂M

M = I X ∪ en of the middle perversity intersection space I X = cone(F<)∪∂M M .

Remark 6.5. In general, we do not know how the choice of the attaching map
affects the homotopy type of the the completion ̂I X = I X ∪ en constructed in
Theorem 6.3(a). However, if the intersection space I X is simply connected, then
the following theorem of Stasheff applied for W = I X implies that the rational
homotopy type of Z = ̂I X is determined by I X .

Theorem 6.6. (Theorem 1 in [27]) Let H be a Poincaré duality algebra of top
dimensionn and H1 = 0. LetW bea simply connected rational spacewith H(W ) ∼=
H except Hn(W ) = 0. If Z = W ∪en with H(Z) ∼= H, then the rational homotopy
type of Z is determined by W.
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Remark 6.7. Passing from Witt elements to signatures in our proof of Theo-
rem 6.3(c), we recover the statement of Theorem 11.3 in [7], saying that the signa-
ture of the intersection form on H2d(̂I X) = H2d(I X) equals the so-called Novikov
signature of the manifold-with-boundary (M, ∂M). Note that the latter is shown
in [7] for the intersection space of a closed oriented two strata Witt space under
the assumption that the local duality obstructions of the link bundle vanish. The
proof given in [7] is involved, and requires to construct an intersection form of the
intersection space I X that is symmetric. As in our proof of Theorem 6.3(c), one
also exploits surjectivity of the map H2d(Z) → H2d(X), namely in diagram (11.2)
in [7], where the map takes the form C≥k∗ : Hm(∂M) → Hm(Q≥k E).

6.2. An example

To illustrate a non-trivial case in which Theorem 6.3 applies, we discuss a class of
examples of Witt spaces having as singular strata a finite number of circles with
twisted link bundles. As input data for our construction, we employ commutative
diagrams of the form

L<k L

L<k L ,

f<

λ<k λ

f<

where

• L is a closed oriented smooth manifold of dimension c > 0,
• f< : L< → L is a Moore approximation of L of degree � 1

2 (c + 1)�,
• λ : L → L is an orientation preserving diffeomorphism,
• λ< : L< → L< is a homeomorphism,

such that

• Hc
2
(L) = 0 when c is even,

• f< induces a surjection π1(L<, x0) → π1(L , f<(x0)) for every x ∈ L<, and
• λN = idL and λN

L = idL for some integer N > 0.

Given a commutative diagram as above, we consider the mapping torus

E = (L × [0, 1])/(x, 0) ∼ (λ(x), 1)

as the total space of a smooth fiber bundle π : E → S1 with fiber L and structure
group G = Z/NZ acting on L via i + NZ �→ λi . The bundle π is flat in the sense
that we can choose G-valued transition functions that are locally constant. Recall
that the integers k = � 1

2 (c + 1)� and l = 
 1
2 (c + 1)� are associated to the upper-

middle perversity n and the lower-middle perversity m, which are complementary.
By the properties of the above diagram, the map f< : L< → L is a G-equivariant
Moore approximation both of degree k and of degree l. It can be shown that the
local duality obstructions O∗(π, k, l) vanish. (In fact, we can follow the proof of
Theorem 7.1 in [7], which applies literally when we replace the universal cover
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˜B → B by the N -sheeted cover S1 → S1 having the finite group π1 = Z/N
as its group of deck transformations.) Let F< : ft< E → E denote the fiberwise
truncation induced by the G-equivariant Moore approximation f< : L< → L . The
truncation cone of f<, cone(F<), is simply connected by Lemma 4.17. Hence,
Theorem 6.3(b) implies that the rational Hurewicz homomorphism

Hurn−1∗ : πn−1(cone(F<), pt) ⊗Z Q → Hn−1(cone(F<))

is surjective.
We choose a suitable finite disjoint union

⊔

i E
(i) of mapping tori E (i) coming

from the previous construction that can be realized as the boundary of a compact
oriented smooth manifold M of dimension n = c + 2. For instance, when c = 6,
then we can use a single mapping torus because �SO

7 = 0. Denoting the homotopy

pushout of S1
π←− E (i)

idE(i)−→ E (i) by DE (i), we thus obtain a compact depth
one Witt space X = M ∪∂M

⊔

i DE (i) of dimension n ≥ 3. Its middle perversity
intersection space is given by

I X = cone(
⊔

i

F (i)
< ) ∪∂M M,

and according to Theorem 6.3(a), there is a completion ̂I X = I X ∪ en to a rational
Poincaré duality space by attaching a single n-cell. By Theorem 6.3(c), the signa-
ture of the Poincaré duality space ̂I X agrees with the signature of the Goresky–
MacPherson–Siegel intersection form on middle-perversity intersection homology
of X .

In conclusion, let us discuss an example for a commutative diagram as above.

Example 6.8. Consider a closed smooth manifold K of dimension c ≥ 3 such that
Hc

2
(K ) = 0 when c is even. We fix a c-dimensional triangulation K 0 ⊂ · · · ⊂ Kc

of K . Set k = � 1
2 (c + 1)�. The (k − 1)-skeleton Kk−1 can be extended to a

k-dimensional CW complex K< in such a way that there exists a Moore approx-
imation g< : K< → Kk of degree k which restricts to the identity map on Kk−1.
(When K is simply connected and k ≥ 3, this can be achieved by using Proposition
1.6 of [3]. More generally, note that Proposition 1.3 in [28] can be applied when-
ever k ≥ 2, and without assuming K to be simply connected.) The connected sum
L = K �K is a closed smooth c-manifold which admits an orientation preserving
diffeomorphism λ : L → L interchanging the two summands in such a way that
λ2 = idL . We may equip L with a c-dimensional CW structure L0 ⊂ · · · ⊂ Lc in
such a way that Lc−1 = Kc−1 ∨x0 Kc−1 for some basepoint x0 ∈ K 0, and such
that λ restricts to the homeomorphism Lc−1 → Lc−1 that interchanges the two
copies of Lc−1. (To achieve this, we fix a c-simplex �c of K , choose an embedded
closed unit ball Bc in the interior of �c, and delete the interior Uc of Bc. Then,
we form the connected sum L = K �K by gluing two copies of K \ Uc via the
identity map on ∂Bc. In order to find the desired CW structure on L , we modify
Bc by moving one point of ∂Bc to a 0-simplex {x0} ⊂ ∂�c. Then, we see that
Lc−1 = Kc−1 ∨x0 Kc−1, and the c-cells of L are given by the c-simplices of the
two copies of K that are different from �c, plus one new c-cell whose attaching
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map arises from gluing the two copies of �c along the modified ∂Bc.) We define
a degree k Moore approximation f< : L< → L by taking the composition

K< ∨x0 K<
g<∨g<−→ Kk ∨x0 K

k = Lk ↪→ L = K �K .

Finally, we define λ< : L< → L< to be the homeomorphism that interchanges the
two copies of K< in the bouquet L< = K< ∨x0 K<. Then, the desired diagram
commutes by construction.
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